The Saturn s Atmosphere

Size: px
Start display at page:

Download "The Saturn s Atmosphere"

Transcription

1 The Saturn s Atmosphere Ben Wei Peng Lew May 2, Introduction Saturn is 9.5 AU away from the Sun. Given a radius of km (0.84 R Jup ) and mass of kg (0.28M Jup ), the surface gravity is around 11 kgms 2. It is tilted degree to the orbit with 10 h 32 min 45 s ± 46s rotation period based on the gravitational field and oblateness (Helled et al., 2015). The hue yellow color seen in Saturn chromosphere is possibly caused by spectrally featureless hydrocarbon (West et al., 2009). Saturn s effective temperature is around 125 K at 9.5 AU orbital distance from the Sun.The corresponding scale height is kt/µg=43km, where µ 2 for hydrogen dominated atmosphere. 2 Composition The 5 most abundant gases in Saturn atmosphere are hydrogen, helium (8%, Fletcher et al. (2007a)), methane (0.45%, Courtin et al. (1984)), ammonia (NH 3 ) (0.05%, Briggs & Sackett (1989)) and ethane (C 2 H 4 ) ( %, Courtin et al. (1984)). The composition of Saturn atmosphere are mainly estimated based on radio occultation and infrared spectroscopy. Radio occultation measures the refractivity of atmospheres as a function of altitude. Based on the measured refractive index, assumed atmospheric composition (as well as mean molecular mass) and ideal gas law (p= ρ k b µ T ), we can know the T(p) profile and corresponding infrared spectra from radiative transfer model. The assumed atmospheric composition is revisited if the estimated infrared spectra does not match with the observation. The helium to hydrogen mixing ratio that measured by Voyager is underestimated because of the instrumental systematics. A self-consistent helium-to-hydrogen mixing ratio is measured by Cassini, giving volume mixing ratio [He]/[H 2 ]=0.08 (mass fraction of 0.13, or a mole fraction of 0.07) (Gautier et al., 2006) by only considering H 2,He and CH 4 (Assume[CH 4 ]/[H 2 ]= ) in the atmosphere. The abundance of trace gases is more uncertain due to incomplete understanding of clouds. By using a series of possible mixing ratio of gases, including continuous absorption caused by clouds or haze and pressure-broadened spectral lines, forward radiative transfer 1

2 Figure 1: The infrared spectra calculated based on the T/µ profile measured from radio occultation method by Cassini.Dougherty et al. (2009) modeling was used by Courtin et al. (1984) to obtain the best fit of methane, ammonia, ethane, phosphine and other trace gasses composition. 3 Temperature Profile Both radio occultation and thermal infrared spectra can provide indirect measurement of Saturn s temperature profile. Thermal infrared spectra of Saturn atmosphere that covers from 10 to 1400 cm 1 (1000 to 7 µm) is observed by using Composite Infrared Spectrometer (CIRS) on Cassini. The molecular absorption features that are sensitive to temperature and pressure are used to infer the temperature at certain pressure level. The most useful IR features and pressure sensitivities are listed as below (Fletcher et al., 2007a): Collision induced continuum features that span from cm 1 (see also figure 1) that is sensitive to pressure until around 800mbar. In order to get the temperature, the fraction of para-hydrogen has to be known as well. Mid-IR ( cm 1 ) has higher spatial resolution and is used to fine-tune the temperature profile in mbar region. By assuming methane volume mixing ratio of q CH4 = (Flasar et al., 2005), the blended pseudo-continuum of CH 4 emission line in cm 1 region is used to update the temperature at around 1mbar region. Assuming the aerosol (ammonia) haze is evenly distributed from 80 to 1800 mbar with a standard size distribution of 1.0 ± 0.2µm and using pre-tabulated collision-induced absorption (CIA) coefficients of H 2 H 2, H 2 He, H 2 CH 4, CH 4 CH 4 pairs, (Fletcher 2

3 Figure 2: The Saturn and Jupiter Spectra measured by CIRS Cassini (Burrows & Orton, 2009) et al., 2007a) used radiative transfer and non-linear optimal estimation algorithm (Rodgers, 1976; Irwin et al., 2004) 1 to retrieve the temperature and fraction of para-hydrogen as a function of pressure. The retrieval method also assumed that the upper limit of lapse rate is the dry adiabat (around 0.78Kkg 1 km 1 ). The temperature profile is relaxed to the a priori(initial guess) of retrieval model whenever no information is provided. 4 Clouds and Haze [!h] The composition and properties of clouds are normally obtained by fitting spectra or image with theoretical cloud models, which are highly depend on the assumed number of cloud layers, particulates size distribution and particle properties. In previous section, the retrieved temperature and composition is mainly from (Fletcher et al., 2007a) based on Cassini radio occultation and thermal spectra (CRIS). They compare and explore different simple haze layers in their model and concluded that haze model does not have significant effect to their result (see section in (Fletcher et al., 2007a)). Here I choose the latest work done by Sromovsky et al. (2013), which fits the Visual and Infrared Mapping Spectrometer (VIMS) spectra outside of storm of Saturn with 3 lay- 1 This algorithm minimize the cost function, which is sum of difference between model and data and the difference between model parameter and initial guess (a priori): φ = (y F(x)) T S 1 ε (y F(x)) + (x a) T S 1 x (x a) where y is the measured spectrum; F(x) is the spectrum from forward modeling; S ε is a covariance matrix, consist of measurement and modeling errors; x is a state vector, consist of a set of model parameters; a is a priori state vector, consist of the initial guess for forward modeling; S x is a priori covariance matrix, consist of the assumed error range for each parameter. 3

4 Figure 3: The a priori used for retrieval model from (Fletcher et al., 2007b). The assumed composition other than H 2, He is shown. They assume He/H 2 ratio is Figure 4: The T-P profile retrieved by Fletcher et al. (2007a) based on spectra from Composite Infrared Spectrometer (CIRS Composite Infrared Spectrometer (CIRS). ers cloud model. The first two layers are assumed to be formed via condensation process, though the exact composition of cloud layer is not clear. The third layer is stratospheric haze, which is optically thin and thought to be formed via similar process as suggested for Jupiter (see Figure 2). Again, (Sromovsky et al., 2013) used slightly different temperature (i.e. Lindal et al. (1985) and composition (e.g., H/He 2 ratio, CH 3 D, P H 3, NH 3 ) assump- 4

5 Figure 5: The volume mixing ratio used for (Sromovsky et al., 2013). Note that the P H 3 mixing ratio decrease slower compare to figure 3 tion. I also include the calculated result at similar pressure level from (Fouchet et al., 2009) and (Pérez-Hoyos et al., 2005) for comparison. 4.1 Particulates in upper troposphere The first two cloud layers suggested by Sromovsky et al. (2013): (i) An optically thick, deep cloud layer obscure most of thermal radiation from deeper layer but still thin enough to allow 5µm radiation. Cloud model fitting from citetfletcher2011 based on nightside µm VIMS spectra suggest that cloud base resides at bar level globally and advection raise the cloud base to higher altitude at equator. The composition of cloud is highly uncertain because of the strong opacity from the gases like P H 3 and the overlaying stratospheric aerosol layer. (ii) A middle cloud layer that extend from around mbar and have optical depth of at 2 µm. The particulates in this layer are around 0.6µm in radius with refractive index of i. Where are ammonia-ice clouds? Thermodynamics model predict that ammonia ice should exist in Saturn atmosphere (see Figure 7) but the corresponding spectral feature at 9.4 and 24 µm is not seen in Saturn atmosphere globally but only in giant storm where clouds are freshly formed. Several factors could partly explain this, including the overlapping absorption from methane and hydrogen gas, effect caused by non-spherical particulates, broaden and shallow line profile 5

6 Figure 6: The cloud model used by (Sromovsky et al., 2013). The cloud model in text is the Model C, which gives the best fit to VIMS data. Figure 7: Thermodynamics model predict that ammonia ice cloud should exist in Saturn s atmosphere. The cloud concentration is the upper limit in gram per liter. Schematic diagram is adopted from (Atreya & Wong, 2005) due to larger particle size, or contamination from upper or lower layers. However, West et al. (2009) reject all the later three factors. Fouchet et al. (2009) suggest it is actually diphosphine(p 2 H 4 ) haze that contribute to the significant opacity at deep layer, but no examination can be done without measuring the refractive index of diphosphine in lab first. 6

7 4.2 Particulates in stratosphere (iii) Spectroscopic signatures for hydrocarbon haze, mainly at 3.4 µm, is observed at middle latitude via stellar occultation method by using Cassini VIMS (Nicholson et al. 2006). In polar region, benzene or polycyclic aromatic hydrocarbon (PAHs) could be more abundant. One of the most important properties of the stratospheric haze is the scattering phase function. The particle scattering phase function of Saturn at mid-latitude belt, measured by Pioneer 11Tomasko & Doose (1984), matches with the lab measurement of scattering angle of ammonia crystal, suggesting that the size of haze particle must be larger than visible wavelength. Strong forward scattering seen from polarization function Tomasko & Doose (1984) also indicates that the haze particle is not spherical but linear shape. Low UV reflectivity at large reflection angle near the limb of Saturn from Hubble Space Telescope (HST) indicates that the haze particle must extend to few millibar otherwise Rayleigh scattering at 10mbar level will cause Saturn s limb to be brighter than observed value (West et al., 2009). Pérez-Hoyos et al. (2005) used HST to measure the absolute reflectivity from center to limb in UV and near-ir wavelength region and fitted with twolayer haze models. They concluded that the stratospheric haze particle size is around µm, assuming they are spherical (note: this is actually contradict with observed strong forward scattering) with refractive index of The haze particle is optically thin, with optical depth ranges from 0.05 at around 0.9µm and 0.7 at 0.2µm. Figure 8: The photochemical network for the formation of stratospheric aerosols on Jupiter. Similar formation mechanism is seen expected on Saturn except NH 3, NH 2, N 2 H 4 are P H 3, P H 2, P 2 H 4 instead respectively. 7

8 5 Spatial and Time Variation of T-P profile There is significant variation in latitudinal distribution of haze. At polar region (> 70 deg), the UV absorption of haze particle is stronger, implying smaller particle size relative to other region (latitude < 70 deg). The image of equatorial region, especially at wavelength where methane has strong absorption, is seen to be darker than higher latitude region, suggesting that haze layer is thicker at lower latitude (West et al., 2009). Using ten years of HST images, Pérez-Hoyos et al. (2005) found that optical thickness of haze at short wavelength (255nm),which is most sensitive to stratospheric haze, is positively correlated with the insolation but the dependance varies at different latitudes. On the shorter timescale (months to 1-2 years), they noted optical thickness of haze layer can varies at a factor of 2, which likely attributed to atmospheric circulation. Figure 9: Interesting surface feature on Saturn: Upper left: False color image of Dragon Storm at 35 deg S in near-infared continuum and methane band filters from Cassini ISS in Red color is lower cloud tops, blue shades is higher cloud tops and white color is optically thick haze and clouds. Right: The Great White Storm from HST in Lower: False color images of a convective storm, which is looked like a inverse question mark, in Figures from Dougherty et al. (2009) 8

9 References Atreya, S. K., & Wong, A.-S. 2005, Space Science Reviews, 116, 121 Briggs, F. H., & Sackett, P. D. 1989, Icarus, 80, 77 Burrows, A., & Orton, G. 2009, ArXiv e-prints, arxiv: Courtin, R., Gautier, D., Marten, A., Bezard, B., & Hanel, R. 1984, ApJ, 287, 899 Dougherty, M. K., Esposito, L. W., & Krimigis, S. M. 2009, Saturn from Cassini-Huygens, doi: / Flasar, F. M., Achterberg, R. K., Conrath, B. J., et al. 2005, Science, 307, 1247 Fletcher, L. N., Irwin, P. G. J., Teanby, N. A., et al. 2007a, Icarus, 189, b, Icarus, 188, 72 Fouchet, T., Moses, J. I., & Conrath, B. J. 2009, 83 Gautier, D., Conrath, B., Flasar, M., et al. 2006, in COSPAR Meeting, Vol. 36, 36th COSPAR Scientific Assembly Helled, R., Galanti, E., & Kaspi, Y. 2015, Nature, 520, 202 Irwin, P. G. J., Parrish, P., Fouchet, T., et al. 2004, Icarus, 172, 37 Lindal, G. F., Sweetnam, D. N., & Eshleman, V. R. 1985, Astronomical Journal, 90, 1136 Pérez-Hoyos, S., Sánchez-Lavega, A., French, R. G., & Rojas, J. F. 2005, Icarus, 176, 155 Rodgers, C. D. 1976, Reviews of Geophysics and Space Physics, 14, 609 Sromovsky, L. A., Baines, K. H., & Fry, P. M. 2013, Icarus, 226, 402 Tomasko, M. G., & Doose, L. R. 1984, Icarus, 58, 1 West, R. A., Baines, K. H., Karkoschka, E., & Sánchez-Lavega, A. 2009, Clouds and Aerosols in Saturn s Atmosphere, ed. M. K. Dougherty, L. W. Esposito, & S. M. Krimigis (Springer), 161 9

Chapter 7 Clouds and Aerosols in Saturn s Atmosphere

Chapter 7 Clouds and Aerosols in Saturn s Atmosphere Chapter 7 Clouds and Aerosols in Saturn s Atmosphere R.A. West, K.H. Baines, E. Karkoschka, and A. Sánchez-Lavega Abstract In this chapter we review the photochemical and thermochemical equilibrium theories

More information

Lecture #27: Saturn. The Main Point. The Jovian Planets. Basic Properties of Saturn. Saturn:

Lecture #27: Saturn. The Main Point. The Jovian Planets. Basic Properties of Saturn. Saturn: Lecture #27: Saturn Saturn: General properties. Atmosphere. Interior. Origin and evolution. Reading: Chapters 7.1 (Saturn) and 11.1. The Main Point Saturn is a large Jovian-class planet with a composition

More information

The Atmospheres of Uranus and Neptune

The Atmospheres of Uranus and Neptune The Atmospheres of Uranus and Neptune Jim Norwood currently funded by NASA grant NAG5-12457 Outline 1. Stratosphere 2. Troposphere 3. Dynamics Stratosphere Stratospheric temperature profiles for Neptune

More information

Where is Saturn s Deuterium Hiding? J Roberts Pierel; C Nixon; G Bjoraker; B Hesman; R Achterberg; P Irwin; L Fletcher; F M Flasar

Where is Saturn s Deuterium Hiding? J Roberts Pierel; C Nixon; G Bjoraker; B Hesman; R Achterberg; P Irwin; L Fletcher; F M Flasar Where is Saturn s Deuterium Hiding? J Roberts Pierel; C Nixon; G Bjoraker; B Hesman; R Achterberg; P Irwin; L Fletcher; F M Flasar Outline Introduction to Cassini Huyguens Specs Instruments The Composite

More information

Giant planets. Giant planets of the Solar System. Giant planets. Gaseous and icy giant planets

Giant planets. Giant planets of the Solar System. Giant planets. Gaseous and icy giant planets Giant planets of the Solar System Planets and Astrobiology (2016-2017) G. Vladilo Giant planets Effective temperature Low values with respect to the rocky planets of the Solar System Below the condensation

More information

POSTER ABSTRACTS for TUESDAY Saturn Science Conference

POSTER ABSTRACTS for TUESDAY Saturn Science Conference POSTER ABSTRACTS for TUESDAY Saturn Science Conference 1) Orton, Glenn: Long-Term Variability of Temperatures and Clouds in Saturn from Ground-Based Observations of Thermal Emission G. Orton, L. Fletcher,

More information

The three-dimensional structure of Saturn s equatorial jet at cloud level

The three-dimensional structure of Saturn s equatorial jet at cloud level Icarus 187 (2007) 510 519 www.elsevier.com/locate/icarus The three-dimensional structure of Saturn s equatorial jet at cloud level A. Sánchez-Lavega, R. Hueso, S. Pérez-Hoyos Departamento de Física Aplicada

More information

12a. Jupiter. Jupiter Data (Table 12-1) Jupiter Data: Numbers

12a. Jupiter. Jupiter Data (Table 12-1) Jupiter Data: Numbers 12a. Jupiter Jupiter & Saturn data Jupiter & Saturn seen from the Earth Jupiter & Saturn rotation & structure Jupiter & Saturn clouds Jupiter & Saturn atmospheric motions Jupiter & Saturn rocky cores Jupiter

More information

Chapter 6 Saturn Atmospheric Structure and Dynamics

Chapter 6 Saturn Atmospheric Structure and Dynamics Chapter 6 Saturn Atmospheric Structure and Dynamics AnthonyD.DelGenio,RichardK.Achterberg,KevinH.Baines,F.MichaelFlasar,PeterL.Read, Agustín Sánchez-Lavega, and Adam P. Showman Abstract Saturn inhabits

More information

Chapter 5 Saturn: Composition and Chemistry

Chapter 5 Saturn: Composition and Chemistry Chapter 5 Saturn: Composition and Chemistry Thierry Fouchet, Julianne I. Moses, and Barney J. Conrath Abstract The chapter reviews our current knowledge of the molecular, elemental, and isotopic composition

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 11:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

Reanalysis of Uranus cloud scattering properties from IRTF/SpeX observations. using a self-consistent scattering cloud retrieval scheme.

Reanalysis of Uranus cloud scattering properties from IRTF/SpeX observations. using a self-consistent scattering cloud retrieval scheme. Reanalysis of Uranus cloud scattering properties from IRTF/SpeX observations using a self-consistent scattering cloud retrieval scheme. P.G.J. Irwin a, D.S. Tice a, L.N. Fletcher a, J.K. Barstow a, N.A.

More information

Substellar Atmospheres. PHY 688, Lecture 18 Mar 9, 2009

Substellar Atmospheres. PHY 688, Lecture 18 Mar 9, 2009 Substellar Atmospheres PHY 688, Lecture 18 Mar 9, 2009 Outline Review of previous lecture the Kepler mission launched successfully results P < 1 month planets by September 09 giant planet interiors comparison

More information

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017

Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 Lecture 11 The Structure and Atmospheres of the Outer Planets October 9, 2017 1 2 Jovian Planets 3 Jovian Planets -- Basic Information Jupiter Saturn Uranus Neptune Distance 5.2 AU 9.5 AU 19 AU 30 AU Spin

More information

Chapter 12 Aerosols in Titan s Atmosphere

Chapter 12 Aerosols in Titan s Atmosphere Chapter 12 Aerosols in Titan s Atmosphere Martin G. Tomasko and Robert A. West Abstract Aerosols in Titan s atmosphere play important roles in the transfer of solar and thermal radiation, in Titan s heat

More information

Saturn and Planetary Rings 4/5/07

Saturn and Planetary Rings 4/5/07 Saturn and Planetary Rings Announcements Reading Assignment Chapter 15 5 th homework due next Thursday, April 12 (currently posted on the website). Reminder about term paper due April 17. There will be

More information

Strong jet and a new thermal wave in Saturn s equatorial stratosphere

Strong jet and a new thermal wave in Saturn s equatorial stratosphere GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L23208, doi:10.1029/2008gl035515, 2008 Strong jet and a new thermal wave in Saturn s equatorial stratosphere Li Liming, 1 Peter J. Gierasch, 1 Richard K. Achterberg,

More information

Study of the vertical structure of Saturn s atmosphere using HST/WFPC2 images

Study of the vertical structure of Saturn s atmosphere using HST/WFPC2 images Icarus 169 (2004) 413 428 www.elsevier.com/locate/icarus Study of the vertical structure of Saturn s atmosphere using HST/WFPC2 images O. Muñoz, a, F. Moreno, a A. Molina, a,b D. Grodent, c J.C. Gérard,

More information

Meridional Transport in the Stratosphere of Jupiter

Meridional Transport in the Stratosphere of Jupiter Submitted to Astrophysical Journal Letters Meridional Transport in the Stratosphere of Jupiter Mao-Chang Liang 1, Run-Lie Shia 1, Anthony Y.-T. Lee 1, Mark Allen 1,2,A.James Friedson 2, and Yuk L. Yung

More information

Planetary Atmospheres

Planetary Atmospheres Planetary Atmospheres Structure Composition Clouds Meteorology Photochemistry Atmospheric Escape EAS 4803/8803 - CP 17:1 Structure Generalized Hydrostatic Equilibrium P( z) = P( 0)e z # ( ) " dr / H r

More information

12. Jovian Planet Systems Pearson Education Inc., publishing as Addison Wesley

12. Jovian Planet Systems Pearson Education Inc., publishing as Addison Wesley 12. Jovian Planet Systems Jovian Planet Properties Compared to the terrestrial planets, the Jovians: are much larger & more massive 2. are composed mostly of Hydrogen, Helium, & Hydrogen compounds 3. have

More information

High-resolution Global Climate Modeling of Saturn s and Jupiter s tropospheric and stratospheric circulations

High-resolution Global Climate Modeling of Saturn s and Jupiter s tropospheric and stratospheric circulations High-resolution Global Climate Modeling of Saturn s and Jupiter s tropospheric and stratospheric circulations Aymeric SPIGA, S. Guerlet, E. Millour, Y. Meurdesoif (LSCE/CEA), M. Indurain, S. Cabanes, M.

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): 10.

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): 10. de Kok, R. J., Teanby, N. A., Maltagliati, L., Irwin, P. G. J., & Vinatier, S. (2014). HCN ice in Titan's high-altitude southern polar cloud. Nature, 514(7520), 65-67. DOI: 10.1038/nature13789 Peer reviewed

More information

arxiv:astro-ph/ v1 14 Nov 2005

arxiv:astro-ph/ v1 14 Nov 2005 manuscript no. Saturn astroph February 5, 2008 (DOI: will be inserted by hand later) Saturn s internal structure and carbon enrichment O. Mousis 1, Y. Alibert 2 and W. Benz 2 1 Observatoire de Besançon,

More information

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune

The Jovian Planets. The Jovian planets: Jupiter, Saturn, Uranus and Neptune The Jovian planets: Jupiter, Saturn, Uranus and Neptune Their masses are large compared with terrestrial planets, from 15 to 320 times the Earth s mass They are gaseous Low density All of them have rings

More information

Modeling of Jupiter s stratosphere: new radiation code and impacts on the dynamics

Modeling of Jupiter s stratosphere: new radiation code and impacts on the dynamics Symposium on Planetary Science 2015, 2015/02/16, Tohoku Univ. Modeling of Jupiter s stratosphere: new radiation code and impacts on the dynamics Takeshi Kuroda Tohoku University A.S. Medvedev, J. Sethunadh,

More information

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona LEARNING ABOUT THE OUTER PLANETS Can see basic features through Earth-based telescopes. Hubble Space Telescope especially useful because of sharp imaging. Distances from Kepler s 3 rd law, diameters from

More information

Radiative Heat Balances in Jupiter s Stratosphere: Development of a Radiation Code for the Implementation to a GCM

Radiative Heat Balances in Jupiter s Stratosphere: Development of a Radiation Code for the Implementation to a GCM Radiative Heat Balances in Jupiter s Stratosphere: Development of a Radiation Code for the Implementation to a GCM T. Kuroda Tohoku University A.S. Medvedev, P. Hartogh Max Planck Institute for Solar System

More information

Jovian Clouds and Haze

Jovian Clouds and Haze 5 Jovian Clouds and Haze Robert A. West, Kevin H. Baines, A. James Friedson Jet Propulsion Laboratory, California Insititute of Technology Don Banfield Cornell University Boris Ragent NASA Ames Research

More information

Weather in the Solar System

Weather in the Solar System Weather in the Solar System Sanjay S. Limaye Space Science and Engineering Center University of Wisconsin-Madison 8 February 2002 What is Weather? Webster s New Collegiate Dictionary: state of the atmosphere

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Homework Ch 7, 8, 9 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Our most detailed knowledge of Uranus and Neptune comes from 1) A) the

More information

Jupiter: Giant of the Solar System

Jupiter: Giant of the Solar System Jupiter: Giant of the Solar System Jupiter s Red spot : A huge storm that has raged for over 300 years that is ~2x size of the Earth. Gas Giant is really a Liquid Giant! Pictures over ~7 years from Hubble

More information

Giant Planet Observations with the James Webb Space Telescope. James Norwood. Dept. of Astronomy. Box 30001/MSC New Mexico State University

Giant Planet Observations with the James Webb Space Telescope. James Norwood. Dept. of Astronomy. Box 30001/MSC New Mexico State University Giant Planet Observations with the James Webb Space Telescope James Norwood Dept. of Astronomy Box 30001/MSC 4500 New Mexico State University Las Cruces, NM 88003-0001, USA jnorwood@nmsu.edu Julianne Moses

More information

Outer Limits of the Habitable Zone

Outer Limits of the Habitable Zone Outer Limits of the Habitable Zone Raymond T. Pierrehumbert The University of Chicago 1 Habitability zones in space 2 Inner limit for water ocean planet given by water vapor runaway 3 But what determines

More information

Jupiter and Saturn: Lords of the Planets

Jupiter and Saturn: Lords of the Planets 11/5/14 Jupiter and Saturn: Lords of the Planets Guiding Questions 1. Why is the best month to see Jupiter different from one year to the next? 2. Why are there important differences between the atmospheres

More information

Studies of Jovian Atmospheric Structure and Coloring Agents using Hyperspectral Imaging

Studies of Jovian Atmospheric Structure and Coloring Agents using Hyperspectral Imaging Studies of Jovian Atmospheric Structure and Coloring Agents using Hyperspectral Imaging Paul Strycker Doctoral Dissertation Proposal April 29, 2009 ABSTRACT This project will contribute to the understanding

More information

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /j.icarus

University of Bristol - Explore Bristol Research. Peer reviewed version. Link to published version (if available): /j.icarus Irwin, P. G. J., Fletcher, L. N., Tice, D., Owen, S. J., Orton, G. S., Teanby, N. A., & Davis, G. R. (2016). Time variability of Neptune's horizontal and vertical cloud structure revealed by VLT/SINFONI

More information

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune Uranus & Neptune: The Ice Giants Discovery of Uranus Discovery of Uranus & Neptune Properties Density & Composition Internal Heat Source Magnetic fields Rings Uranus Rotational Axis by William Herschel

More information

The Jovian Planets (Gas Giants)

The Jovian Planets (Gas Giants) The Jovian Planets (Gas Giants) Discoveries and known to ancient astronomers. discovered in 1781 by Sir William Herschel (England). discovered in 1845 by Johann Galle (Germany). Predicted to exist by John

More information

J avian Clouds and Haze

J avian Clouds and Haze 5 J avian Clouds and Haze Robert A. West, Kevin H. Baines, A. James Friedson Jet Propulsion Laboratory, California Insititute of Technology Don Banfield Cornell University Boris Ragent NASA Ames Research

More information

Chapter 10 Worlds of Gas and Liquid- The Giant Planets. 21st CENTURY ASTRONOMY Fifth EDITION Kay Palen Blumenthal

Chapter 10 Worlds of Gas and Liquid- The Giant Planets. 21st CENTURY ASTRONOMY Fifth EDITION Kay Palen Blumenthal Chapter 10 Worlds of Gas and Liquid- The Giant Planets 21st CENTURY ASTRONOMY Fifth EDITION Kay Palen Blumenthal What is a storm on Saturn like? The Giant Planets, Part 1 Jupiter, Saturn, Uranus, and Neptune

More information

Turbulence in Jupiter s Clouds

Turbulence in Jupiter s Clouds Turbulence in Jupiter s Clouds N. Barrado-Izagirre, S. Pérez-Hoyos, and A. Sánchez-Lavega Abstract We have studied the spatial distribution of Jupiter s higher clouds in order to characterize the turbulent

More information

Uranus and Neptune. Uranus and Neptune Properties. Discovery of Uranus

Uranus and Neptune. Uranus and Neptune Properties. Discovery of Uranus Uranus and Neptune Uranus and Neptune are much smaller than Jupiter and Saturn, but still giants compared to Earth Both are worlds we know relatively little about Voyager 2 is the only spacecraft to visit

More information

Dynamics of Saturn s South Polar Vortex

Dynamics of Saturn s South Polar Vortex Dynamics of Saturn s South Polar Vortex Ulyana A. Dyudina 1, Andrew P. Ingersoll 1,Shawn P. Ewald 1, Ashwin R. Vasavada 2, Robert A. West 2, Anthony D. Del Genio 3, John M. Barbara 3, Carolyn C. Porco

More information

Jupiter s auroral-related stratospheric heating and chemistry I: analysis of Voyager-IRIS and Cassini-CIRS spectra

Jupiter s auroral-related stratospheric heating and chemistry I: analysis of Voyager-IRIS and Cassini-CIRS spectra Jupiter s auroral-related stratospheric heating and chemistry I: analysis of Voyager-IRIS and Cassini-CIRS spectra J. A. Sinclair a,, G. S. Orton a, T. K. Greathouse b, L. N. Fletcher c, J. I. Moses d,

More information

arxiv: v1 [astro-ph.ep] 19 Oct 2015

arxiv: v1 [astro-ph.ep] 19 Oct 2015 10 Saturn s seasonally changing atmosphere: thermal structure, composition and aerosols L.N. FLETCHER 1, T.K. GREATHOUSE 2, S. GUERLET 3, J.I. MOSES 4 AND R.A. WEST 5 arxiv:1510.056v1 [astro-ph.ep] 19

More information

Solar-System Objects as Radiance Calibrators in the Far-Infrared and Submillimeter

Solar-System Objects as Radiance Calibrators in the Far-Infrared and Submillimeter Solar-System Objects as Radiance Calibrators in the Far-Infrared and Submillimeter Glenn Orton Jet Propulsion Laboratory California Institute of Technology Planetary astronomers: Calibrate planetary flux

More information

Astro 101 Lecture 12 The Jovian Planets

Astro 101 Lecture 12 The Jovian Planets Astro 101 Lecture 12 The Jovian Planets 2-28-2018 Jupiter, Saturn, Uranus and Neptune ASTR-101 Section 004 Bulk Properties of Terrestrial and Jovian Planets All Jovian planets have strong magnetic fields

More information

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009 Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets PHY 688, Lecture 23 Mar 20, 2009 Outline Review of previous lecture hot Jupiters; transiting planets primary eclipses and atmospheric

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART16: PLANETARY ATMOSPHERES Francis Nimmo Last Week How do planets form? They accrete from the solar nebula (dust+gas) They may subsequently migrate Where do atmospheres come from? Primary, secondary,

More information

Observational Cosmology Journal Club May 14, 2018; Ryohei Nakatani

Observational Cosmology Journal Club May 14, 2018; Ryohei Nakatani Observational Cosmology Journal Club May 14, 2018; Ryohei Nakatani 1. Haze heats Pluto s atmosphere yet explains its cold temperature Xi Zhang, Darrell F. Strobel & Hiroshi Imanaka; Nature, 551, 352, (2017)

More information

Saturn s Gravitational Field, Internal Rotation, and Interior Structure

Saturn s Gravitational Field, Internal Rotation, and Interior Structure Saturn s Gravitational Field, Internal Rotation, and Interior Structure John D. Anderson 1 and Gerald Schubert 2 1 121 South Wilson Ave., Pasadena, CA 91106-3017, USA 2 Department of Earth and Space Sciences

More information

STUDIES OF ATMOSPHERIC PHENOMENA IN THE GIANT PLANETS WITH GRANTECAN

STUDIES OF ATMOSPHERIC PHENOMENA IN THE GIANT PLANETS WITH GRANTECAN RevMexAA (Serie de Conferencias), 16, 98 102 (2003) STUDIES OF ATMOSPHERIC PHENOMENA IN THE GIANT PLANETS WITH GRANTECAN A. Sánchez-Lavega Escuela Superior de Ingenieros, UPV-EHU, Bilbao, Spain RESUMEN

More information

arxiv: v1 [astro-ph.ep] 21 Apr 2016

arxiv: v1 [astro-ph.ep] 21 Apr 2016 Stratospheric aftermath of the 2010 Storm on Saturn as observed by the TEXES instrument. I. Temperature structure. arxiv:1604.06479v1 [astro-ph.ep] 21 Apr 2016 Thierry Fouchet a,b,, Thomas K. Greathouse

More information

The Stratosphere of Jupiter

The Stratosphere of Jupiter 7 The Stratosphere of Jupiter J. I. Moses Lunar and Planetary Institute T. Fouchet Oxford University R. V. Yelle University of Arizona A. J. Friedson, G. S. Orton Jet Propulsion Laboratory, California

More information

Ring Rain and Other Drivers Luke Moore, Marina Galand, Arv Kliore, Andy Nagy, James O Donoghue

Ring Rain and Other Drivers Luke Moore, Marina Galand, Arv Kliore, Andy Nagy, James O Donoghue Ring Rain and Other Drivers Luke Moore, Marina Galand, Arv Kliore, Andy Nagy, James O Donoghue Outline Introduction to Saturn s ionosphere Basic properties and theory Observations: what do we know? Radio

More information

arxiv: v1 [astro-ph.ep] 9 Dec 2015

arxiv: v1 [astro-ph.ep] 9 Dec 2015 2D photochemical modeling of Saturn s stratosphere. Part II: Feedback between composition and temperature V. Hue a,b,c,, T. K. Greathouse c, T. Cavalié d,e, M. Dobrijevic a,b, F. Hersant a,b arxiv:1512.02724v1

More information

Chapter 10 Atmospheric Structure and Composition

Chapter 10 Atmospheric Structure and Composition Chapter 10 Atmospheric Structure and Composition Darrell F. Strobel, Sushil K. Atreya, Bruno Bézard, Francesca Ferri, F. Michael Flasar, Marcello Fulchignoni, Emmanuel Lellouch, and Ingo Müller-Wodarg

More information

Ammonia and Eddy Mixing Variations in the Upper Troposphere of Jupiter from HST Faint Object Spectrograph Observations 1

Ammonia and Eddy Mixing Variations in the Upper Troposphere of Jupiter from HST Faint Object Spectrograph Observations 1 Icarus 142, 342 356 (1999) Article ID icar.1999.6228, available online at http://www.idealibrary.com on Ammonia and Eddy Mixing Variations in the Upper Troposphere of Jupiter from HST Faint Object Spectrograph

More information

2018 International Planetary Probe Workshop June 12, California Institute of Technology.

2018 International Planetary Probe Workshop June 12, California Institute of Technology. SCIENCE GOALS AND PAYLOADS FOR COMMON PROBE MISSIONS TO VENUS AND THE GIANT PLANETS D.H. Atkinson, T.R. Spilker, M. Amato, L.S. Glaze, M. Hofstadter, K.M. Sayanagi, A.A. Simon 2018 International Planetary

More information

Earth, Uranus, Neptune & Pluto. 14a. Uranus & Neptune. The Discovery of Uranus. Uranus Data: Numbers. Uranus Data (Table 14-1)

Earth, Uranus, Neptune & Pluto. 14a. Uranus & Neptune. The Discovery of Uranus. Uranus Data: Numbers. Uranus Data (Table 14-1) 14a. Uranus & Neptune The discovery of Uranus & Neptune Uranus is oddly tilted & nearly featureless Neptune is cold & blue Uranus & Neptune are like yet dislike Jupiter The magnetic fields of Uranus &

More information

Electromagnetic Radiation and Scientific Instruments. PTYS April 1, 2008

Electromagnetic Radiation and Scientific Instruments. PTYS April 1, 2008 Electromagnetic Radiation and Scientific Instruments PTYS 206-2 April 1, 2008 Announcements Deep Impact 6 PM Wednesday Night Pizza, no beer Watch at home if you can t watch here. It will be discussed in

More information

The scientific theory I like best is that the rings of. Saturn are composed entirely of lost airline luggage. Mark Russell

The scientific theory I like best is that the rings of. Saturn are composed entirely of lost airline luggage. Mark Russell The scientific theory I like best is that the rings of Saturn are composed entirely of lost airline luggage. Mark Russell What We Will Learn Today Why does Saturn have such a low density and how does that

More information

Complex molecules in Titan s upper atmosphere

Complex molecules in Titan s upper atmosphere Complex molecules in Titan s upper atmosphere Panayotis Lavvas GSMA/CNRS Roger V Yelle LPL, University of Arizona 52 nd ESLAB Meeting, ESTEC, 14 th May 2018 INTRODUCTION From ATOMS to MOLECULES to MACROMOLECULES

More information

Today. Jovian planets

Today. Jovian planets Today Jovian planets Global Wind Patterns Heat transport Global winds blow in distinctive patterns: Equatorial: E to W Mid-latitudes: W to E High latitudes: E to W 2014 Pearson Education, Inc. Circulation

More information

Lecture 6 - spectroscopy

Lecture 6 - spectroscopy Lecture 6 - spectroscopy 1 Light Electromagnetic radiation can be thought of as either a wave or as a particle (particle/wave duality). For scattering of light by particles, air, and surfaces, wave theory

More information

The Gas Giants. Temperatures. From the thermal balance equations we looked at before we expect temperatures: Actually, we find:

The Gas Giants. Temperatures. From the thermal balance equations we looked at before we expect temperatures: Actually, we find: The Gas Giants The outer part of the solar system, beyond Mars and the asteroid belt, is dominated by the giant gas planets. There are four - Jupiter, Saturn, Uranus and Neptune, in that order - but although

More information

Our Planetary System. Chapter 7

Our Planetary System. Chapter 7 Our Planetary System Chapter 7 Key Concepts for Chapter 7 and 8 Inventory of the Solar System Origin of the Solar System What does the Solar System consist of? The Sun: It has 99.85% of the mass of the

More information

The Great Saturn Storm of

The Great Saturn Storm of 1 13 The Great Saturn Storm of 2010-2011 Agustín Sánchez-Lavega 1 Georg Fischer 2 Leigh N. Fletcher 3 Enrique García-Melendo 1, 4 Brigette Hesman 5 Santiago Pérez-Hoyos 1 Kunio M. Sayanagi 6 Lawrence A.

More information

Observing Habitable Environments Light & Radiation

Observing Habitable Environments Light & Radiation Homework 1 Due Thurs 1/14 Observing Habitable Environments Light & Radiation Given what we know about the origin of life on Earth, how would you recognize life on another world? Would this require a physical

More information

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects Transneptunian objects Minor bodies in the outer Solar System Planets and Astrobiology (2016-2017) G. Vladilo Around 1980 it was proposed that the hypothetical disk of small bodies beyond Neptune (called

More information

Universe Now. 4. Solar System II: Jovian planets

Universe Now. 4. Solar System II: Jovian planets Universe Now 4. Solar System II: Jovian planets An overview of the known Solar System The Sun 4 terrestrial planets: Mercury, Venus, The Earth, Mars 4 Jovian planets: Jupiter, Saturn, Uranus, Neptune 5

More information

Effect of chemical kinetic uncertainties on photochemical modeling results: Application to Saturn s atmosphere

Effect of chemical kinetic uncertainties on photochemical modeling results: Application to Saturn s atmosphere A&A 398, 335 344 (2003) DOI: 10.1051/0004-6361:20021659 c ESO 2003 Astronomy & Astrophysics Effect of chemical kinetic uncertainties on photochemical modeling results: Application to Saturn s atmosphere

More information

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units)

Lecture 24: Saturn. The Solar System. Saturn s Rings. First we focus on solar distance, average density, and mass: (where we have used Earth units) Lecture 24: Saturn The Solar System First we focus on solar distance, average density, and mass: Planet Distance Density Mass Mercury 0.4 1.0 0.06 Venus 0.7 0.9 0.8 Earth 1.0 1.0 1.0 Mars 1.5 0.7 0.1 (asteroid)

More information

Lunar Eclipse of June, 15, 2011: Three-color umbra surface photometry

Lunar Eclipse of June, 15, 2011: Three-color umbra surface photometry Lunar Eclipse of June, 15, 2011: Three-color umbra surface photometry Oleg S. Ugolnikov 1, Igor A. Maslov 1,2, Stanislav A. Korotkiy 3 1 Space Research Institute, Russian Academy of Sciences, Russia 2

More information

Post-Cassini Saturn Exploration. Saturn (shallow) Probes. Sushil Atreya NRC Decadal / Outer Planets Irvine, CA, 26 October 2009

Post-Cassini Saturn Exploration. Saturn (shallow) Probes. Sushil Atreya  NRC Decadal / Outer Planets Irvine, CA, 26 October 2009 Post-Cassini Saturn Exploration Saturn (shallow) Probes Sushil Atreya www.umich.edu/~atreya NRC Decadal / Outer Planets Irvine, CA, 26 October 2009 map who needs probes? why Saturn probes; why now? what

More information

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres

Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds. What is an atmosphere? Planetary Atmospheres Chapter 10 Planetary Atmospheres Earth and the Other Terrestrial Worlds What is an atmosphere? Planetary Atmospheres Pressure Composition Greenhouse effect Atmospheric structure Color of the sky 1 Atmospheres

More information

A Look at Our Solar System: The Sun, the planets and more. by Firdevs Duru

A Look at Our Solar System: The Sun, the planets and more. by Firdevs Duru A Look at Our Solar System: The Sun, the planets and more by Firdevs Duru Week 1 An overview of our place in the universe An overview of our solar system History of the astronomy Physics of motion of the

More information

Widespread Morning Drizzle on Titan

Widespread Morning Drizzle on Titan Widespread Morning Drizzle on Titan Máté Ádámkovics, 1,2 Michael H. Wong, 1 Conor Laver, 1 Imke de Pater 1,2 1 Department of Astronomy, University of California, Berkeley, CA 94611, USA. 2 Center for Integrative

More information

Test #2 Results : A 80 89: B 70 79: C 60 69: D <60: F

Test #2 Results : A 80 89: B 70 79: C 60 69: D <60: F Test #2 Results 90 100: A 80 89: B 70 79: C 60 69: D

More information

The atmosphere of Exoplanets AND Their evolutionary properties. I. Baraffe

The atmosphere of Exoplanets AND Their evolutionary properties. I. Baraffe The atmosphere of Exoplanets AND Their evolutionary properties I. Baraffe I) Properties of cool atmospheres: 1) Atmospheric chemistry 2) Main opacity sources 3) Non solar composition 4) Non equilibrium

More information

TITAN: THE ONLY KNOWN MOON WITH A PLANET-LIKE ATMOSPHERE. Submitted to PTYS 517 Atmosphere and remote sensing

TITAN: THE ONLY KNOWN MOON WITH A PLANET-LIKE ATMOSPHERE. Submitted to PTYS 517 Atmosphere and remote sensing Draft version May 1, 2017 Typeset using LATEX twocolumn style in AASTeX61 TITAN: THE ONLY KNOWN MOON WITH A PLANET-LIKE ATMOSPHERE Saverio Cambioni 1 1 Graduate Assistant, Lunar and Planetary Laboratory,

More information

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility.

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Objectives: 1. Attenuation of atmospheric radiation by particulates. 2. Haze and Visibility. Readings:

More information

Jupiter Science and Capabilities on the Europa Jupiter System Mission

Jupiter Science and Capabilities on the Europa Jupiter System Mission Jupiter Science and Capabilities on the Europa Jupiter System Mission Leigh N. Fletcher(*), Amy Simon-Miller, P. Drossart, A. Showman, G. Orton, K. Baines and the EJSM Joint Science Definition Team *Jet

More information

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS AST 101 INTRODUCTION TO ASTRONOMY SPRING 2008 - MIDTERM EXAM 2 TEST VERSION 1 ANSWERS Multiple Choice. In the blanks provided before each question write the letter for the phrase that best answers the

More information

Uranus Cloud Structure and Seasonal Variability from Gemini-North and UKIRT observations

Uranus Cloud Structure and Seasonal Variability from Gemini-North and UKIRT observations Uranus Cloud Structure and Seasonal Variability from Gemini-North and UKIRT observations P.G.J. Irwin, N.A. Teanby, G.R. Davis, L.N. Fletcher, G.S. Orton, D. Tice, A. Kyffin To cite this version: P.G.J.

More information

Chapter 2. Heating Earth's Surface & Atmosphere

Chapter 2. Heating Earth's Surface & Atmosphere Chapter 2 Heating Earth's Surface & Atmosphere Topics Earth-Sun Relationships Energy, Heat and Temperature Mechanisms of Heat Transfer What happens to Incoming Solar Radiation? Radiation Emitted by the

More information

Composition and structure of the atmosphere. Absorption and emission by atmospheric gases.

Composition and structure of the atmosphere. Absorption and emission by atmospheric gases. Lecture 3. Composition and structure of the atmosphere. Absorption and emission by atmospheric gases. 1. Structure and composition of the Earth s atmosphere. 2. Properties of atmospheric gases. 3. Basic

More information

GEO1010 tirsdag

GEO1010 tirsdag GEO1010 tirsdag 31.08.2010 Jørn Kristiansen; jornk@met.no I dag: Først litt repetisjon Stråling (kap. 4) Atmosfærens sirkulasjon (kap. 6) Latitudinal Geographic Zones Figure 1.12 jkl TØRR ATMOSFÆRE Temperature

More information

EART193 Planetary Capstone. Francis Nimmo

EART193 Planetary Capstone. Francis Nimmo EART193 Planetary Capstone Francis Nimmo Atmospheres Atmospheres can preserve signatures of volcanism Atmospheres can influence volcanic activity Volcanic activity can have effects on climate Atmospheric

More information

S E C T I O N 7 P R O B E S C I E N C E R E S U L T S

S E C T I O N 7 P R O B E S C I E N C E R E S U L T S S E C T I O N 7 P R O B E S C I E N C E R E S U L T S Under surveillance by telescopes here on Earth as well as the Hubble Space Telescope, observations of Jupiter show that the probe apparently entered

More information

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009 Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets PHY 688, Lecture 24 Mar 23, 2009 Outline Review of previous lecture: atmospheric temperature structure of irradiated planets isothermal

More information

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm

Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm Chapter 4 Nadir looking UV measurement. Part-I: Theory and algorithm -Aerosol and tropospheric ozone retrieval method using continuous UV spectra- Atmospheric composition measurements from satellites are

More information

Effects of a large convective storm on Saturn s equatorial jet

Effects of a large convective storm on Saturn s equatorial jet Icarus 187 (2007) 520 539 www.elsevier.com/locate/icarus Effects of a large convective storm on Saturn s equatorial jet Kunio M. Sayanagi a,, Adam P. Showman b a Department of Physics, Lunar and Planetary

More information

Saturn s fast spin determined from its gravitational field and oblateness

Saturn s fast spin determined from its gravitational field and oblateness Saturn s fast spin determined from its gravitational field and oblateness arxiv:154.2561v1 [astro-ph.ep] 1 Apr 215 Ravit Helled 1, Eli Galanti 2 & Yohai Kaspi 2 1 Department of Geosciences, Raymond & Beverly

More information

1 A= one Angstrom = 1 10 cm

1 A= one Angstrom = 1 10 cm Our Star : The Sun )Chapter 10) The sun is hot fireball of gas. We observe its outer surface called the photosphere: We determine the temperature of the photosphere by measuring its spectrum: The peak

More information

Planets of the Solar System. What s Initially Available: Solar Nebula - Composition

Planets of the Solar System. What s Initially Available: Solar Nebula - Composition Planets of the Solar System What s Initially Available: Solar Nebula - Composition Size versus Mass depends on composition - fight between gravity & pressure Differentiation causes the picture to be more

More information

Kandis Lea Jessup 1 Franklin Mills 2 Emmanuel Marcq 3 Jean-Loup Bertaux 3 Tony Roman 4 Yuk Yung 5. Southwest Research Institute (Boulder CO) 2

Kandis Lea Jessup 1 Franklin Mills 2 Emmanuel Marcq 3 Jean-Loup Bertaux 3 Tony Roman 4 Yuk Yung 5. Southwest Research Institute (Boulder CO) 2 "Coordinated HST, Venus Express, and Venus Climate Orbiter Observations of Venus", NASA program 12433. Kandis Lea Jessup 1 Franklin Mills 2 Emmanuel Marcq 3 Jean-Loup Bertaux 3 Tony Roman 4 Yuk Yung 5

More information

Internal structure and atmospheres of planets

Internal structure and atmospheres of planets Internal structure and atmospheres of planets SERGEI POPOV 1312.3323 Sizes and masses Radius vs. mass Results of modeling. Old (relaxed) planets. Colors correspond to different fractions of light elements.

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information