Short-lived 244 Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis

Size: px
Start display at page:

Download "Short-lived 244 Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis"

Transcription

1 SUPPLEMENTARY INFORMATION DOI: /NPHYS3574 Short-lived 244 Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis 1 Interpretation of the deep sea measurement Wallner et al 1 measured the number of live 244 Pu particles in deep-sea archives, which consist of two samples, crust and sediment. Using the crust sample the estimated flux of 244 Pu particles on the Earth s orbit is f Pu = cm 2 Myr 1 and it is cm 2 Myr 1 with the sediment sample. The upper and lower values are 2σ limits. The crust sample spans an accumulation time of 25 Myr and the sediment one spans 1.64 Myr. The two estimates are consistent with each other within the 2σ level. Here, we use only on the crust sample since it statistically dominates over the sediment one and it spans a longer accumulation time. Even if one combines the two data, our conclusion does not change significantly. The estimated flux with the two samples combined is cm 2 Myr 1 where again we take 2σ limits. This is only slightly larger than the one estimated using the crust sample alone. The value of f Pu, which is the mean value over the last 25 Myr, is converted to the 244 Pu number density in the ISM around the Solar System as ISM = f Pu (, cm 3 ϵv rel n Pu )( f Pu 250 cm 2 Myr 1 v rel 26 km/s ) 1 ( ϵ 0.05) 1, (1) where v rel is the relative velocity between the Solar System and the ISM. The efficiency ϵ takes into account (i) the penetration efficiency of the 244 Pu flux from the ISM outside the heliosphere to the Earth s orbit and (ii) the difference between the mean ISM density around the solar circle NATURE PHYSICS 1

2 SUPPLEMENTARY INFORMATION DOI: /NPHYS3574 and the local ISM density where the Solar System has been traveling during the last 25 Myr. Wallner et al. 1 used ϵ = Here we use ϵ =0.05. In the following, we discuss how this efficiency is estimated. The dust flux of the ISM inside the heliosphere have been measured by the Ulysses, Galileo, Cassini, and Helios spacecrafts (see Mann 2 for a review). The measurements yield a lower limit on the gas-mass to dust-mass ratio in the local ISM 3, 150, which is roughly consistent with astronomical estimates based on star-light extinction of nearby stars. In addition, the dust flux in a mass range of to g measured by Cassini around 1 AU agrees with the one measured around 3 AU by Ulysses during the same period 4, 5. Based on these facts, we assume that the 244 Pu flux on Earth s orbit is the same as the one at the heliopause. We also assume that the 244 Pu abundance in the ISM dust grains is independent of the grain size. As the ISM is highly inhomogeneous, one should take into account the depletion of the local ISM relative to the average galactic ISM density when evaluating the implied radioactive nuclide s density. The Solar System is currently traveling inside a small interstellar cloud 6 with a mean density of cm 3. This cloud is within the Local Bubble that has a very low mean density of cm 3 and a radius of pc. Based on the solar motion and the size of the Local Bubble 7, the Solar System has been in a very low density region for the last 3 10 Myr. Before that time it had been outside the Local Bubble, where the ISM density is in the range 2 NATURE PHYSICS

3 DOI: /NPHYS3574 SUPPLEMENTARY INFORMATION of cm 3. Therefore the ISM density surrounding the Solar System averaged over the last 25 Myr can be estimated as cm 3. Based on the above consideration, a plausible range of ϵ is 0.05 to 0.9. Here we use ϵ =0.05 as a reference value that corresponds to a conservative choice in terms of the depletion of 244 Pu in the ISM. Clearly this is the largest source of uncertainty in our estimates. Still this uncertainty does not affect the qualitative nature of our results. In the following we also consider ϵ =0.01. Even with this low value (see Fig. 1 of the Supplementary material), cc-sne are only marginally consistent with the deep-sea the measurements. We note also that the penetration of ISM dust to the Earth s orbit in deep-sea archives is confirmed by the observation of a spike of live 60 Fe (half-live of 2.6 Myr) in the deep-sea crust 8 and sediments 9, 10. This 60 Fe spike is interpreted as direct ejecta of a close-by supernova about 2.5 Myr BP. 2 Mixing process in the Galactic disk Heavy nuclei ejected into the ISM are homogenized via different processes on different timescales 11. Initially, the gas containing heavy nuclei expands into the ISM as a blast wave until after a couple of Myr 12, depending on the ejecta s kinetic energy, initial velocity and external density. In the literature, it has been often assumed that at this stage the ejected material remains within this fluid element, yielding a very slow process of mixing within the galaxy. However, the ISM turbulence efficiently homogenizes the ejected material 13. The diffusion timescale of the nuclei is determined by the turnover timescale of the largest eddies 14. The diffusion coefficient can 3 NATURE PHYSICS 3

4 SUPPLEMENTARY INFORMATION DOI: /NPHYS3574 be described as D v t l mix /3 α kpc 2 /Gyr (v t /7 km s 1 )(H/0.2 kpc), where v t is the typical turbulent velocity of the ISM, l mix =3αH is the turbulence mixing length and H is the scale-height of the local ISM. Here we have introduced a mixing length parameter α, choosing α =0.1as a reference value. A numerical simulation of the turbulent mixing in the Galactic disk shows this level of efficiency of the mixing Sensitivity of the results to the choice of parameters Estimates of the rates and yields involve two unknown parameters: ϵ and α. The first, ϵ, introduces the largest uncertainty in the results. For larger values of ϵ, smaller yields are sufficient, as the depletion of the current ISM 244 Pu is more significant. Figure S1shows the rate-yield estimates for ϵ =0.01 (top panel) and for 0.9 (bottom panel). For ϵ =0.01, the estimated rate is R 0 < 7000 Myr 1 within the 2σ level. Even though this rate is quite high it is still smaller than the rate of normal cc-sne by a factor of a few. For ϵ =0.9, the allowed event rate is small R 0 < 7 Myr 1. The rate-yield estimates with different choices of α (0.3, 0.03, and 0.01) are shown in Fig. S2. For α =0.3 (top panel of Fig. S2), the mixing timescale is shorter, implying that a single event can injects live 244 Pu particles into a larger volume. As a result, observes measure larger 244 Pu densities and the allowed rate-yield region in the figure shifts to the lower event rate compared to those with α = 0.1. On the contrary, with a smaller, α = 0.03 (bottom panel of Fig. S2) and 0.01 in Fig. S3, higher rates and smaller yields are allowed. Although 4 NATURE PHYSICS

5 DOI: /NPHYS3574 SUPPLEMENTARY INFORMATION the overlap region of the 244 Pu measurements and total mass of r-process elements depends on the value of ϵ and α, the estimate ranges of the rate and yield are consistent with those of compact binary mergers irrespective of the exact choice of these two parameters. Thus we can generally conclude that the high-yield/small-rate scenario, or more specifically the compact binary merger scenario is preferred while the low-yield/high-rate scenario, or more specifically the cc-sne scenario, is ruled out. 4 Numerical Simulation To study the fluctuations of 244 Pu abundance in the ISM around the solar circle, we performed a Monte-Carlo simulation of the history of the injections of live 244 Pu particles in the ISM taking into account the radioactive decay and the turbulent diffusion processes. The r-process events are generated randomly in a 4-dimensional box with dimensions 7 Gyr in time, 16.66π kpc in the x-direction (the circumference of the solar circle), 2 kpc in the y-direction (the width of the circle), and an exponential decay in the z-direction (the height from the Galactic plane). The events are distributed following the stellar mass distribution in the Galactic disk 16 and the redshift evolution following the SGRB rate 17 or the cosmic star formation history 18. Each event ejects a fixed amount of r-process material heavier than A = 90 with the solar abundance pattern 19, 20. The number density of a radioactive nuclide with a mean-life of τ i at a given time t and a point r is computed by n i (t, r )= j t>t j N i ( K j (t) exp r r j 2 t ) j, (2) 4D t j τ i NATURE PHYSICS 5

6 SUPPLEMENTARY INFORMATION DOI: /NPHYS3574 where r j and t j are the location and time of an event labeled by j, t j t t j, and } K j (t) = min {(4πD t j ) 3/2, 8πHD t j (3) where the density evolution changes from the 3-dimensional evolution to the 2-dimensional one appropriately. Here N i is the total number of the nuclide i ejected in each event. For 244 Pu particles, the total number is given by N Pu =( 244 Pu/ 238 U) 0 N 238U, where N 238U is the number of 238 U particles and ( 244 P/ 238 U) 0 is the initial production ratio. This quantity depends on the details of the ejecta properties as well as on the nuclear fission model. In the context of supernova explosions, Cowan et al. 21 estimated that a ratio of 0.4 reproduces the solar abundance pattern. For compact binary merger ejecta, Eichler et al. 22 computed a production ratio of Here we use ( 244 Pu/ 238 U) 0 = The dependence on the production history The time evolution of the mean abundance of 244 Pu and its fluctuations depend on the history of the production rate. Figure S4, depicts the rate-yield results with the production rate following the SGRB rate 17 (top panel) and the cosmic star formation history (modified Salpeter A IMF model 18 ; bottom panel). In both cases, the rate decreases with time for the epoch that we are interested in here. The production rate at 4.6 Gyr BP is higher than the current one by a factor of 3 for the former and 4 for the latter. As long as the event rate decreases by these factors, the results do not depend sensitively on the choice of the production-rate history. However, if the event rate is constant with time, very large fluctuations, i.e., small event rates, are required to be 6 6 NATURE PHYSICS

7 DOI: /NPHYS3574 SUPPLEMENTARY INFORMATION consistent with both the ESS and current measurements as shown in Fig. S5. 6 Estimates of the rate of detectable gravitational-wave events We estimated the rate of detectable gravitational-wave events R GW using the current Galactic merger rate R 0 as R GW V GW n MW R 0. Here V GW is the detectable volume of compact binary mergers and n MW 0.01 Mpc 3 is the number density of Milky-Way size galaxies. Assuming the horizon distance of the advanced detectors of 200 Mpc for binary neutron star mergers, we get R GW 30 yr 1 (R 0 /90 Myr 1 ). References 1. Wallner, A. et al. Abundance of live 244 Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis. Nature Commun., 6, 5956 (2015). 2. Mann, I. Interstellar Dust in the Solar System. Annu. Rev. Astro. Astrophys, 48, (2010). 3. Frisch P. C. & Slavin, J. D. Interstellar dust close to the Sun. Earth and Planet Space, 65, (2013). 4. Altobelli, N. et al. Cassini between Venus and Earth: Detection of interstellar dust. J. Geophys. Res., 108, 8032 (2003). NATURE PHYSICS 7

8 SUPPLEMENTARY INFORMATION DOI: /NPHYS Landgraf, M. et al. Penetration of the heliosphere by the interstellar dust stream during solar maximum. J. Geophys. Res., 108, 8030 (2003). 6. Frisch, P. C. et al. The Interstellar Medium Surrounding the Sun. Annu. Rev. Astro. Astrophys, 49, (2011). 7. Frisch, P. C. & Slavin, J. D. The Sun s journey through the local interstellar medium: the paleolism and paleoheliosphere. Astrophys. Space Sci. Trans., 2, (2006). 8. Knie, K. et al. 60 Fe Anomaly in a Deep-Sea Manganese Crust and Implications for a Nearby Supernova Source. Phys. Rev. Lett., 93, (2004). 9. Fitoussi, C. et al. Search for Supernova-Produced Fe60 in a Marine Sediment. Phys. Rev. Lett., 101, (2008). 10. Wallner, A. et al. in preparation. 11. Roy J.-R. & Kunth, D. Dispersal and mixing of oxygen in the interstellar medium of gas-rich galaxies. Astron. Astrophys., 294, (1995). 12. Cioffi, D. F., McKee, C. F. & Bertschinger, E. Dynamics of radiative supernova remnants. Astrophys. J, 334, (1988). 13. Scalo, J. & Elmegreen, B. G. Interstellar Turbulence II: Implications and Effects. Annu. Rev. Astro. Astrophys., 42, (2004). 8 NATURE PHYSICS

9 DOI: /NPHYS3574 SUPPLEMENTARY INFORMATION 14. Pan, L. & Scannapieco, E. Mixing in Supersonic Turbulence. Astrophys. J., 721, (2010) 15. Yang, C.-C. & Krumholz, M. Thermal-instability-driven Turbulent Mixing in Galactic Disks. I. Effective Mixing of Metals. Astrophys. J., 758, 48 (2012). 16. McMillan, P. J. Mass models of the Milky Way. MNRAS, 414, (2011). 17. Wanderman, D. & Piran, T. The rate luminosity function and time delay of non-collapsar short GRBs. MNRAS, 448, (2015). 18. Hopkins, A. M. & Beacom, J. F. On the Normalization of the Cosmic Star Formation History. Astronphys J., 651, (2006). 19. Goriely, S. Uncertainties in the solar system r-abundance distribution. Astron. and Astrophys., 342, (1999). 20. Lodders, K., Palem, H. & Gail, H.-P. Abundances of the Elements in the Solar System. Landolt Börnstein, 44 (2009). 21. Cowan, J. J., Thielemann, F.-K. & Truran, J. W. Nuclear chronometers from the r-process and the age of the galaxy. Astrophys. J., 323, (1987). 22. Eichler, M. et al. The Role of Fission in Neutron Star Mergers and Its Impact on the r-process Peaks. Astrophys. J,, 808, 30 (2014) NATURE PHYSICS 9

10

11

12

13

14

SHORT-LIVED 244 PU POINTS TO COMPACT BINARY MERGERS AS SITES FOR HEAVY R-PROCESS NUCLEOSYNTHESIS

SHORT-LIVED 244 PU POINTS TO COMPACT BINARY MERGERS AS SITES FOR HEAVY R-PROCESS NUCLEOSYNTHESIS Draft version July 26, 208 Preprint typeset using L A TEX style emulateapj v. 08/22/09 SHORT-LIVED 244 PU POINTS TO COMPACT BINARY MERGERS AS SITES FOR HEAVY R-PROCESS NUCLEOSYNTHESIS Kenta Hotokezaka,

More information

The rate of short Gamma Ray Bursts and NS 2 mergers

The rate of short Gamma Ray Bursts and NS 2 mergers The rate of short Gamma Ray Bursts and NS 2 mergers Tsvi Piran The Hebrew University! David Wanderman, Paz Biniamini, Omer Bromberg,! Simore Dall Osso, Oleg Korobkin, Martin Obergaulinger Outline Long

More information

Radio Flares from Neutron Star merges + More Tsvi Piran

Radio Flares from Neutron Star merges + More Tsvi Piran Radio Flares from Neutron Star merges + More Tsvi Piran Kenta Hotokezaka, Ehud Nakar, Ben Margalit Paz Beniamini, Stephan Rosswog Outline A 2nd Macronova (Yang + 15, Nature comm in press.) Remarks about

More information

r-process enrichment traced by Pu and Ba near the sun and in the Draco

r-process enrichment traced by Pu and Ba near the sun and in the Draco r-process enrichment traced by Pu and Ba near the sun and in the Draco Takuji Tsujimoto (Nat. Aston. Obs. Jap.) capturing electromagnetic waves earth archives stellar spectra meteorites deep-sea crusts

More information

Near-Earth Supernovae Probed by Deep-Sea Deposits of Radioactive 60 Fe

Near-Earth Supernovae Probed by Deep-Sea Deposits of Radioactive 60 Fe Near-Earth Supernovae Probed by Deep-Sea Deposits of Radioactive 60 Fe Sara Ayoub PHY802-SP16 Final Presentation Abstract After decades of lack of precision in estimating the frequency of supernovae and

More information

Abundance Constraints on Early Chemical Evolution. Jim Truran

Abundance Constraints on Early Chemical Evolution. Jim Truran Abundance Constraints on Early Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago Argonne National Laboratory MLC Workshop Probing Early Structure with

More information

GALAXIES 626. The Milky Way II. Chemical evolution:

GALAXIES 626. The Milky Way II. Chemical evolution: GALAXIES 626 The Milky Way II. Chemical evolution: Chemical evolution Observation of spiral and irregular galaxies show that the fraction of heavy elements varies with the fraction of the total mass which

More information

Transient Events from Neutron Star Mergers

Transient Events from Neutron Star Mergers Transient Events from Neutron Star Mergers Li-Xin Li Kavli Institute for Astronomy and Astrophysics Peking University, Beijing Transient Astronomical Events Transient astronomical events include all astronomical

More information

Interstellar Neutral Atoms and Their Journey Through the Heliosphere Elena Moise

Interstellar Neutral Atoms and Their Journey Through the Heliosphere Elena Moise Interstellar Neutral Atoms and Their Journey Through the Heliosphere Elena Moise Institute for Astronomy, University of Hawai i Solar and Heliospheric Influences on the Geospace Bucharest, 1-5 Oct 2012

More information

STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR. JOHN COWAN University of Oklahoma

STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR. JOHN COWAN University of Oklahoma STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR JOHN COWAN University of Oklahoma First Stars & Evolution of the Early Universe (INT) - June 19, 2006 Top 11 Greatest Unanswered Questions

More information

Compact Binaries - 3 ASTR2110 Sarazin

Compact Binaries - 3 ASTR2110 Sarazin Compact Binaries - 3 ASTR2110 Sarazin Zoology of Binary Stars X-ray Binary Pulsar Spin-Up Accreted material has high angular momentum Spins up neutron star (true of ~all X-ray binary pulsars) Millisecond

More information

Explosive nucleosynthesis of heavy elements:

Explosive nucleosynthesis of heavy elements: Explosive nucleosynthesis of heavy elements: an astrophysical and nuclear physics challenge Gabriel Martínez Pinedo NUSPIN 2017 GSI, Darmstadt, June 26-29, 2017 32 30 28 34 36 38 40 42 46 44 48 26 28 60

More information

The Local Bubble and the 60 Fe Anomaly in the Deep-Sea Ferromanganese Crust

The Local Bubble and the 60 Fe Anomaly in the Deep-Sea Ferromanganese Crust The Local Bubble and the 60 Fe Anomaly in the Deep-Sea Ferromanganese Crust Jenny Feige 1 D. Breitschwerdt 2 B. Fuchs 3 C. Dettbarn 3 1 University of Vienna 2 TU Berlin 3 ARI Heidelberg 3. March 2011 The

More information

Physics HW Set 3 Spring 2015

Physics HW Set 3 Spring 2015 1) If the Sun were replaced by a one solar mass black hole 1) A) life here would be unchanged. B) we would still orbit it in a period of one year. C) all terrestrial planets would fall in immediately.

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

Stellar Populations in the Galaxy

Stellar Populations in the Galaxy Stellar Populations in the Galaxy Stars are fish in the sea of the galaxy, and like fish they often travel in schools. Star clusters are relatively small groupings, the true schools are stellar populations.

More information

Active Galactic Nuclei-I. The paradigm

Active Galactic Nuclei-I. The paradigm Active Galactic Nuclei-I The paradigm An accretion disk around a supermassive black hole M. Almudena Prieto, July 2007, Unv. Nacional de Bogota Centers of galaxies Centers of galaxies are the most powerful

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed What does our galaxy look like? How do stars orbit in our galaxy? Where are globular clusters located

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

Nobuya Nishimura Keele University, UK

Nobuya Nishimura Keele University, UK 7. Aug. 2014 @INT Studies of r-process nucleosynthesis based on recent hydrodynamical models of NS-NS mergers Nobuya Nishimura Keele University, UK The r-process: observational request - many r-rich Galactic

More information

Nucleosynthesis in core-collapse supernovae. Almudena Arcones

Nucleosynthesis in core-collapse supernovae. Almudena Arcones Nucleosynthesis in core-collapse supernovae Almudena Arcones Nucleosynthesis in core-collapse supernovae Explosive nucleosynthesis: O, Mg, Si, S, Ca, Ti, Fe, p-process shock wave heats falling matter shock

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

Astronomy C SSSS 2018

Astronomy C SSSS 2018 Astronomy C SSSS 2018 Galaxies and Stellar Evolution Written by Anna1234 School Team # Names 1 Instructions: 1. There are pictures of a number of galaxies in this test. However, as the DSO list for 2019

More information

Lecture 11: Ages and Metalicities from Observations A Quick Review

Lecture 11: Ages and Metalicities from Observations A Quick Review Lecture 11: Ages and Metalicities from Observations A Quick Review Ages from main-sequence turn-off stars Main sequence lifetime: lifetime = fuel / burning rate $ M " MS = 7 #10 9 % & M $ L " MS = 7 #10

More information

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group

Nucleosynthesis of heavy elements. Almudena Arcones Helmholtz Young Investigator Group Nucleosynthesis of heavy elements Almudena Arcones Helmholtz Young Investigator Group The nuclear chart uranium masses measured at the ESR 82 silver gold r-proce path 126 stable nuclei 50 82 will be measured

More information

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University

The role of neutrinos in the formation of heavy elements. Gail McLaughlin North Carolina State University The role of neutrinos in the formation of heavy elements Gail McLaughlin North Carolina State University 1 Neutrino Astrophysics What are the fundamental properties of neutrinos? What do they do in astrophysical

More information

Direct detection of live 244 Pu and 60 Fe on Earth as a monitor for recent heavy element nucelosynthesis A. Wallner

Direct detection of live 244 Pu and 60 Fe on Earth as a monitor for recent heavy element nucelosynthesis A. Wallner Direct detection of live 244 Pu and 60 Fe on Earth as a monitor for recent heavy element nucelosynthesis A. Wallner The Australian National University (ANU) Extraterrestrial Radionuclides on Earth Can

More information

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History.

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History. Ages from main-sequence turn-off stars Lecture 11: Main sequence lifetime: Ages and Metalicities from Observations R diagram lifetime = fuel / burning rate MV *1 M ' L ' MS = 7 10 9 ) ) M. ( L. ( A Quick

More information

Interstellar and Interplanetary Material. HST Astrobiology Workshop: May 5-9, 2002 P.C. Frisch University of Chicago

Interstellar and Interplanetary Material. HST Astrobiology Workshop: May 5-9, 2002 P.C. Frisch University of Chicago Interstellar and Interplanetary Material HST Astrobiology Workshop: May 5-9, 2002 P.C. Frisch University of Chicago Outline: The solar system is our template for understanding interplanetary material Heliosphere,

More information

Astronomy 242: Review Questions #3 Distributed: April 29, 2016

Astronomy 242: Review Questions #3 Distributed: April 29, 2016 Astronomy 242: Review Questions #3 Distributed: April 29, 2016 Review the questions below, and be prepared to discuss them in class next week. Modified versions of some of these questions will be used

More information

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Galactic Winds: Mathews, W. et al. 1971 Effects of Supernovae on the Early Evolution of Galaxies: Larson, R. 1974 The origin

More information

Comparing a Supergiant to the Sun

Comparing a Supergiant to the Sun The Lifetime of Stars Once a star has reached the main sequence stage of it life, it derives its energy from the fusion of hydrogen to helium Stars remain on the main sequence for a long time and most

More information

Dust Formation History with Galaxy Evolution

Dust Formation History with Galaxy Evolution Dust Formation History with Galaxy Evolution Tsutomu T. TAKEUCHI Division of Particle and Astrophysical Science, Nagoya University, Japan ESTEC, 14 Nov., 2014, the Netherlands 1. Introduction What are

More information

Modelling star formation in galaxy formation simulations

Modelling star formation in galaxy formation simulations Modelling star formation in galaxy formation simulations Vadim Semenov (U.Chicago) Andrey Kravtsov University of Chicago Carving through the codes Davos, Switzerland 16 February, 2017 Nick Gnedin (Fermilab)

More information

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg THE GALACTIC CORONA In honor of Jerry Ostriker on his 80 th birthday Chris McKee Princeton 5/13/2017 with Yakov Faerman Amiel Sternberg A collaboration that began over 40 years ago and resulted in a lifelong

More information

HNRS 227 Lecture 18 October 2007 Chapter 12. Stars, Galaxies and the Universe presented by Dr. Geller

HNRS 227 Lecture 18 October 2007 Chapter 12. Stars, Galaxies and the Universe presented by Dr. Geller HNRS 227 Lecture 18 October 2007 Chapter 12 Stars, Galaxies and the Universe presented by Dr. Geller Recall from Chapters 1-11 Units of length, mass, density, time, and metric system The Scientific Method

More information

Nuclear robustness of the r process in neutron-star mergers

Nuclear robustness of the r process in neutron-star mergers Nuclear robustness of the r process in neutron-star mergers Gabriel Martínez Pinedo International Nuclear Physics Conference Adelaide, Australia, September 11-16, 2016 Nuclear Astrophysics Virtual Institute

More information

NSCI 314 LIFE IN THE COSMOS

NSCI 314 LIFE IN THE COSMOS NSCI 314 LIFE IN THE COSMOS 2 BASIC ASTRONOMY, AND STARS AND THEIR EVOLUTION Dr. Karen Kolehmainen Department of Physics CSUSB COURSE WEBPAGE: http://physics.csusb.edu/~karen MOTIONS IN THE SOLAR SYSTEM

More information

Basics of Galactic chemical evolution

Basics of Galactic chemical evolution Basics of Galactic chemical evolution The chemical abundances of stars provide important clues as to the evolutionary history of a galaxy. Astronomers usually refer to chemical elements other than hydrogen

More information

Astro-2: History of the Universe

Astro-2: History of the Universe Astro-2: History of the Universe Lecture 13; May 30 2013 Previously on astro-2 Energy and mass are equivalent through Einstein s equation and can be converted into each other (pair production and annihilations)

More information

Supernovae, Neutron Stars, Pulsars, and Black Holes

Supernovae, Neutron Stars, Pulsars, and Black Holes Supernovae, Neutron Stars, Pulsars, and Black Holes Massive stars and Type II supernovae Massive stars (greater than 8 solar masses) can create core temperatures high enough to burn carbon and heavier

More information

Parametrization of the effect of weak interactions on the production of heavy elements in binary neutron star mergers.

Parametrization of the effect of weak interactions on the production of heavy elements in binary neutron star mergers. Parametrization of the effect of weak interactions on the production of heavy elements in binary neutron star mergers. S. Ning, H. Gerling-Dunsmore, L. Roberts 1 Abstract. Recent research 1 has shown that

More information

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti Exam # 3 Tue 12/06/2011 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti INSTRUCTIONS: Please, use the `bubble sheet and a pencil # 2 to answer the exam questions, by marking

More information

r-process nucleosynthesis in neutron star mergers and associated macronovae events

r-process nucleosynthesis in neutron star mergers and associated macronovae events r-process nucleosynthesis in neutron star mergers and associated macronovae events Oleg Korobkin Stockholm University, Oskar Klein Centre, Sweden March 14, 2014 O. Korobkin () r-process in neutron star

More information

STARS. J. J. COWAN University of Oklahoma

STARS. J. J. COWAN University of Oklahoma THE R-PROCESS R IN HALO STARS J. J. COWAN University of Oklahoma Matter & Energy in the Universe: from Nucleosynthesis to Cosmology (Recontres de Blois) - May 25, 2007 Abundance Clues and Constraints New

More information

Electromagnetic counterparts to binary neutron star mergers. Koutarou Kyutoku (KEK) Collaborators: Kunihito Ioka (KEK), Masaru Shibata (YITP)

Electromagnetic counterparts to binary neutron star mergers. Koutarou Kyutoku (KEK) Collaborators: Kunihito Ioka (KEK), Masaru Shibata (YITP) Electromagnetic counterparts to binary neutron star mergers Koutarou Kyutoku (KEK) Collaborators: Kunihito Ioka (KEK), Masaru Shibata (YITP) Summary Electromagnetic counterparts to gravitational waves

More information

1 Stellar Abundances: The r-process and Supernovae

1 Stellar Abundances: The r-process and Supernovae 1 Stellar Abundances: The r-process and Supernovae JOHN J. COWAN Department of Physics and Astronomy, University of Oklahoma Norman, OK 73019, USA CHRISTOPHER SNEDEN Department of Astronomy and McDonald

More information

The Great Debate: The Size of the Universe (1920)

The Great Debate: The Size of the Universe (1920) The Great Debate: The Size of the Universe (1920) Heber Curtis Our Galaxy is rather small, with Sun near the center. 30,000 LY diameter. Universe composed of many separate galaxies Spiral nebulae = island

More information

Type Ia supernovae observable nuclear astrophysics

Type Ia supernovae observable nuclear astrophysics Astrophysics and Nuclear Structure Hirschegg, January 27, 2013 Type Ia supernovae observable nuclear astrophysics Julius-Maximilians-Universität Würzburg, Germany W. Hillebrandt, S. Woosley, S. Sim, I.

More information

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Our Galaxy Our Galaxy We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Early attempts to locate our solar system produced erroneous results.

More information

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park

99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park 99 Years from Discovery : What is our current picture on Cosmic Rays? #6 How cosmic rays travel to Earth? Presented by Nahee Park #5 How do Cosmic Rays gain their energy? I. Acceleration mechanism of CR

More information

Lecture 30. The Galactic Center

Lecture 30. The Galactic Center Lecture 30 History of the Galaxy Populations and Enrichment Galactic Evolution Spiral Arms Galactic Types Apr 5, 2006 Astro 100 Lecture 30 1 The Galactic Center The nature of the center of the Galaxy is

More information

Svitlana Zhukovska Max Planck Institute for Astrophysics

Svitlana Zhukovska Max Planck Institute for Astrophysics Unveiling dust properties across galactic environments with dust evolution models Svitlana Zhukovska Max Planck Institute for Astrophysics Clare Dobbs (Uni Exeter), Ed Jenkins (Princeton Uni) Ralf Klessen

More information

Enrichment of r-process elements in nearby dsph galaxies, the Milky way, and globular cluster(s)

Enrichment of r-process elements in nearby dsph galaxies, the Milky way, and globular cluster(s) Enrichment of r-process elements in nearby dsph galaxies, the Milky way, and globular cluster(s) Toshikazu Shigeyama (U. Tokyo) Based on Tsujimoto & TS 2014 Kilonova Afterglow of GRB130603B at day 9! Berger+

More information

Origin of the main r-process elements

Origin of the main r-process elements Origin of the main r-process elements K. Otsuki Λ, J. Truran Λ, M. Wiescher, J. Gorres, G. Mathews,D. Frekers ΛΛ, A. Mengoni, A. Bartlett and J. Tostevin Λ Department of Astronomy and Astrophysics, University

More information

Star Formation in Disk Galaxies: From Kiloparsec to Giant Molecular Cloud Scales

Star Formation in Disk Galaxies: From Kiloparsec to Giant Molecular Cloud Scales Star Formation in Disk Galaxies: From Kiloparsec to Giant Molecular Cloud Scales Suzanne N. Shaske1 and Dr. Jonathan C. Tan2 1 2 Department of Chemical Engineering, University of Florida Departments of

More information

Low-Energy Cosmic Rays

Low-Energy Cosmic Rays Low-Energy Cosmic Rays Cosmic rays, broadly defined, are charged particles from outside the solar system. These can be electrons, protons, or ions; the latter two dominate the number observed. They are

More information

Heavy Element Nucleosynthesis. A summary of the nucleosynthesis of light elements is as follows

Heavy Element Nucleosynthesis. A summary of the nucleosynthesis of light elements is as follows Heavy Element Nucleosynthesis A summary of the nucleosynthesis of light elements is as follows 4 He Hydrogen burning 3 He Incomplete PP chain (H burning) 2 H, Li, Be, B Non-thermal processes (spallation)

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Penetration of Supernova Ejecta in the Solar System

Penetration of Supernova Ejecta in the Solar System Penetration of Supernova Ejecta in the Solar System and B.D. Fields Departments of Physics and Astronomy, University of Illinois and Urbana-Champaign E-mail: athanssd@illinois.edu, bdfields@illinois.edu

More information

Name Midterm Exam October 20, 2017

Name Midterm Exam October 20, 2017 Name Midterm Exam October 20, 2017 This test consists of three parts. For the first and second parts, you may write your answers directly on the exam, if you wish. For the other parts, use separate sheets

More information

THE CHEMICAL EVOLUTION OF THE MILKY WAY DISK

THE CHEMICAL EVOLUTION OF THE MILKY WAY DISK THE CHEMICAL EVOLUTION OF THE MILKY WAY DISK 1. The simple picture of disk evolution: independent ring evolution, successes and failures 2. The dynamical picture: stars (and gas) moving around 3. A model

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture11; November 1, 2016 Previously on Astro-1 Introduction to stars Measuring distances Inverse square law: luminosity vs brightness Colors and spectral types, the H-R diagram

More information

Basics of chemical evolution

Basics of chemical evolution Basics of chemical evolution The chemical abundances of stars provide important clues as to the evolutionary history of a galaxy. H and He were present very early on in the Universe, while all metals (except

More information

Fossil Records of Star Formation: John Beacom, The Ohio State University

Fossil Records of Star Formation: John Beacom, The Ohio State University Fossil Records of Star Formation: Supernova Neutrinos and Gamma Rays Basic Pitch Supernovae are of broad and fundamental interest Neutrinos and gamma rays are direct messengers Recent results show that

More information

GALACTIC Al 1.8 MeV GAMMA-RAY SURVEYS WITH INTEGRAL

GALACTIC Al 1.8 MeV GAMMA-RAY SURVEYS WITH INTEGRAL Proceedings of the 3rd Galileo Xu Guangqi Meeting International Journal of Modern Physics: Conference Series Vol. 23 (2013) 48 53 c World Scientific Publishing Company DOI: 10.1142/S2010194513011069 GALACTIC

More information

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H;

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H; In the Beginning Obviously, before we can have any geochemistry we need some elements to react with one another. The most commonly held scientific view for the origin of the universe is the "Big Bang"

More information

Mass loss from stars

Mass loss from stars Mass loss from stars Can significantly affect a star s evolution, since the mass is such a critical parameter (e.g., L ~ M 4 ) Material ejected into interstellar medium (ISM) may be nuclear-processed:

More information

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio. More abs. Dust [1.1] kev V Wavelength Optical Infra-red More abs. Wilms et al. 000, ApJ, 54, 914 No grains Grains from http://www.astro.princeton.edu/~draine/dust/dustmix.html See DraineH 003a, column

More information

Probing the Creation of the Heavy Elements in Neutron Star Mergers

Probing the Creation of the Heavy Elements in Neutron Star Mergers Probing the Creation of the Heavy Elements in Neutron Star Mergers Daniel Kasen UC Berkeley/LBNL r. fernandez, j. barnes, s. richers, f. foucart, d. desai, b. metzger, n. badnell, j. lippuner, l. roberts

More information

arxiv: v1 [astro-ph.ep] 14 Jan 2019

arxiv: v1 [astro-ph.ep] 14 Jan 2019 Origins: from the Protosun to the First Steps of Life Proceedings IAU Symposium No. 345, 2019 Bruce G. Elmegreen, L. Viktor Tóth, Manuel Güdel, eds. c 2019 International Astronomical Union DOI: 00.0000/X000000000000000X

More information

Massive Stellar Black Hole Binaries and Gravitational Waves

Massive Stellar Black Hole Binaries and Gravitational Waves BH-BH binaries: modeling Massive Stellar Black Hole Binaries and Gravitational Waves Chris Belczynski1 Tomek Bulik1 Daniel Holz Richard O Shaughnessy Wojciech Gladysz1 and Grzegorz Wiktorowicz1 1 Astronomical

More information

Nuclear physics impact on kilonova light curves

Nuclear physics impact on kilonova light curves Nuclear physics impact on kilonova light curves Gabriel Martínez Pinedo INT-JINA symposium: First multi-messenger observations of a neutron star merger and its implications for nuclear physics, INT, Seattle,

More information

ASTR 200 : Lecture 22 Structure of our Galaxy

ASTR 200 : Lecture 22 Structure of our Galaxy ASTR 200 : Lecture 22 Structure of our Galaxy 1 The 'Milky Way' is known to all cultures on Earth (perhaps, unfortunately, except for recent city-bound dwellers) 2 Fish Eye Lens of visible hemisphere (but

More information

White Paper on Ultra-Heavy Cosmic-Ray Astrophysics

White Paper on Ultra-Heavy Cosmic-Ray Astrophysics White Paper on Ultra-Heavy Cosmic-Ray Astrophysics Primary Author: Martin H. Israel Department of Physics CB 110 Washington University One Brookings Drive St Louis, MO 63130 314-93-6363 mhi@wuphys.wustl.edu

More information

Chapter 21 Stellar Explosions

Chapter 21 Stellar Explosions Chapter 21 Stellar Explosions Units of Chapter 21 21.1 XXLife after Death for White Dwarfs (not on exam) 21.2 The End of a High-Mass Star 21.3 Supernovae Supernova 1987A The Crab Nebula in Motion 21.4

More information

Name Date Period. 10. convection zone 11. radiation zone 12. core

Name Date Period. 10. convection zone 11. radiation zone 12. core 240 points CHAPTER 29 STARS SECTION 29.1 The Sun (40 points this page) In your textbook, read about the properties of the Sun and the Sun s atmosphere. Use each of the terms below just once to complete

More information

The Ṁass- loss of Red Supergiants

The Ṁass- loss of Red Supergiants The Ṁass- loss of Red Supergiants Dr. Donald F. Figer Director, Center for Detectors Speaker: Yuanhao (Harry) Zhang RIT 9/12/13 1 9/12/13 2 Outline IntroducJon MoJvaJon Objects Method Need for SOFIA/FORCAST

More information

Supernova Remnants and Cosmic. Rays

Supernova Remnants and Cosmic. Rays Stars: Their Life and Afterlife Supernova Remnants and Cosmic 68 th Rays Brian Humensky Series, Compton Lecture #5 November 8, 2008 th Series, Compton Lecture #5 Outline Evolution of Supernova Remnants

More information

Neutron Star Mergers and Nucleosynthesis of Heavy Elements

Neutron Star Mergers and Nucleosynthesis of Heavy Elements Annu. Rev. Nucl. Part. Sci. 2017. 67:253 74 First published as a Review in Advance on August 7, 2017 The Annual Review of Nuclear and Particle Science is online at nucl.annualreviews.org https://doi.org/10.1146/annurev-nucl-101916-123246

More information

Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical

Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical Introduction The Role of Astronomy p. 3 Astronomical Objects of Research p. 4 The Scale of the Universe p. 7 Spherical Astronomy Spherical Trigonometry p. 9 The Earth p. 12 The Celestial Sphere p. 14 The

More information

Supplementary Information for SNLS-03D3bb a super- Chandrasekhar mass Type Ia supernova

Supplementary Information for SNLS-03D3bb a super- Chandrasekhar mass Type Ia supernova 1 Supplementary Information for SNLS-03D3bb a super- Chandrasekhar mass Type Ia supernova SN Location SNLS-03D3bb is located at RA: 14:16:18.920 Dec: +52:14:53.66 (J2000) in the D3 (extended Groth Strip)

More information

Evolution of the Galaxy and the Birth of the Solar System: The Short-Lived Nuclides Connection

Evolution of the Galaxy and the Birth of the Solar System: The Short-Lived Nuclides Connection J. Astrophys. Astr. (2014) 35, 121 141 c Indian Academy of Sciences Evolution of the Galaxy and the Birth of the Solar System: The Short-Lived Nuclides Connection S. Sahijpal Department of Physics, Panjab

More information

Astro 21 first lecture. stars are born but also helps us study how. Density increases in the center of the star. The core does change from hydrogen to

Astro 21 first lecture. stars are born but also helps us study how. Density increases in the center of the star. The core does change from hydrogen to Astro 21 first lecture The H-R H R Diagram helps us study how stars are born but also helps us study how they die. Stars spend most of their lives as main sequence stars. The core does change from hydrogen

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc. Chapter 16 Lecture The Cosmic Perspective Seventh Edition Star Birth 2014 Pearson Education, Inc. Star Birth The dust and gas between the star in our galaxy is referred to as the Interstellar medium (ISM).

More information

arxiv:astro-ph/ v1 27 Jul 2004

arxiv:astro-ph/ v1 27 Jul 2004 1 Prospects for obtaining an r process from Gamma Ray Burst Disk Winds arxiv:astro-ph/0407555v1 27 Jul 2004 G. C. McLaughlin a, and R. Surman b a Department of Physics, North Carolina State University,

More information

5) Which stage lasts the longest? a) viii b) I c) iv d) iii e) vi

5) Which stage lasts the longest? a) viii b) I c) iv d) iii e) vi 1) Which of the following statements about globular clusters is false? a) Globular cluster stars are very metal- poor relative to the Sun. b) Globular cluster stars are more than 12 billion years old.

More information

Lecture 29. Our Galaxy: "Milky Way"

Lecture 29. Our Galaxy: Milky Way Lecture 29 The Milky Way Galaxy Disk, Bulge, Halo Rotation Curve Galactic Center Apr 3, 2006 Astro 100 Lecture 29 1 Our Galaxy: "Milky Way" Milky, diffuse band of light around sky known to ancients. Galileo

More information

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999

Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Astronomy 1504 Section 10 Final Exam Version 1 May 6, 1999 Reminder: When I write these questions, I believe that there is one one correct answer. The questions consist of all parts a e. Read the entire

More information

Life of stars, formation of elements

Life of stars, formation of elements Life of stars, formation of elements Recap life of sun Life of massive stars Creation of elements Formation of stars Profs. Jack Baldwin & Horace Smith will teach course for the remainder of the term to

More information

Astro Instructors: Jim Cordes & Shami Chatterjee.

Astro Instructors: Jim Cordes & Shami Chatterjee. Astro 2299 The Search for Life in the Universe Lecture 8 Last time: Formation and function of stars This time (and probably next): The Sun, hydrogen fusion Virial theorem and internal temperatures of stars

More information

DEEP-OCEAN CRUSTS AS TELESCOPES: USING LIVE RADIOISOTOPES TO PROBE SUPERNOVA NUCLEOSYNTHESIS

DEEP-OCEAN CRUSTS AS TELESCOPES: USING LIVE RADIOISOTOPES TO PROBE SUPERNOVA NUCLEOSYNTHESIS The Astrophysical Journal, 621:902 907, 2005 March 10 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. A DEEP-OCEAN CRUSTS AS TELESCOPES: USING LIVE RADIOISOTOPES TO PROBE

More information

HUNTING DOWN THE SOURCE OF GALACTIC ANTIMATTER

HUNTING DOWN THE SOURCE OF GALACTIC ANTIMATTER HUNTING DOWN THE SOURCE OF GALACTIC ANTIMATTER G. Weidenspointner et al. / New Astronomy Reviews 52 (2008) 454 456 FIONA H. PANTHER ANU CAASTRO DES 120 60 0 300 With Roland M. Crocker, Ashley J. Ruiter,

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula

More information

COSMOLOGY PHYS 30392 OBSERVING THE UNIVERSE Part I Giampaolo Pisano - Jodrell Bank Centre for Astrophysics The University of Manchester - January 2013 http://www.jb.man.ac.uk/~gp/ giampaolo.pisano@manchester.ac.uk

More information

Lecture 15. Explosive Nucleosynthesis and the r-process

Lecture 15. Explosive Nucleosynthesis and the r-process Lecture 15 Explosive Nucleosynthesis and the r-process As the shock wave passes through the star, matter is briefly heated to temperatures far above what it would have experienced in hydrostatic equilibrium.

More information