Interstellar and Interplanetary Material. HST Astrobiology Workshop: May 5-9, 2002 P.C. Frisch University of Chicago

Size: px
Start display at page:

Download "Interstellar and Interplanetary Material. HST Astrobiology Workshop: May 5-9, 2002 P.C. Frisch University of Chicago"

Transcription

1 Interstellar and Interplanetary Material HST Astrobiology Workshop: May 5-9, 2002 P.C. Frisch University of Chicago

2 Outline: The solar system is our template for understanding interplanetary material Heliosphere, solar wind, ISM Astrospheres Interstellar and interplanetary matter ISM affects planets: inner vrs outer planets 3D data visualization of solar motion P. Frisch, May

3 Heliosphere and ISM About 98% of diffuse material in heliosphere is interstellar gas Solar wind and interstellar gas densities are equal near Jupiter, or at ~6 au P. Frisch, May

4 Solar Wind Expanding solar corona becomes solar wind At 1 au and solar max: n(p+)~4 /cc, V ~ 350 km/s, B ~2nT (20 mg) SW density decreases by 1/R 2 in solar system SW sweeps up charged particles, including ISM P. Frisch, May

5 Heliosphere today Top: Plasma Temp Bottom: Interstellar H o H o Wall: H o and p+ couple Properties: T~29,000 K, N(H o )~3 x cm -2, dv=-8 km/s Model: 4-fluid model (Figure courtesy Hans Mueller) P. Frisch, May

6 Heliosphere* vrs Planetary System HELIOSPHERE: Warm Partially Ionized ISM surrounds Sun n HI =0.22 /cc, n HeI =0.12 /cc, n + =0.11 /cc, T=6500 K, V HC =26 km/s (ionization must be modeled) SW Termination Shock: au Heliopause: 140 au Bow shock: 250 au, M~1.5 (?) PLANETARY SYSTEM: Pluto: 39 au NASA Spacecraft: Voyager 1: 84 au (in nose direction) (3.6 au/year) Voyager 2: 66 au (in nose direction) (3.3 au/year) Pioneer 10: 80 au (in tail direction) ESA/NASA: Ulysses: 1 5 au, over poles of Sun Future Spacecraft: Interstellar Probe Ë au/year in nose direction (Liewer and Mewaldt 2000) *Heliosphere = solar wind bubble P. Frisch, May

7 Warm partially ionized diffuse interstellar cloud around Sun Observations of interstellar He o in solar system give cloud properties (Witte et al. 2002, Flynn et al 1998): n HeI =0.014 /cc, T=6,400 K, V HC =26 km/s ISM radiative transfer models give composition and ionization at boundary heliosphere (Slavin Frisch 2002, model 18): n HI =0.24 /cc, n e =0.09 /cc, H + /H=23%, He + /He=45% Magnetic field strength <3 mg (but unknown) Over 1% of cloud mass is in interstellar dust Observed upstream direction towards l=5 o, b=+14 o. This cloud referred to as Local Interstellar Cloud (LIC) P. Frisch, May

8 Sun in Local Bubble interior Ë Sun moves towards l~28 o, b~+32 o, V~13.4 km/s (Dehnen Binney 1998) Ë Local Bubble densities: n HI < cm -3 n HII ~0.005 cm -3 T~10 6 K ~10 6 Years Ago P. Frisch, May

9 Heliosphere while in Local Bubble Plasma (Figure courtesy Hans Mueller) Sun in Fully Ionized Local Bubble Plasma Relative V=13.4 km/s T Interstellar = o K n(p + ) IS =0.005 cm -3 n(h o ) IS =0 cm -3 No IS neutrals in heliosphere P. Frisch, May

10 Solar Environment varies with ËSun entered outflow of diffuse ISM from Sco-Cen Association (SCA) years ago Time Ë Ë Ë Ë LSR Outflow: 17 +/- 5 km/s from upstream direction l=2.3 o, b=-5.2 o ISM surrounding solar system now is warm partially ionized gas. Solar path towards l=28 o, b=+32 o implies Sun will be in SCA outflow for ~million years in future. Denser ISM will shrink heliosphere to radius <<100 au P. Frisch, May

11 Solar Encounter with Interstellar Clouds Sun predicted to encounter about a dozen giant molecular clouds over lifetime, Encounters with n=10 cm -3 interstellar clouds will be much more frequent. An increase to n=10 cm -3 for the cloud around the Sun would (Zank and Frisch 1998): Contract heliopause to radius of ~14 au Increase density of neutrals at 1 au to 2 cm -3 Give a Rayleigh-Taylor unstable heliopause from variable mass loading of solar wind by pickup ions P. Frisch, May

12 Heliosphere and IS cloud density n HI =0.22 /cc n HI =15 /cc P. Frisch, May

13 Solar Encounter with Interstellar Clouds Sun moves through LSR at ~13.4 km/s, or 13.4 pc/10 6 years. 96 interstellar absorption components are seen towards 60 nearby stars which sample interstellar cloudlets within 30 pc of Sun (F02). Nearest stars show ~1 interstellar absorption component per pc. Relative Sun-cloud velocities of 0-32 km/s suggest variations in the galactic environment of the Sun on timescales <50,000 years. P. Frisch, May

14 Astrospheres. Cool star mass loss gives astrospheres with properties determined by interactions with the ISM and sensitive to interstellar pressure (Frisch 1993) a Cen mass loss rate of ~10-14 M Sun /year (Wood et al. 2001) Ë Heated interstellar H o in solar heliosheath (~25,000 K) see towards a Cen AB and other stars (e.g. Linsky, Wood) Ë Astrospheres found around a Cen AB (1.3 pc), e Ind (3 pc), l And (?, 23 pc), and other stars (Linsky & Wood 1996,Gayley et al. 1997, Wood et al. 1996) P. Frisch, May

15 Example: Sun & a Cen Heliosheath Interstellar Lya absorption shows redward shoulder from decelerated H o Interstellar H o and p + couple by charge exchange H o heated to 29,000 K, N(H o )~3 x cm -2, dv = -8 km/s Gayley et al P. Frisch, May

16 Interstellar and Interplanetary Material Observations of ISM in the Solar System H o /He o fluorescence of solar Lya/584A emission (~1971, many satellites) He o Ulysses Dust Ulysses, Galileo, Cassini Pickup Ions Ampte, Ulysses Anomalous Cosmic Rays e.g. Ulysses, ACE, many other spacecraft P. Frisch, May

17 Interstellar H o in Solar System H o Solar Lya photons fluorescing on interstellar H o at ~4 au Discovered ~1971 (Thomas, Krassa, Bertaux, Blamont) H o decelerated in solar system (by ~5 km/s) Left: Interstellar H o Right: Geocorona (Copernicus data, Adams and Frisch 1977) P. Frisch, May

18 Interstellar He o in Solar System He o Solar 584 A fluorescence on interstellar He o at ~0.5 au Discovered 1974 (Weller and Meier) He o atoms measured directly by Ulysses Best data on interstellar gas inside solar system n(he o )=0.014 /cc, T=6,400 K, V=26 km/s, observed upstream at l=5 o, b=+14 o (Witte 2002) P. Frisch, May

19 Interstellar He o in Solar System Interstellar He gravitationally focused downstream of the Sun. The Earth passes through the Helium focusing cone at the beginning of December. Density enhancement in cone P. Frisch, May

20 Pickup Ions Gloeckler and Geiss (2002) P. Frisch, May

21 Pickup ions become Anomalous Cosmic Rays (Figure from ACE web site) P. Frisch, May

22 Anomalous Cosmic Rays Cummings and Stone (2002) P. Frisch, May

23 Anomalous Cosmic Rays captured in Earth s magnetosphere Figure from ACE web site P. Frisch, May

24 Pickup Ions, Anomalous Cosmic Rays, and the ISM (Cummings and Stone 2002) P. Frisch, May

25 Pickup Ions, Anomalous Cosmic Rays, and the ISM (Cummings and Stone 2002) P. Frisch, May

26 Interstellar Dust Smallest grains filtered in outer heliosphere (<0.1mm) Medium grains filtered by solar wind ( mm) Large grains constitute 30% of interplanetary grain flux with masses >10-13 gr (or radius>0.2 mm) at 1 au. ~1% of the cloud mass in dust Work by Gruen, Landgraf et al. P. Frisch, May

27 Entry of ISM into Heliosphere P. Frisch, May

28 ISM effects on planets qinner versus Outer Planets (H o ) qcosmic rays: Anomalous cosmic rays (require neutral ISM) Galactic Cosmic Rays (sensitive to heliosphere B) qin principle, core samples on inner versus outer planets would sort solar variations from interstellar variations P. Frisch, May

29 Inner versus Outer Planets Heliosphere in n=15 cm -3 cloud T (K) H o Density (cm -3 ) P. Frisch, May

30 Cosmic Rays and Sunspot numbers Climax, Co. data: GeV/nucleii (figure courtesy Cliff Lopate) Cosmic ray fluxes at Earth coupled to solar cycle (through solar magnetic field) Encounter with dense interstellar cloud decreases heliosphere dimensions by order of magnitude and will alter cosmic ray flux at Earth P. Frisch, May

31 Planetary climates and the interplanetary environment. Galactic Cosmic Ray flux correlated with low level (<3.2 km) cloud cover (Marsh & Svensmark 2002) P. Frisch, May

32 Instantaneous 3D visualization of Hipparcos catalog stars and MHD heliosphere model. Credits: Data: Hipparcos catalog of stars, A. Mellinger Milky Way Galaxy photage, Heliosphere MHD model of T. Linde (U. Chicago) Video: A. Hanson (Indiana U., producer), P. Frisch (U. Chicago, scientist) Funding: NASA AISRP grant (U. Chicago) P. Frisch, May

33 Conclusions: Know your astrosphere A stellar astrosphere and the interplanetary environment of an extrasolar planetary system depend on both the stellar wind and the properties of the interstellar cloud surrounding the star. Inner and outer planets see different fluxes of ISM over time. Astrospheres change when stars encounter different interstellar clouds. Star-planet coupling is function of surrounding ISM (and perhaps climate?) P. Frisch, May

Interstellar Neutral Atoms and Their Journey Through the Heliosphere Elena Moise

Interstellar Neutral Atoms and Their Journey Through the Heliosphere Elena Moise Interstellar Neutral Atoms and Their Journey Through the Heliosphere Elena Moise Institute for Astronomy, University of Hawai i Solar and Heliospheric Influences on the Geospace Bucharest, 1-5 Oct 2012

More information

Boundary conditions of the heliosphere

Boundary conditions of the heliosphere JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. A10, 8036, doi:10.1029/2003ja009909, 2003 Boundary conditions of the heliosphere P. C. Frisch Department of Astronomy and Astrophysics, University of Chicago,

More information

arxiv:astro-ph/ v2 31 Jul 2003

arxiv:astro-ph/ v2 31 Jul 2003 JOURNAL OF GEOPHYSICAL RESEARCH, VOL.???, XXXX, DOI:10.1029/, Boundary Conditions of the Heliosphere P. C. Frisch Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois, USA

More information

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems

Survey of the Solar System. The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems Survey of the Solar System The Sun Giant Planets Terrestrial Planets Minor Planets Satellite/Ring Systems The Sun Mass, M ~ 2 x 10 30 kg Radius, R ~ 7 x 10 8 m Surface Temperature ~ 5800 K Density ~ 1.4

More information

The Voyager Journey to the Giant Planets and Interstellar Space

The Voyager Journey to the Giant Planets and Interstellar Space The Voyager Journey to the Giant Planets and Interstellar Space E. C. STONE HST- Orion 8/11/11 Gary Flandro 1965 Plasma Science (Voyager 2) J.D. Richardson, J. W. Belcher, L. F. Burlaga, A.J. Lazarus,

More information

How are the present solar minimum conditions transmitted to the outer heliosphere and heliosheath? John Richardson M.I.T.

How are the present solar minimum conditions transmitted to the outer heliosphere and heliosheath? John Richardson M.I.T. How are the present solar minimum conditions transmitted to the outer heliosphere and heliosheath? John Richardson M.I.T. Heliosphere Overview Heliopause: boundary of LIC and SW plasma He H Termination

More information

What is New in the Outer Heliosphere?: Voyager and IBEX

What is New in the Outer Heliosphere?: Voyager and IBEX What is New in the Outer Heliosphere?: Voyager and IBEX Marty Lee Durham, New Hampshire USA 1 Our Local Interstellar Environment From E. Möbius Pogorelov et al., 2008 Plasma & Neutral Parameters R = 1

More information

HELIOSPHERIC RESPONSE TO DIFFERENT POSSIBLE INTERSTELLAR ENVIRONMENTS

HELIOSPHERIC RESPONSE TO DIFFERENT POSSIBLE INTERSTELLAR ENVIRONMENTS The Astrophysical Journal, 647:1491 1505, 2006 August 20 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. A HELIOSPHERIC RESPONSE TO DIFFERENT POSSIBLE INTERSTELLAR ENVIRONMENTS

More information

In situ Investigations of the Local Interstellar Medium. Science Mission Technology, TRL

In situ Investigations of the Local Interstellar Medium. Science Mission Technology, TRL Science Mission Technology, TRL 1 Introduction Astrospheres are a ubiquitous phenomenon... LL Orionis Visible Hubble Astrosphere: The region in space influenced by the outflowing stellar wind and embedded

More information

Cosmic-Ray Transport in the Heliosphere

Cosmic-Ray Transport in the Heliosphere Cosmic-Ray Transport in the Heliosphere J. Giacalone University of Arizona Heliophysics Summer School, Boulder, CO, July 16, 2013 Outline Lecture 1: Background The heliosphere Cosmic Rays in the heliosphere

More information

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and 6-1 6. Interstellar Medium 6.1 Nebulae Emission nebulae are diffuse patches of emission surrounding hot O and early B-type stars. Gas is ionized and heated by radiation from the parent stars. In size,

More information

Science Questions from inside 150AU Heliosheath/Heliopause. Merav Opher Boston University

Science Questions from inside 150AU Heliosheath/Heliopause. Merav Opher Boston University Science Questions from inside 150AU Heliosheath/Heliopause Merav Opher Boston University The heliosphere as test-bed for other astrospheres WISE bow shock image, PIA13455 Closeup of IRS8, resolving the

More information

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS

Space Physics: Recent Advances and Near-term Challenge. Chi Wang. National Space Science Center, CAS Space Physics: Recent Advances and Near-term Challenge Chi Wang National Space Science Center, CAS Feb.25, 2014 Contents Significant advances from the past decade Key scientific challenges Future missions

More information

When will Voyager 1 and 2 cross the termination shock?

When will Voyager 1 and 2 cross the termination shock? GEOPHYSICAL RESEARCH LETTERS, VOL.???, NO.??, PAGES 1 15, SOMETIME 2002 When will Voyager 1 and 2 cross the termination shock? Vlad Izmodenov 1, George Gloeckler 2, Yuri Malama 3 (1) Lomonosov Moscow State

More information

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web Astro 2299 The Search for Life in the Universe Lecture 9 Last time: Star formation Formation of protostars and planetary systems This time A few things about the epoch of reionization and free fall times

More information

Challenges to. Future Outer Heliosphere. and Interstellar Probes. Science. Mission. Technology,

Challenges to. Future Outer Heliosphere. and Interstellar Probes. Science. Mission. Technology, Science Challenges to Mission Future Outer Heliosphere Technology, and Interstellar Probes TRL Robert F. Wimmer-Schweingruber wimmer@physik.uni-kiel.de Univ. Kiel, Germany on behalf of the IP Team http://www.ieap.uni-kiel.de/et/people/wimmer/ip

More information

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or

The Interstellar Medium. Papillon Nebula. Neutral Hydrogen Clouds. Interstellar Gas. The remaining 1% exists as interstellar grains or The Interstellar Medium About 99% of the material between the stars is in the form of a gas The remaining 1% exists as interstellar grains or interstellar dust If all the interstellar gas were spread evenly,

More information

Zach Meeks. Office: Ford ES&T Phone: (918) Please let me know if you have any questions!

Zach Meeks. Office: Ford ES&T Phone: (918) Please let me know if you have any questions! Zach Meeks Office: Ford ES&T 2114 Email: zachary.meeks@gatech.edu Phone: (918) 515-0052 Please let me know if you have any questions! The scope of space physics Solar-Terrestrial Relations Solar-Terrestrial

More information

X (A.U.) Z (A.U.)

X (A.U.) Z (A.U.) 1 Interstellar atoms in the heliospheric interface V. V. Izmodenov aλ a Department ofaeromechanics and Gas Dynamics, Faculty of Mechanics and Mathematics, Lomonosov Moscow State University, Vorob'evy Gory,

More information

Modern Multi-component Models of the Heliospheric Interface

Modern Multi-component Models of the Heliospheric Interface 4 Modern Multi-component Models of the Heliospheric Interface Vladislav V. Izmodenov Lomonosov Moscow State University, School of Mechanics and Mathematics, Department of Aeromechanics; Institute for Problems

More information

The Sun. Nearest Star Contains most of the mass of the solar system Source of heat and illumination

The Sun. Nearest Star Contains most of the mass of the solar system Source of heat and illumination The Sun Nearest Star Contains most of the mass of the solar system Source of heat and illumination Outline Properties Structure Solar Cycle Energetics Equation of Stellar Structure TBC Properties of Sun

More information

Magnetic Effects Change Our View of the Heliosheath

Magnetic Effects Change Our View of the Heliosheath Magnetic Effects Change Our View of the Heliosheath M. Opher Λ, P. C. Liewer Λ, M. Velli, T. I. Gombosi ΛΛ, W.Manchester ΛΛ,D. L. DeZeeuw ΛΛ,G.Toth ΛΛ and I. Sokolov ΛΛ Λ Jet Propulsion Laboratory, MS

More information

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona

LEARNING ABOUT THE OUTER PLANETS. NASA's Cassini spacecraft. Io Above Jupiter s Clouds on New Year's Day, Credit: NASA/JPL/University of Arizona LEARNING ABOUT THE OUTER PLANETS Can see basic features through Earth-based telescopes. Hubble Space Telescope especially useful because of sharp imaging. Distances from Kepler s 3 rd law, diameters from

More information

Interstellar Gas Inside the Heliosphere

Interstellar Gas Inside the Heliosphere 5 Interstellar Gas Inside the Heliosphere Johannes Geiss 1 International Space Science Institute Bern, Switzerland George Gloeckler Department of Physics and IPST, University of Maryland, College Park,

More information

Stars, Galaxies & the Universe Lecture Outline

Stars, Galaxies & the Universe Lecture Outline Stars, Galaxies & the Universe Lecture Outline A galaxy is a collection of 100 billion stars! Our Milky Way Galaxy (1)Components - HII regions, Dust Nebulae, Atomic Gas (2) Shape & Size (3) Rotation of

More information

Heliospheric Structure: The Bow Wave and the Hydrogen Wall 1

Heliospheric Structure: The Bow Wave and the Hydrogen Wall 1 Heliospheric Structure: The Bow Wave and the Hydrogen Wall 1 G.P. Zank(1), J. Heerikhuisen(1), B.E. Wood, (2), N. Pogorelov(1), E. Zirnstein(1), S. Borovikov (1), D.J. McComas(3) (1)Center for Space and

More information

HELIOSPHERIC RADIO EMISSIONS

HELIOSPHERIC RADIO EMISSIONS 1 2 3 4 5 6 7 8 9 10 TWO RECENT khz OUTER HELIOSPHERIC RADIO EMISSIONS SEEN AT VOYAGER 1 - WHAT ARE THE INTERPLANETARY EVENTS THAT TRIGGER THEM AND WHERE ARE THESE EVENTS WHEN THE RADIO EMISSIONS START?

More information

Instrumentation for Interstellar Exploration

Instrumentation for Interstellar Exploration Instrumentation for Interstellar Exploration Mike Gruntman Department of Aerospace Engineering University of Southern California Los Angeles, California Houston, October 2002 World Space Congress II 1/31

More information

A Multi-ion Model of the Heliosphere with Secondary Charge Exchange

A Multi-ion Model of the Heliosphere with Secondary Charge Exchange A Multi-ion Model of the Heliosphere with Secondary Charge Exchange Matthew Bedford, University of Alabama in Huntsville, Department of Space Science Nikolai Pogorelov, faculty advisor The heliosphere

More information

The Magnetic Sun. CESAR s Booklet

The Magnetic Sun. CESAR s Booklet The Magnetic Sun CESAR s Booklet 1 Introduction to planetary magnetospheres and the interplanetary medium Most of the planets in our Solar system are enclosed by huge magnetic structures, named magnetospheres

More information

Astr 2310 Thurs. March 23, 2017 Today s Topics

Astr 2310 Thurs. March 23, 2017 Today s Topics Astr 2310 Thurs. March 23, 2017 Today s Topics Chapter 16: The Interstellar Medium and Star Formation Interstellar Dust and Dark Nebulae Interstellar Dust Dark Nebulae Interstellar Reddening Interstellar

More information

American Scientist. A reprint from. the magazine of Sigma Xi, The Scientific Research Society

American Scientist. A reprint from. the magazine of Sigma Xi, The Scientific Research Society A reprint from American Scientist the magazine of Sigma Xi, The Scientific Research Society This reprint is provided for personal and noncommercial use. For any other use, please send a request to Permissions,

More information

COMPOSITION OF ANOMALOUS COSMIC RAYS AND OTHER HELIOSPHERIC IONS A. C. Cummings, E. C. Stone, and C. D. Steenberg

COMPOSITION OF ANOMALOUS COSMIC RAYS AND OTHER HELIOSPHERIC IONS A. C. Cummings, E. C. Stone, and C. D. Steenberg The Astrophysical Journal, 578:94 20, 2002 October 0 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. E COMPOSITION OF ANOMALOUS COSMIC RAYS AND OTHER HELIOSPHERIC IONS

More information

Chapter 10 The Interstellar Medium

Chapter 10 The Interstellar Medium Chapter 10 The Interstellar Medium Guidepost You have begun your study of the sun and other stars, but now it is time to study the thin gas and dust that drifts through space between the stars. This chapter

More information

ESS 200C. Lectures 6 and 7 The Solar Wind

ESS 200C. Lectures 6 and 7 The Solar Wind ESS 200C Lectures 6 and 7 The Solar Wind The Earth s atmosphere is stationary. The Sun s atmosphere is not stable but is blown out into space as the solar wind filling the solar system and then some. The

More information

SOLAR JOURNEY: THE SIGNIFICANCE OF OUR GALACTIC ENVIRONMENT FOR THE HELIOSPHERE AND EARTH

SOLAR JOURNEY: THE SIGNIFICANCE OF OUR GALACTIC ENVIRONMENT FOR THE HELIOSPHERE AND EARTH SOLAR JOURNEY: THE SIGNIFICANCE OF OUR GALACTIC ENVIRONMENT FOR THE HELIOSPHERE AND EARTH Edited by PRISCILLA C. FRISCH University of Chicago, IL, U.S.A. 4y Springer Contents Dedication List of Figures

More information

Interstellar Medium by Eye

Interstellar Medium by Eye Interstellar Medium by Eye Nebula Latin for cloud = cloud of interstellar gas & dust Wide angle: Milky Way Summer Triangle (right) α&β Centauri, Coal Sack Southern Cross (below) Dust-Found in the Plane

More information

Stellar evolution Part I of III Star formation

Stellar evolution Part I of III Star formation Stellar evolution Part I of III Star formation The interstellar medium (ISM) The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful

More information

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1

Solar Magnetic Fields Jun 07 UA/NSO Summer School 1 Solar Magnetic Fields 1 11 Jun 07 UA/NSO Summer School 1 If the sun didn't have a magnetic field, then it would be as boring a star as most astronomers think it is. -- Robert Leighton 11 Jun 07 UA/NSO

More information

The Interstellar Medium.

The Interstellar Medium. The Interstellar Medium http://apod.nasa.gov/apod/astropix.html THE INTERSTELLAR MEDIUM Total mass ~ 5 to 10 x 10 9 solar masses of about 5 10% of the mass of the Milky Way Galaxy interior to the sun s

More information

What is the morphology of the local interstellar medium and its importance in the GAIA era?

What is the morphology of the local interstellar medium and its importance in the GAIA era? Mem. S.A.It. Vol. 86, 606 c SAIt 2015 Memorie della What is the morphology of the local interstellar medium and its importance in the GAIA era? Jeffrey L. Linsky 1 and Seth Redfield 2 1 JILA, University

More information

The Interstellar Medium

The Interstellar Medium THE INTERSTELLAR MEDIUM Total mass ~ 0.5 to 1 x 10 10 solar masses of about 5 10% of the mass of the Milky Way Galaxy interior to the sun s orbit The Interstellar http://apod.nasa.gov/apod/astropix.html

More information

Astrofysikaliska Dynamiska Processer

Astrofysikaliska Dynamiska Processer Astrofysikaliska Dynamiska Processer VT 2008 Susanne Höfner hoefner@astro.uu.se Aims of this Course - understanding the role and nature of dynamical processes in astrophysical contexts and how to study

More information

Short-lived 244 Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis

Short-lived 244 Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS3574 Short-lived 244 Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis 1 Interpretation of the deep sea measurement Wallner et

More information

Interstellar heliospheric probe/heliospheric boundary explorer mission a mission to the outermost boundaries of the solar system

Interstellar heliospheric probe/heliospheric boundary explorer mission a mission to the outermost boundaries of the solar system Exp Astron (2009) 24:9 46 DOI 10.1007/s10686-008-9134-5 ORIGINAL ARTICLE Interstellar heliospheric probe/heliospheric boundary explorer mission a mission to the outermost boundaries of the solar system

More information

Lecture 21 Formation of Stars November 15, 2017

Lecture 21 Formation of Stars November 15, 2017 Lecture 21 Formation of Stars November 15, 2017 1 2 Birth of Stars Stars originally condense out of a COLD, interstellar cloud composed of H and He + trace elements. cloud breaks into clumps (gravity)

More information

Three Major Components

Three Major Components The Milky Way Three Major Components Bulge young and old stars Disk young stars located in spiral arms Halo oldest stars and globular clusters Components are chemically, kinematically, and spatially distinct

More information

Modeling Secondary Neutral Helium in the Heliosphere

Modeling Secondary Neutral Helium in the Heliosphere Journal of Physics: Conference Series PAPER OPEN ACCESS Modeling Secondary Neutral Helium in the Heliosphere To cite this article: Hans-Reinhard Müller et al 2016 J. Phys.: Conf. Ser. 767 012019 Recent

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

The Physics of the Interstellar Medium

The Physics of the Interstellar Medium The Physics of the Interstellar Medium Ulrike Heiter Contact: 471 5970 ulrike@astro.uu.se www.astro.uu.se Matter between stars Average distance between stars in solar neighbourhood: 1 pc = 3 x 1013 km,

More information

Chapter 11 The Formation of Stars

Chapter 11 The Formation of Stars Chapter 11 The Formation of Stars A World of Dust The space between the stars is not completely empty, but filled with very dilute gas and dust, producing some of the most beautiful objects in the sky.

More information

arxiv:astro-ph/ v1 14 Oct 1997

arxiv:astro-ph/ v1 14 Oct 1997 The Local Bubble, Local Fluff, and Heliosphere Priscilla C. Frisch University of Chicago, Dept. of Astronomy & Astrophysics, 5640 S. Ellis Ave., Chicago, IL 60637 arxiv:astro-ph/9710141v1 14 Oct 1997 Abstract.

More information

ASTR 380 Possibilities for Life in the Outer Solar System

ASTR 380 Possibilities for Life in the Outer Solar System ASTR 380 Possibilities for Life in the Outer Solar System Possibility of Life in the Inner Solar System The Moon, Mercury, and the Moons of Mars Deimos NO LIFE NOW or EVER This is a 98% conclusion! Phobos

More information

The Ecology of Stars

The Ecology of Stars The Ecology of Stars We have been considering stars as individuals; what they are doing and what will happen to them Now we want to look at their surroundings And their births 1 Interstellar Matter Space

More information

Modeling Heliophysics Phenomena with Multi-Scale Fluid-Kinetic Simulation Suite

Modeling Heliophysics Phenomena with Multi-Scale Fluid-Kinetic Simulation Suite Blue Waters Symposium Sunriver, OR, 16 19 May, 2017 Modeling Heliophysics Phenomena with Multi-Scale Fluid-Kinetic Simulation Suite N.V. Pogorelov and J. Heerikhuisen University of Alabama in Huntsville

More information

Effects of the solar wind termination shock and heliosheath on the heliospheric modulation of galactic and anomalous Helium

Effects of the solar wind termination shock and heliosheath on the heliospheric modulation of galactic and anomalous Helium Annales Geophysicae (2004) 22: 3063 3072 SRef-ID: 1432-0576/ag/2004-22-3063 European Geosciences Union 2004 Annales Geophysicae Effects of the solar wind termination shock and heliosheath on the heliospheric

More information

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed What does our galaxy look like? How do stars orbit in our galaxy? Where are globular clusters located

More information

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech A Tale of Star and Planet Formation Lynne Hillenbrand Caltech Vermeer s The Astronomer (1688) Mauna Kea (last week) photos by: Sarah Anderson and Bill Bates Context: Our Sun The Sun is a completely average

More information

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 6 Astronomy Today 7th Edition Chaisson/McMillan Chapter 6 The Solar System Units of Chapter 6 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout

More information

Physics Homework Set 2 Sp 2015

Physics Homework Set 2 Sp 2015 1) A large gas cloud in the interstellar medium that contains several type O and B stars would appear to us as 1) A) a reflection nebula. B) a dark patch against a bright background. C) a dark nebula.

More information

Physical structure of the local interstellar medium

Physical structure of the local interstellar medium Advances in Space Research 34 (2004) 41 45 www.elsevier.com/locate/asr Physical structure of the local interstellar medium S. Redfield *,1, B.E. Wood, J.L. Linsky JILA, University of Colorado and NIST,

More information

Chapter 11 The Formation and Structure of Stars

Chapter 11 The Formation and Structure of Stars Chapter 11 The Formation and Structure of Stars Guidepost The last chapter introduced you to the gas and dust between the stars that are raw material for new stars. Here you will begin putting together

More information

Interstellar Medium V1

Interstellar Medium V1 Interstellar Medium V1 Heliosheath Termina/on Shock V2 which can be used to distinguish spatial and temporal effects. The V2 flows derived from the energetic particles using the Compton-Getting effect

More information

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14

The Night Sky. The Universe. The Celestial Sphere. Stars. Chapter 14 The Night Sky The Universe Chapter 14 Homework: All the multiple choice questions in Applying the Concepts and Group A questions in Parallel Exercises. Celestial observation dates to ancient civilizations

More information

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune

Uranus & Neptune: The Ice Giants. Discovery of Uranus. Bode s Law. Discovery of Neptune Uranus & Neptune: The Ice Giants Discovery of Uranus Discovery of Uranus & Neptune Properties Density & Composition Internal Heat Source Magnetic fields Rings Uranus Rotational Axis by William Herschel

More information

Probing the Edge of the Solar System: Formation of an Unstable Jet-Sheet

Probing the Edge of the Solar System: Formation of an Unstable Jet-Sheet Probing the Edge of the Solar System: Formation of an Unstable Jet-Sheet Merav Opher 1, Paulett C. Liewer 1, Tamas I. Gombosi 2, Ward Manchester 2, Darren L. DeZeeuw 2, Igor Sokolov 2,andGaborToth 2,3

More information

PART 3 Galaxies. Gas, Stars and stellar motion in the Milky Way

PART 3 Galaxies. Gas, Stars and stellar motion in the Milky Way PART 3 Galaxies Gas, Stars and stellar motion in the Milky Way The Interstellar Medium The Sombrero Galaxy Space is far from empty! Clouds of cold gas Clouds of dust In a galaxy, gravity pulls the dust

More information

Hydrogen wall and heliosheath Ly A absorption toward nearby stars: Possible constraints on the heliospheric interface plasma flow

Hydrogen wall and heliosheath Ly A absorption toward nearby stars: Possible constraints on the heliospheric interface plasma flow JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 107, NO. A10, 1308, doi:10.1029/2002ja009394, 2002 Hydrogen wall and heliosheath Ly A absorption toward nearby stars: Possible constraints on the heliospheric interface

More information

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10 Lecture 13 : The Interstellar Medium and Cosmic Recycling Midterm Results A2020 Prof. Tom Megeath The Milky Way in the Infrared View from the Earth: Edge On Infrared light penetrates the clouds and shows

More information

THE OUTER HELIOSPHERE: SOLAR WIND, COSMIC RAY AND VLF RADIO EMISSION VARIATIONS

THE OUTER HELIOSPHERE: SOLAR WIND, COSMIC RAY AND VLF RADIO EMISSION VARIATIONS THE OUTER HELIOSPHERE: SOLAR WIND, COSMIC RAY AND VLF RADIO EMISSION VARIATIONS Ralph L. McNutt, Jr. The Johns Hopkins University Applied Physics Laboratory Laurel, MD 20723 USA Launched in August and

More information

2.A Material sources of gas and plasma

2.A Material sources of gas and plasma 2.A Material sources of gas and plasma The magnetosphere, extending from the top of the Saturn magnetosphere to beyond the magnetopause is dominated by neutral gas. The main components are atomic hydrogen,

More information

David versus Goliath 1

David versus Goliath 1 David versus Goliath 1 or A Comparison of the Magnetospheres between Jupiter and Earth 1 David and Goliath is a story from the Bible that is about a normal man (David) who meets a giant (Goliath) Tomas

More information

SURVEY OF THE ELECTRIC SOLAR WIND SAIL: THE FASTEST MAN-MADE DEVICE EVER BUILT

SURVEY OF THE ELECTRIC SOLAR WIND SAIL: THE FASTEST MAN-MADE DEVICE EVER BUILT SURVEY OF THE ELECTRIC SOLAR WIND SAIL: THE FASTEST MAN-MADE DEVICE EVER BUILT Nick R. Purtle 1 University of Oklahoma, Norman, OK, 73069 In recent years, scientists have discovered that there are planets

More information

ASTRONOMY 1 EXAM 3 a Name

ASTRONOMY 1 EXAM 3 a Name ASTRONOMY 1 EXAM 3 a Name Identify Terms - Matching (20 @ 1 point each = 20 pts.) Multiple Choice (25 @ 2 points each = 50 pts.) Essays (choose 3 of 4 @ 10 points each = 30 pt 1.Luminosity D 8.White dwarf

More information

Possible Extra Credit Option

Possible Extra Credit Option Possible Extra Credit Option Attend an advanced seminar on Astrophysics or Astronomy held by the Physics and Astronomy department. There are seminars held every 2:00 pm, Thursday, Room 190, Physics & Astronomy

More information

Galactic environment The possibility of Galactic Paleoclimatology. Jun Makino with Takayuki Saito, Junichi Baba ELSI

Galactic environment The possibility of Galactic Paleoclimatology. Jun Makino with Takayuki Saito, Junichi Baba ELSI Galactic environment The possibility of Galactic Paleoclimatology Jun Makino with Takayuki Saito, Junichi Baba ELSI In short... Q: Has the Milky Way Galaxy anything to do with Earth s environment? A: Yes,

More information

W.R. Webber 1 and D.S. Intriligator 2

W.R. Webber 1 and D.S. Intriligator 2 A Forecast for a South Heliopause Crossing by Voyager 2 in Late 2014 Using Intensity-time Features of Energetic Particles Observed by V1 and V2 in the North and South Heliosheaths W.R. Webber 1 and D.S.

More information

Physical Processes in Astrophysics

Physical Processes in Astrophysics Physical Processes in Astrophysics Huirong Yan Uni Potsdam & Desy Email: hyan@mail.desy.de 1 Reference Books: Plasma Physics for Astrophysics, Russell M. Kulsrud (2005) The Physics of Astrophysics, Frank

More information

The Energetic Particle Populations of the Distant Heliosphere

The Energetic Particle Populations of the Distant Heliosphere The Energetic Particle Populations of the Distant Heliosphere F. B. McDonald *, A. C. Cummings, E. C. Stone, B. C. Heikkila, N. Lal, and W. R. Webber * Institute for Physical Science and Technology, University

More information

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae)

Stellar Birth. Stellar Formation. A. Interstellar Clouds. 1b. What is the stuff. Astrophysics: Stellar Evolution. A. Interstellar Clouds (Nebulae) Astrophysics: Stellar Evolution 1 Stellar Birth Stellar Formation A. Interstellar Clouds (Nebulae) B. Protostellar Clouds 2 C. Protostars Dr. Bill Pezzaglia Updated: 10/02/2006 A. Interstellar Clouds 1.

More information

IBEX discoveries over a half decade of observing the outer heliosphere

IBEX discoveries over a half decade of observing the outer heliosphere IBEX discoveries over a half decade of observing the outer heliosphere David J. McComas 1,2,3 1 Southwest Research Institute, San Antonio, TX 78228, USA 2 University of Texas at San Antonio, San Antonio,

More information

~15 GA. (Giga Annum: Billion Years) today

~15 GA. (Giga Annum: Billion Years) today ~15 GA (Giga Annum: Billion Years) today ~ 300,000 years after the Big Bang The first map of the Universe. Not homogeneous. Cosmic microwave background (CMB) anisotropy. First detected by the COBE DMR

More information

1 A= one Angstrom = 1 10 cm

1 A= one Angstrom = 1 10 cm Our Star : The Sun )Chapter 10) The sun is hot fireball of gas. We observe its outer surface called the photosphere: We determine the temperature of the photosphere by measuring its spectrum: The peak

More information

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy

18. Stellar Birth. Initiation of Star Formation. The Orion Nebula: A Close-Up View. Interstellar Gas & Dust in Our Galaxy 18. Stellar Birth Star observations & theories aid understanding Interstellar gas & dust in our galaxy Protostars form in cold, dark nebulae Protostars evolve into main-sequence stars Protostars both gain

More information

CHAPTER 29: STARS BELL RINGER:

CHAPTER 29: STARS BELL RINGER: CHAPTER 29: STARS BELL RINGER: Where does the energy of the Sun come from? Compare the size of the Sun to the size of Earth. 1 CHAPTER 29.1: THE SUN What are the properties of the Sun? What are the layers

More information

The Interior Structure of the Sun

The Interior Structure of the Sun The Interior Structure of the Sun Data for one of many model calculations of the Sun center Temperature 1.57 10 7 K Pressure 2.34 10 16 N m -2 Density 1.53 10 5 kg m -3 Hydrogen 0.3397 Helium 0.6405 The

More information

The Quest for Interstellar Exploration

The Quest for Interstellar Exploration The Quest for Interstellar Exploration Richard A. Wallace and Juan A. Ayon Jet Propulsion Labovatory/California Institute of Technology, Pasadena, California 91 109 818-354-2797, RichardA. Wallace@pl.nasa.gov;

More information

Directed Reading B. Section: The Outer Planets

Directed Reading B. Section: The Outer Planets Skills Worksheet Directed Reading B Section: The Outer Planets 1. What is one way that gas giants differ from the terrestrial planets? a. They are much smaller. b. They are rocky and icy. c. They are made

More information

Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of the normal stars.

Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of the normal stars. Chapter 23 Our Solar System Our Solar System Historical Astronomy Wandering Stars Greeks watched the stars move across the sky and noticed five stars that wandered around and did not follow the paths of

More information

Lecture 2: Introduction to stellar evolution and the interstellar medium. Stars and their evolution

Lecture 2: Introduction to stellar evolution and the interstellar medium. Stars and their evolution Lecture 2: Introduction to stellar evolution and the interstellar medium Stars and their evolution The Hertzsprung-Russell (HR) Diagram (Color-Magnitude Diagram) Apparent and Absolute Magnitudes; Dust

More information

The Sun. - this is the visible surface of the Sun. The gases here are very still hot, but much cooler than inside about 6,000 C.

The Sun. - this is the visible surface of the Sun. The gases here are very still hot, but much cooler than inside about 6,000 C. Name: The Sun The Sun is an average sized. Earth, Mars, Jupiter and Uranus are. A star is the only object in space that makes its own. This includes and. The sun is about million miles from Earth. This

More information

You are here! The Solar System! Jo-Anne Brown

You are here! The Solar System! Jo-Anne Brown You are here! * The Solar System! Jo-Anne Brown Outline Questions! Earth, Moon, Sun A little, teeny, tiny bit of history... Terrestrial planets Gas Giants Poor Pluto Magnetic fields Tell me what you know!

More information

Interstellar Exploration Through Repeated External Acceleration

Interstellar Exploration Through Repeated External Acceleration Interstellar Exploration Through Repeated External Acceleration Andrew Bingham NIAC Student Fellows Prize Department of Mechanical and Aeronautical Engineering, Clarkson University NIAC Fellows Meeting,

More information

Anomalous cosmic rays in the distant heliosphere and the reversal of the Sun s magnetic polarity in Cycle 23

Anomalous cosmic rays in the distant heliosphere and the reversal of the Sun s magnetic polarity in Cycle 23 Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 34, L05105, doi:10.1029/2006gl028932, 2007 Anomalous cosmic rays in the distant heliosphere and the reversal of the Sun s magnetic polarity

More information

The Fathers of the Gods: Jupiter and Saturn

The Fathers of the Gods: Jupiter and Saturn The Fathers of the Gods: Jupiter and Saturn Learning Objectives! Order all the planets by size and distance from the Sun! How are clouds on Jupiter (and Saturn) different to the Earth? What 2 factors drive

More information

Overview of the Solar Journey Project:

Overview of the Solar Journey Project: Overview of the Solar Journey Project: Visualization for Virtual Astronomy Andrew J. Hanson and Priscilla C. Frisch Computer Science Department, Indiana University and Dept. of Astronomy and Astrophysics,

More information

Cosmic Rays in the Heliosphere. J. R. Jokipii University of Arizona

Cosmic Rays in the Heliosphere. J. R. Jokipii University of Arizona Cosmic Rays in the Heliosphere J. R. Jokipii University of Arizona Presentation at the 2011 Heliophysics Summer School, Boulder, July 29, 2011 Outline of Lecture Brief introduction to the heliosphere.

More information

The Interior of Giant Planets. Cyrill Milkau

The Interior of Giant Planets. Cyrill Milkau The Interior of Giant Planets Cyrill Milkau 01.12.15 Outline 1. What is a planet? 2. Nuclear fusion 3. Properties of Jupiter 4. Summary 5. Sources Cyrill Milkau 2 1. What is a Planet? Definition by International

More information

The Solar Nebula Theory

The Solar Nebula Theory Reading: Chap. 21, Sect.21.1, 21.3 Final Exam: Tuesday, December 12; 4:30-6:30PM Homework 10: Due in recitation Dec. 1,4 Astro 120 Fall 2017: Lecture 25 page 1 Astro 120 Fall 2017: Lecture 25 page 2 The

More information

Predicting the Extreme-UV and Lyman-α Fluxes Received by Exoplanets from their Host Stars

Predicting the Extreme-UV and Lyman-α Fluxes Received by Exoplanets from their Host Stars Predicting the Extreme-UV and Lyman-α Fluxes Received by Exoplanets from their Host Stars Jeffrey L. Linsky 1, Kevin France 2, Thomas Ayres 2 1 JILA, University of Colorado and NIST, Boulder, CO 80309-0440

More information