The Local Bubble and the 60 Fe Anomaly in the Deep-Sea Ferromanganese Crust

Size: px
Start display at page:

Download "The Local Bubble and the 60 Fe Anomaly in the Deep-Sea Ferromanganese Crust"

Transcription

1 The Local Bubble and the 60 Fe Anomaly in the Deep-Sea Ferromanganese Crust Jenny Feige 1 D. Breitschwerdt 2 B. Fuchs 3 C. Dettbarn 3 1 University of Vienna 2 TU Berlin 3 ARI Heidelberg 3. March 2011

2 The 60 Fe Anomaly An increase corresponding to an age of 3 Myr of 60 Fe/Fe was found in the ferromanganese crust 237KD by Knie et al FeFe The 60 Fe/Fe ratio versus the age of the crust.

3 The Research Vessel Valdivia The crust was taken from the North equatorial Pacific. Courtesy of Google Maps (map) and D. Quadfasel (ship). J. Feige, D. Breitschwerdt, B. Fuchs, C. Dettbarn The LB and the 60 Fe Anomaly in the Ocean s Crust

4 A Hydrogenetic Ferromanganese Crust Ferromanganese crusts are found on sea-mountains and -plateaus, deep-sea volcanoes and the mid-ocean ridges Depth about m They obtain the composition of elements out of the ambient water 20 % Mn and 15 % Fe Low growth rate (< 10 mm/myr) A hydrogenetic ferromanganese crust. Courtesy of oceanexplorer.noaa.gov.

5 The hydrogenetic ferromanganese crust 237KD One of the biggest crusts ever recovered Depth: cm Dated by Segl et al Depth of this sample contains a time span of 0-60 Myr A piece of the ferromanganese crust 237KD, Courtesy of M. Poutivtsev. J. Feige, D. Breitschwerdt, B. Fuchs, C. Dettbarn The LB and the 60 Fe Anomaly in the Ocean s Crust

6 How to date a Crust Half-life of 10 Be: 1.51 Myr New half-life: 1.38 Myr (Korschinek et al. 2010) Assumption: constant 10 Be flux T d = t 1/2 ( 10 Be) ln(c 0/C d ) ln 2 T d... Age of the crust in depth d C 0... Concentration at the surface C d... Concentration in depth d Growthrate: 2.5 mm/myr New growthrate: 2.37 mm/myr

7 New 10 Be Dating of the Crust The peak shifts from Myr 60 FeFe The 60 Fe/Fe ratio versus the age of the crust based on the new 10 Be dating. Green dots: Confirmation of the peak by Fitoussi et al

8 The Local Bubble Cavity of thin hot gas Emits soft X-Rays Deficient of HI About 14 Myr old Caused by multiple Supernova Explosions Extension: 200 pc into the Galactic Plane 600 pc perpendicular to it Simulation of the Local ISM by D. Breitschwerdt and M. de Avillez, 2006.

9 Which Stars are to Blame? The LB was produced by SN explosions (Fuchs et al. 2006) 69 stars were found in the solar vicinity (radius 200 pc) that belong today to the subgroups UCL and LCC of the Scorpius OB2 association age of the moving group: Myr The paths of UCL and LCC over a time span of 30 Myr into the past, computed by Fuchs et al

10 The Trajectories of UCL and LCC The trajectories in the X-Z plane (Courtesy of C. Dettbarn). The trajectories in the X-Y plane (Courtesy of C. Dettbarn). Red: the closest trajectory closest point: 2.2 Myr ago, 65 pc Blue: the most distant trajectory

11 Determining the Explosion Times M τ N SN = 8.2 dn M 2.1 dm dm N The IMF of the UCL devided into intervals that each contain one star.

12 Determining the Explosion Times τ = τ 0 M α, τ 0 = yr, α = MM UCL LCC The explosion times of the stars of UCL (blue) and LCC (red) in correlation with their masses.

13 The 60 Fe Yields in Massive Stars 60 Fe is an unstable radionuclide with a half-life of 2.62 Myr (Rugel et al. 2009) It is only produced in massive stars (s- and r-process, SN explosion) The production depends on the masses of the stars Nucleosynthesis computations are sensitive to a variety of factors 60 Fe Yield10 4 M Woosley, Weaver 1995 Rauscher et al Limongi, Chieffi 2006 Woosley, Heger 2007 Fit Woosley, Heger 2007 Fit Limongi, Chieffi The 60 Fe yields as a function of stellar masses based on different computations.

14 A Supernova Exploding into a Low Density Region Model developed by Kahn in 1998 SNR expands not in a homogenous ambient medium, but into a medium that has already been shaped by a previous SN Ρ ρ = Ωr n, n = 9 2 The Radius of the expanding remnant is calculated with r s n+5 = (n + 5)(2n + 7) E SN t 2 6π Ω The density distribution of the interstellar medium shaped by a supernova explosion.

15 The Amount of 60 Fe arriving on Earth Fluence: number of atoms that reach the Earth per cm 2 F = U 4 M ej 4πAm p r 2 e t τ Particles are spread over a spherical shell with radius r r... Distance of the SN explosion to Earth M ej... Ejected 60 Fe mass A = Mass number m p... Proton masses U = 0.6 %... Uptake factor τ... Mean life Courtesy of TU Munich

16 Analytical Calculation vs. Measurements 60 FeFe UCL LCC Knie The computed data (UCL: blue, LCC: red) plotted over the 60 Fe measurements (black points) with an ISM density of n = 1 atom/cm 3.

17 Position of the closest SN in LCC LCC in the XY- and XZ-plane. Courtesy of C. Dettbarn.

18 EuroGENESIS Collaborative Research Programm ( ) Four Collaborative Research Projects (CPR s) CoDustMas: Cosmic Dust Grains as a Diagnostic for Massive Stars (Anton Wallner, Vienna) Measurement of trace element isotope ratios in presolar nanodiamonds isolated from meteorites (REE, U) Search for supernova-produced radionuclides in terrestrial deep-sea archives EXNUC: Physics of compact objects: explosive nucleosynthesis and evolution FirstStars: Nucleosynthetic fingerprints of the first stars MASCHE: Massive Stars as Agents of Chemical Evolution

19 EuroGENESIS Continue the search for supernova-produced radionuclides in terrestrial archives Main focus: Deep-Sea sediments Vienna Environmental Research Accelerator (VERA): 26 Al (t 1/2 = 0.7 Myr) 244 Pu (t 1/2 = 81 Myr) 247 Cm (t 1/2 = 15.6 Myr) TU Munich, Hebrew University, ANU (Canberra) & ANSTO (Sydney) and ETH Zürich: 60 Fe (t 1/2 = 2.6 Myr) 53 Mn (t 1/2 = 3.7 Myr) 182 Hf (t 1/2 = 8.9 Myr) Better understanding of nucleosynthesis in massive stars dust formation efficiency, transport mechanisms in supernova remnants deposition of radionuclides on earth

20 Conclusions In 2004 an 60 Fe anomaly was found in a deep-sea hydrogenetic ferromanganese crust by Knie et al. Signal corresponds to a time of 2-3 Myr ago 60 Fe is only produced in massive stars and ejected by SN explosions Number of SN were derived by fitting IMF to massive stars (Fuchs et al. 2006) belonging today to the Scorpius OB2 association Using the masses to calculate the explosion times. Computed the time the SNR takes to hit the Earth with the Model developed by Kahn (1998) With the 60 Fe yields we have been able to calculate the amount of this isotope that reaches the Earth The analytically computed data fits the measurements very well, especially the peak position As part of the EuroGENESIS research programm we will continue the search for supernova produced radionuclides in terrestrial archives.

Direct detection of live 244 Pu and 60 Fe on Earth as a monitor for recent heavy element nucelosynthesis A. Wallner

Direct detection of live 244 Pu and 60 Fe on Earth as a monitor for recent heavy element nucelosynthesis A. Wallner Direct detection of live 244 Pu and 60 Fe on Earth as a monitor for recent heavy element nucelosynthesis A. Wallner The Australian National University (ANU) Extraterrestrial Radionuclides on Earth Can

More information

Near-Earth Supernovae Probed by Deep-Sea Deposits of Radioactive 60 Fe

Near-Earth Supernovae Probed by Deep-Sea Deposits of Radioactive 60 Fe Near-Earth Supernovae Probed by Deep-Sea Deposits of Radioactive 60 Fe Sara Ayoub PHY802-SP16 Final Presentation Abstract After decades of lack of precision in estimating the frequency of supernovae and

More information

Detailed Study of a Turbulent multiphase multicomponent ISM

Detailed Study of a Turbulent multiphase multicomponent ISM Detailed Study of a Turbulent multiphase multicomponent ISM Dieter Breitschwerdt Collaborators Miguel de Avillez (Evora, Portugal) Verena Baumgartner (Vienna, Austria) Jan Bolte (TU Berlin, Germany) Jenny

More information

arxiv: v1 [astro-ph.ep] 14 Nov 2013

arxiv: v1 [astro-ph.ep] 14 Nov 2013 EPJ Web of Conferences will be set by the publisher DOI: will be set by the publisher c Owned by the authors, published by EDP Sciences, 2013 AMS measurements of cosmogenic and supernova-ejected radionuclides

More information

DEEP-OCEAN CRUSTS AS TELESCOPES: USING LIVE RADIOISOTOPES TO PROBE SUPERNOVA NUCLEOSYNTHESIS

DEEP-OCEAN CRUSTS AS TELESCOPES: USING LIVE RADIOISOTOPES TO PROBE SUPERNOVA NUCLEOSYNTHESIS The Astrophysical Journal, 621:902 907, 2005 March 10 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. A DEEP-OCEAN CRUSTS AS TELESCOPES: USING LIVE RADIOISOTOPES TO PROBE

More information

Short-lived 244 Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis

Short-lived 244 Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis SUPPLEMENTARY INFORMATION DOI: 10.1038/NPHYS3574 Short-lived 244 Pu points to compact binary mergers as sites for heavy r-process nucleosynthesis 1 Interpretation of the deep sea measurement Wallner et

More information

arxiv: v1 [astro-ph.he] 26 Apr 2017

arxiv: v1 [astro-ph.he] 26 Apr 2017 Astronomy & Astrophysics manuscript no. LBI_final c ESO 218 April 8, 218 Numerical studies on the link between radioisotopic signatures on Earth and the formation of the Local Bubble I. 6 Fe transport

More information

r-process enrichment traced by Pu and Ba near the sun and in the Draco

r-process enrichment traced by Pu and Ba near the sun and in the Draco r-process enrichment traced by Pu and Ba near the sun and in the Draco Takuji Tsujimoto (Nat. Aston. Obs. Jap.) capturing electromagnetic waves earth archives stellar spectra meteorites deep-sea crusts

More information

GALACTIC Al 1.8 MeV GAMMA-RAY SURVEYS WITH INTEGRAL

GALACTIC Al 1.8 MeV GAMMA-RAY SURVEYS WITH INTEGRAL Proceedings of the 3rd Galileo Xu Guangqi Meeting International Journal of Modern Physics: Conference Series Vol. 23 (2013) 48 53 c World Scientific Publishing Company DOI: 10.1142/S2010194513011069 GALACTIC

More information

Nina Tetzlaff, Ralph Neuhäuser, Markus M. Hohle Baha Dincel(AIU Jena)

Nina Tetzlaff, Ralph Neuhäuser, Markus M. Hohle Baha Dincel(AIU Jena) Nina Tetzlaff, Ralph Neuhäuser, Markus M. Hohle Baha Dincel(AIU Jena) Bonn Workshop 2013 Monday, 15 April 2013 Motivation Motivation 90 % [Kuranov, Popov & Postnov 2009] 10 % disrupted binary isolated

More information

Penetration of Supernova Ejecta in the Solar System

Penetration of Supernova Ejecta in the Solar System Penetration of Supernova Ejecta in the Solar System and B.D. Fields Departments of Physics and Astronomy, University of Illinois and Urbana-Champaign E-mail: athanssd@illinois.edu, bdfields@illinois.edu

More information

Cosmic rays in the local interstellar medium

Cosmic rays in the local interstellar medium Cosmic rays in the local interstellar medium Igor V. Moskalenko Igor V. Moskalenko/NASA-GSFC 1 LMC (Magellanic Cloud Emission Nuclear Data-2004/09/28, Line Survey: Smith, Points) Santa Fe R - H G - [S

More information

TIGER: Progress in Determining the Sources of Galactic Cosmic Rays

TIGER: Progress in Determining the Sources of Galactic Cosmic Rays TIGER: Progress in Determining the Sources of Galactic Cosmic Rays Martin H. Israel APS May 3, 2009 B. F. Rauch, K. Lodders, M. H. Israel, W. R. Binns, L. M. Scott Washington University in St. Louis J.

More information

Scientific goal in Nuclear Astrophysics is to explore:

Scientific goal in Nuclear Astrophysics is to explore: Nuclear Physics in Stars Michael Wiescher University of Notre Dame Joint Institute for Nuclear Astrophysics Scientific goal in Nuclear Astrophysics is to explore: Nuclear Signature in the Cosmos The Nuclear

More information

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier

EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY. Léa Jouvin, A. Lemière and R. Terrier 1 EXCESS OF VHE COSMIC RAYS IN THE CENTRAL 100 PC OF THE MILKY WAY Léa Jouvin, A. Lemière and R. Terrier 2 Excess of VHE cosmic rays (CRs) γ-ray count map Matter traced by CS 150 pc After subtracting the

More information

arxiv:astro-ph/ v2 10 Jan 2006

arxiv:astro-ph/ v2 10 Jan 2006 Nucleosynthesis of 60 Fe in massive stars Marco Limongi a,b arxiv:astro-ph/0512598v2 10 Jan 2006 a INAF - Osservatorio Astronomico di Roma, Via Frascati 33, I-00040, Monteporzio Catone, Rome, Italy b Centre

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

Search for Supernova 60 Fe in the Earth s Microfossil Record

Search for Supernova 60 Fe in the Earth s Microfossil Record Search for Supernova 60 Fe in the Earth s Microfossil Record A Cosmic Message in a Bottle Carpathian Summer School of Physics, 2014 1 Where in Nature are Elements Beyond Fe-Peak Made? Iron-group abundance

More information

Anthropogenic 244 Pu in the Environment

Anthropogenic 244 Pu in the Environment Anthropogenic 244 Pu in the Environment S. Winkler a,, I. Ahmad b, R. Golser a, W. Kutschera a, K.A. Orlandini c, M. Paul d, A. Priller a, P. Steier a and C. Vockenhuber a a Vienna Environmental Research

More information

Radio Flares from Neutron Star merges + More Tsvi Piran

Radio Flares from Neutron Star merges + More Tsvi Piran Radio Flares from Neutron Star merges + More Tsvi Piran Kenta Hotokezaka, Ehud Nakar, Ben Margalit Paz Beniamini, Stephan Rosswog Outline A 2nd Macronova (Yang + 15, Nature comm in press.) Remarks about

More information

Search for live 182 Hf in deep sea sediments

Search for live 182 Hf in deep sea sediments Search for live 182 Hf in deep sea sediments Christof Vockenhuber, Robin Golser, Walter Kutschera, Alfred Priller, Peter Steier, Stephan Winkler Vienna Environmental Research Accelerator (VERA), Institut

More information

Einführung in die Astronomie II

Einführung in die Astronomie II Einführung in die Astronomie II Teil 10 Peter Hauschildt yeti@hs.uni-hamburg.de Hamburger Sternwarte Gojenbergsweg 112 21029 Hamburg 15. Juni 2017 1 / 47 Overview part 10 Death of stars AGB stars PNe SNe

More information

DISSERTATION. Titel der Dissertation. Supernova-Produced Radionuclides in Deep-Sea Sediments Measured with AMS. verfasst von. Mag. Jenny Feige, Bakk.

DISSERTATION. Titel der Dissertation. Supernova-Produced Radionuclides in Deep-Sea Sediments Measured with AMS. verfasst von. Mag. Jenny Feige, Bakk. DISSERTATION Titel der Dissertation Supernova-Produced Radionuclides in Deep-Sea Sediments Measured with AMS verfasst von Mag. Jenny Feige, Bakk. angestrebter akademischer Grad Doktorin der Naturwissenschaften

More information

contents 1) Superbubbles a particular environment for acceleration 2) Multiple acceleration by shocks regular acceleration (Fermi 1)

contents 1) Superbubbles a particular environment for acceleration 2) Multiple acceleration by shocks regular acceleration (Fermi 1) contents 1) Superbubbles a particular environment for acceleration 2) Multiple acceleration by shocks regular acceleration (Fermi 1) 3) Transport in the bubble stochastic acceleration (Fermi 2) and escape

More information

WHAT DO X-RAY OBSERVATIONS

WHAT DO X-RAY OBSERVATIONS WHAT DO X-RAY OBSERVATIONS OF SNRS TELL US ABOUT THE SN AND ITS PROGENITOR DAN PATNAUDE (SAO) ANATOMY OF A SUPERNOVA REMNANT Forward Shock Cas A viewed in X-rays (Patnaude & Fesen 2009). Red corresponds

More information

Gravity Waves Gravity Waves

Gravity Waves Gravity Waves Gravity Waves Gravity Waves 1 Gravity Waves Gravity Waves Kayak Surfing on ocean gravity waves Oregon Coast Waves: sea & ocean waves 3 Sound Waves Sound Waves: 4 Sound Waves Sound Waves Linear Waves compression

More information

arxiv: v3 [astro-ph.sr] 9 Mar 2015

arxiv: v3 [astro-ph.sr] 9 Mar 2015 Astrophysical Shrapnel: Discriminating Among Near-Earth Stellar Explosion Sources of Live Radioactive Isotopes Brian J. Fry and Brian D. Fields arxiv:1405.4310v3 [astro-ph.sr] 9 Mar 2015 Department of

More information

Mass loss from stars

Mass loss from stars Mass loss from stars Can significantly affect a star s evolution, since the mass is such a critical parameter (e.g., L ~ M 4 ) Material ejected into interstellar medium (ISM) may be nuclear-processed:

More information

Basics of chemical evolution

Basics of chemical evolution Basics of chemical evolution The chemical abundances of stars provide important clues as to the evolutionary history of a galaxy. H and He were present very early on in the Universe, while all metals (except

More information

The rate of short Gamma Ray Bursts and NS 2 mergers

The rate of short Gamma Ray Bursts and NS 2 mergers The rate of short Gamma Ray Bursts and NS 2 mergers Tsvi Piran The Hebrew University! David Wanderman, Paz Biniamini, Omer Bromberg,! Simore Dall Osso, Oleg Korobkin, Martin Obergaulinger Outline Long

More information

Abundance Constraints on Early Chemical Evolution. Jim Truran

Abundance Constraints on Early Chemical Evolution. Jim Truran Abundance Constraints on Early Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago Argonne National Laboratory MLC Workshop Probing Early Structure with

More information

Galac%c Halo. Open Cluster

Galac%c Halo. Open Cluster Galac%c Bulge Galac%c Halo Globular Cluster Open Cluster Dwarf Galaxies Pre Solar Grains Galac%c Disk Planetary Nebulae Supernovae HII Regions QSO Distribu%on of masses at birth In general, stellar masses

More information

The Earth. February 26, 2013

The Earth. February 26, 2013 The Earth February 26, 2013 The Planets 2 How long ago did the solar system form? Definition: Cosmic Rays High-energy particles that constantly bombard objects in space Mostly they are hydrogen nuclei

More information

Interstellar Medium and Star Birth

Interstellar Medium and Star Birth Interstellar Medium and Star Birth Interstellar dust Lagoon nebula: dust + gas Interstellar Dust Extinction and scattering responsible for localized patches of darkness (dark clouds), as well as widespread

More information

arxiv: v2 [astro-ph.sr] 7 Jun 2016

arxiv: v2 [astro-ph.sr] 7 Jun 2016 Draft version June 8, 2016 Preprint typeset using L A TEX style emulateapj v. 5/2/11 RADIOACTIVE IRON RAIN: TRANSPORTING 60 Fe IN SUPERNOVA DUST TO THE OCEAN FLOOR Brian J. Fry and Brian D. Fields Department

More information

Sound Waves Sound Waves:

Sound Waves Sound Waves: Sound Waves Sound Waves: 1 Sound Waves Sound Waves Linear Waves compression rarefaction 2 H H L L L Gravity Waves 3 Gravity Waves Gravity Waves 4 Gravity Waves Kayak Surfing on ocean gravity waves Oregon

More information

Cosmic Rays & Magnetic Fields

Cosmic Rays & Magnetic Fields Cosmic Rays & Magnetic Fields Ellen Zweibel zweibel@astro.wisc.edu Departments of Astronomy & Physics University of Wisconsin, Madison and Center for Magnetic Self-Organization in Laboratory and Astrophysical

More information

Research Day of Universe Cluster: 44 Ti

Research Day of Universe Cluster: 44 Ti Research Day of Universe Cluster: 44 Ti 9:30 From whence doth ye cometh, 44 Ti? A. Parikh (TUM) 9:40 Cosmic sources of 44 Ti R. Diehl (MPE) 9:50 Gamma-ray lines from 44 Ti sources: COMPTEL A. Iyudin (MSU,

More information

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift Lecture 14: Cosmology Olbers paradox Redshift and the expansion of the Universe The Cosmological Principle Ω and the curvature of space The Big Bang model Primordial nucleosynthesis The Cosmic Microwave

More information

Gamma ray emission from supernova remnant/molecular cloud associations

Gamma ray emission from supernova remnant/molecular cloud associations Gamma ray emission from supernova remnant/molecular cloud associations Stefano Gabici APC, Paris stefano.gabici@apc.univ-paris7.fr The Origin of galactic Cosmic Rays Facts: the spectrum is (ALMOST) a single

More information

Dating. AST111 Lecture 8a. Isotopic composition Radioactive dating

Dating. AST111 Lecture 8a. Isotopic composition Radioactive dating Dating Martian Lafayette Asteroid with patterns caused by the passaged through the atmosphere. Line on the fusion crust were caused by beads of molten rock. AST111 Lecture 8a Isotopic composition Radioactive

More information

Outline. Stellar Explosions. Novae. Death of a High-Mass Star. Binding Energy per nucleon. Nova V838Mon with Hubble, May Dec 2002

Outline. Stellar Explosions. Novae. Death of a High-Mass Star. Binding Energy per nucleon. Nova V838Mon with Hubble, May Dec 2002 Outline Novae (detonations on the surface of a star) Supernovae (detonations of a star) The Mystery of Gamma Ray Bursts (GRBs) Sifting through afterglows for clues! Stellar Explosions Novae Nova V838Mon

More information

Introduction to nucleosynthesis in asymptotic giant branch stars

Introduction to nucleosynthesis in asymptotic giant branch stars Introduction to nucleosynthesis in asymptotic giant branch stars Amanda Karakas 1 and John Lattanzio 2 1) Research School of Astronomy & Astrophysics Mt. Stromlo Observatory 2) School of Mathematical Sciences,

More information

Birth & Death of Stars

Birth & Death of Stars Birth & Death of Stars Objectives How are stars formed How do they die How do we measure this The Interstellar Medium (ISM) Vast clouds of gas & dust lie between stars Diffuse hydrogen clouds: dozens of

More information

Radio Observations of TeV and GeV emitting Supernova Remnants

Radio Observations of TeV and GeV emitting Supernova Remnants Radio Observations of TeV and GeV emitting Supernova Remnants Denis Leahy University of Calgary, Calgary, Alberta, Canada (collaborator Wenwu Tian, National Astronomical Observatories of China) outline

More information

Nuclear Data in AMS: from nuclear (astro) physics to the environment

Nuclear Data in AMS: from nuclear (astro) physics to the environment Nuclear Data in AMS: from nuclear (astro) physics to the environment The Australian National University (ANU) A. Wallner Some radionuclides measured with AMS fundamental physics applied sciences 55 Fe

More information

Chapter 25: Galaxy Clusters and the Structure of the Universe

Chapter 25: Galaxy Clusters and the Structure of the Universe Chapter 25: Galaxy Clusters and the Structure of the Universe Distribution of galaxies Evolution of galaxies Study of distant galaxies Distance derived from redshift Hubble s constant age of the Universe:

More information

arxiv:astro-ph/ v1 29 Nov 1998

arxiv:astro-ph/ v1 29 Nov 1998 CERN-TH/98-373 astro-ph/9811457 ON DEEP-OCEAN 60 Fe AS A FOSSIL OF A NEAR-EARTH SUPERNOVA arxiv:astro-ph/9811457v1 29 Nov 1998 Brian D. Fields Department of Astronomy, University of Illinois Urbana, IL

More information

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern

Measurement of the 62,63. Ni(n,γ) cross section at n_tof/cern Measurement of the 62,63 Ni(n,γ) cross section at n_tof/cern University of Vienna 01. September 2011 ERAWAST II, Zürich Nucleosynthesis of heavy elements BB fusion neutrons Abundance (Si=10 6 ) Fe Mass

More information

The death throes of massive stars

The death throes of massive stars The death throes of massive stars SOFIA WALLSTRÖM Collaborators: S. Muller, J. H. Black, E. Lagadec, C. Biscaro, A. Tielens, I. Cherchneff, J. Rho, R. Oudmaijer, H. Olofsson, A. Zijlstra, and others Seminar,

More information

Chapter 15 The Milky Way Galaxy. The Milky Way

Chapter 15 The Milky Way Galaxy. The Milky Way Chapter 15 The Milky Way Galaxy The Milky Way Almost everything we see in the night sky belongs to the Milky Way We see most of the Milky Way as a faint band of light across the sky From the outside, our

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

Chapter 19: Our Galaxy

Chapter 19: Our Galaxy Chapter 19 Lecture Chapter 19: Our Galaxy Our Galaxy 19.1 The Milky Way Revealed Our goals for learning: What does our galaxy look like? How do stars orbit in our galaxy? What does our galaxy look like?

More information

Stellar Explosions (ch. 21)

Stellar Explosions (ch. 21) Stellar Explosions (ch. 21) First, a review of low-mass stellar evolution by means of an illustration I showed in class. You should be able to talk your way through this diagram and it should take at least

More information

Basics of Galactic chemical evolution

Basics of Galactic chemical evolution Basics of Galactic chemical evolution The chemical abundances of stars provide important clues as to the evolutionary history of a galaxy. Astronomers usually refer to chemical elements other than hydrogen

More information

Contributions of supernovae type II & Ib/c to the galactic chemical evolution

Contributions of supernovae type II & Ib/c to the galactic chemical evolution Contributions of supernovae type II & Ib/c to the galactic chemical evolution arxiv:1401.1202v1 [astro-ph.ga] 4 Jan 2014 Sandeep Sahijpal October 1, 2018 Department of Physics, Panjab University, Chandigarh,

More information

Questions 1pc = 3 ly = km

Questions 1pc = 3 ly = km Cosmic Rays Historical hints Primary Cosmic Rays: - Cosmic Ray Energy Spectrum - Composition - Origin and Propagation - The knee region and the ankle Secondary CRs: -shower development - interactions Detection:

More information

Lecture 8: Stellar evolution II: Massive stars

Lecture 8: Stellar evolution II: Massive stars Lecture 8: Stellar evolution II: Massive stars Senior Astrophysics 2018-03-27 Senior Astrophysics Lecture 8: Stellar evolution II: Massive stars 2018-03-27 1 / 29 Outline 1 Stellar models 2 Convection

More information

Interstellar Medium by Eye

Interstellar Medium by Eye Interstellar Medium by Eye Nebula Latin for cloud = cloud of interstellar gas & dust Wide angle: Milky Way Summer Triangle (right) α&β Centauri, Coal Sack Southern Cross (below) Dust-Found in the Plane

More information

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Our Galaxy Our Galaxy We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Early attempts to locate our solar system produced erroneous results.

More information

Planet Formation in Dense Star Clusters

Planet Formation in Dense Star Clusters Planet Formation in Dense Star Clusters Henry Throop Southwest Research Institute, Boulder Universidad Autonoma de México, Mexico City Collaborators: John Bally (U. Colorado) Nickolas Moeckel (Cambridge)

More information

STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR. JOHN COWAN University of Oklahoma

STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR. JOHN COWAN University of Oklahoma STELLAR HEAVY ELEMENT ABUNDANCES AND THE NATURE OF THE R-PROCESSR JOHN COWAN University of Oklahoma First Stars & Evolution of the Early Universe (INT) - June 19, 2006 Top 11 Greatest Unanswered Questions

More information

Astr 2310 Thurs. March 23, 2017 Today s Topics

Astr 2310 Thurs. March 23, 2017 Today s Topics Astr 2310 Thurs. March 23, 2017 Today s Topics Chapter 16: The Interstellar Medium and Star Formation Interstellar Dust and Dark Nebulae Interstellar Dust Dark Nebulae Interstellar Reddening Interstellar

More information

Presolar grains in meteorites: Isotopic signatures and timescales

Presolar grains in meteorites: Isotopic signatures and timescales Presolar grains in meteorites: Isotopic signatures and timescales earthly stellar celestial the focus on isotopes facts speculations U. Ott Bern, April 14,2010 STARDUST grains in meteorites carbonacoeus

More information

NASA telescopes help solve ancient supernova mystery

NASA telescopes help solve ancient supernova mystery NASA telescopes help solve ancient supernova mystery RCW 86: A Type Ia Supernova in a Wind-Blown Bubble Williams, Brian J., el. al. ApJ 741, 96 (2011) Jeng-Lun (Alan) Chiu Institute of Astronomy, NTHU

More information

Supernovae and Nucleosynthesis in Zero and Low Metal Stars. Stan Woosley and Alex Heger

Supernovae and Nucleosynthesis in Zero and Low Metal Stars. Stan Woosley and Alex Heger Supernovae and Nucleosynthesis in Zero and Low Metal Stars Stan Woosley and Alex Heger ITP, July 6, 2006 Why believe anything I say if we don t know how any star (of any metallicity) blows up? The physics

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Shocks occur in supersonic flows; Shocks are sudden jumps in velocity, density and pressure; Shocks satisfy flux in = flux out principle

More information

Astronomy 422! Lecture 7: The Milky Way Galaxy III!

Astronomy 422! Lecture 7: The Milky Way Galaxy III! Astronomy 422 Lecture 7: The Milky Way Galaxy III Key concepts: The supermassive black hole at the center of the Milky Way Radio and X-ray sources Announcements: Test next Tuesday, February 16 Chapters

More information

Spectral analysis of the 511 kev Line

Spectral analysis of the 511 kev Line Spectral analysis of the 511 kev Line Gillard William (C.E.S.R) From P. Jean et al. A&A, in press ( astro-ph/0509298 ) I. Introduction II. Annihilation spectrum 1. Independent model 2. Astrophysical model

More information

On Cosmic-Ray Production Efficiency at Realistic Supernova Remnant Shocks

On Cosmic-Ray Production Efficiency at Realistic Supernova Remnant Shocks On Cosmic-Ray Production Efficiency at Realistic Supernova Remnant Shocks, 1 T. Inoue 2, Y. Ohira 1, R. Yamazaki 1, A. Bamba 1 and J. Vink 3 1 Department of Physics and Mathematics, Aoyama-Gakuin University,

More information

The dying sun/ creation of elements

The dying sun/ creation of elements The dying sun/ creation of elements Homework 6 is due Thurs, 2 April at 6:00am OBAFGKM extra credit Angel: Lessons>Extra Credit Due 11:55pm, 31 March Final exam (new, later time) 6 May, 3:00-5:00, BPS

More information

Evolution of the Galaxy and the Birth of the Solar System: The Short-Lived Nuclides Connection

Evolution of the Galaxy and the Birth of the Solar System: The Short-Lived Nuclides Connection J. Astrophys. Astr. (2014) 35, 121 141 c Indian Academy of Sciences Evolution of the Galaxy and the Birth of the Solar System: The Short-Lived Nuclides Connection S. Sahijpal Department of Physics, Panjab

More information

Lecture #13 notes, Geology 3950 Spring 2006: CR Stern Magnetic reversals (text pages th edition and in the 5 th edition)

Lecture #13 notes, Geology 3950 Spring 2006: CR Stern Magnetic reversals (text pages th edition and in the 5 th edition) Lecture #13 notes, Geology 3950 Spring 2006: CR Stern Magnetic reversals (text pages 35-37 4 th edition and 53-55 in the 5 th edition) The earth has a magnetic field generated by circulation of charged

More information

Reaction measurements on and with radioactive isotopes for nuclear astrophysics

Reaction measurements on and with radioactive isotopes for nuclear astrophysics Reaction measurements on and with radioactive isotopes for nuclear astrophysics René Reifarth GSI Darmstadt/University of Frankfurt NUCL Symposium: Radiochemistry at the Facility for Rare Isotope Beams

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Shocks occur in supersonic flows; Shocks are sudden jumps in velocity, density and pressure; Shocks satisfy flux in = flux out principle

More information

Astronomy 242: Review Questions #3 Distributed: April 29, 2016

Astronomy 242: Review Questions #3 Distributed: April 29, 2016 Astronomy 242: Review Questions #3 Distributed: April 29, 2016 Review the questions below, and be prepared to discuss them in class next week. Modified versions of some of these questions will be used

More information

Lecture 2 Supernovae and Supernova Remnants

Lecture 2 Supernovae and Supernova Remnants Lecture 2 Supernovae and Supernova Remnants! The destiny of the stars! Explosive nucleosynthesis! Facts about SNe! Supernova remnants * Morphological classification * Evolutive stages! Emission of SNRs

More information

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H;

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H; In the Beginning Obviously, before we can have any geochemistry we need some elements to react with one another. The most commonly held scientific view for the origin of the universe is the "Big Bang"

More information

Light Element Nucleosynthesis: The Li-Be-B Story

Light Element Nucleosynthesis: The Li-Be-B Story Light Element Nucleosynthesis: The Li-Be-B Story Jake VanderPlas Phys 554 12-6-2007 Mz3: Hubble Heritage Image Presentation Summary The Problem of Light Elements Big Bang Nucleosynthesis Cosmic Ray Nucleosynthesis

More information

Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4

Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4 Lecture 24: Testing Stellar Evolution Readings: 20-6, 21-3, 21-4 Key Ideas HR Diagrams of Star Clusters Ages from the Main Sequence Turn-off Open Clusters Young clusters of ~1000 stars Blue Main-Sequence

More information

The Death of Stars. Ra Inta, Texas Tech University

The Death of Stars. Ra Inta, Texas Tech University The Death of Stars Ra Inta, Texas Tech University I: Stellar Evolution ESO - https://www.eso.org/public/images/eso0728c/ Burning stages of a 25 M star Fuel Product(s) H He He C, O C Ne, Na, Mg, Al Ne O,

More information

Astronomy 110: SURVEY OF ASTRONOMY. 11. Dead Stars. 1. White Dwarfs and Supernovae. 2. Neutron Stars & Black Holes

Astronomy 110: SURVEY OF ASTRONOMY. 11. Dead Stars. 1. White Dwarfs and Supernovae. 2. Neutron Stars & Black Holes Astronomy 110: SURVEY OF ASTRONOMY 11. Dead Stars 1. White Dwarfs and Supernovae 2. Neutron Stars & Black Holes Low-mass stars fight gravity to a standstill by becoming white dwarfs degenerate spheres

More information

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10 Lecture 13 : The Interstellar Medium and Cosmic Recycling Midterm Results A2020 Prof. Tom Megeath The Milky Way in the Infrared View from the Earth: Edge On Infrared light penetrates the clouds and shows

More information

Cosmology Dark Energy Models ASTR 2120 Sarazin

Cosmology Dark Energy Models ASTR 2120 Sarazin Cosmology Dark Energy Models ASTR 2120 Sarazin Late Homeworks Last day Wednesday, May 1 My mail box in ASTR 204 Maximum credit 50% unless excused (but, better than nothing) Final Exam Thursday, May 2,

More information

GALAXIES 626. The Milky Way II. Chemical evolution:

GALAXIES 626. The Milky Way II. Chemical evolution: GALAXIES 626 The Milky Way II. Chemical evolution: Chemical evolution Observation of spiral and irregular galaxies show that the fraction of heavy elements varies with the fraction of the total mass which

More information

The Monash Chemical Yields Project

The Monash Chemical Yields Project The Monash Chemical Yields Project Carolyn Doherty (Konkoly Observatory) George Angelou Simon W. Campbell Ross Church Thomas Constantino Sergio Cristallo Pilar Gil Pons Amanda Karakas John Lattanzio Maria

More information

Supernovae from massive stars

Supernovae from massive stars Supernovae from massive stars Events in which heavy elements are made that enrich the interstellar medium from which later stars form Alak K. Ray, TIFR, Mumbai A core collapse Supernova: Death of a massive

More information

Figure 2.11 from page 152 of Exploring the Heart of Ma2er

Figure 2.11 from page 152 of Exploring the Heart of Ma2er Nuclear Astrophysics The aim of nuclear astrophysics is to understand those nuclear reacbons that shape much of the nature of the visible universe. Nuclear fusion is the engine of stars; it produces the

More information

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc.

Chapter 23 Lecture. The Cosmic Perspective Seventh Edition. Dark Matter, Dark Energy, and the Fate of the Universe Pearson Education, Inc. Chapter 23 Lecture The Cosmic Perspective Seventh Edition Dark Matter, Dark Energy, and the Fate of the Universe Curvature of the Universe The Density Parameter of the Universe Ω 0 is defined as the ratio

More information

Nuclear Astrophysics - I

Nuclear Astrophysics - I Nuclear Astrophysics - I Carl Brune Ohio University, Athens Ohio Exotic Beam Summer School 2016 July 20, 2016 Astrophysics and Cosmology Observations Underlying Physics Electromagnetic Spectrum: radio,

More information

AGB stars as laboratories for nuclear physics

AGB stars as laboratories for nuclear physics AGB stars as laboratories for nuclear physics John Lattanzio with Amanda Karakas 1, Lisa Elliott, Simon Campbell, Maria Lugaro 2, Carolyn Doherty Centre for Stellar and Planetary Astrophysics, Monash University,Australia

More information

Observable constraints on nucleosynthesis conditions in Type Ia supernovae

Observable constraints on nucleosynthesis conditions in Type Ia supernovae Observable constraints on nucleosynthesis conditions in Type Ia supernovae MPE Eurogenesis Garching, March 26, 2013 Ivo Rolf Seitenzahl Institut für Theoretische Physik und Astrophysik Julius-Maximilians-Universität

More information

Neutron-induced reactions on U and Th a new approach via AMS in collaboration with: KIT (Karlsruhe): F. Käppeler, I. Dillmann

Neutron-induced reactions on U and Th a new approach via AMS in collaboration with: KIT (Karlsruhe): F. Käppeler, I. Dillmann Neutron-induced reactions on U and Th a new approach via AMS in collaboration with: KIT (Karlsruhe): F. Käppeler, I. Dillmann IRMM / Geel: A. Plompen, A. Krasa IKI Budapest: T. Belgya, L. Szentmiklosi

More information

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed What does our galaxy look like? How do stars orbit in our galaxy? Where are globular clusters located

More information

The Interstellar Medium.

The Interstellar Medium. The Interstellar Medium http://apod.nasa.gov/apod/astropix.html THE INTERSTELLAR MEDIUM Total mass ~ 5 to 10 x 10 9 solar masses of about 5 10% of the mass of the Milky Way Galaxy interior to the sun s

More information

CLASSIFYING SUPERNOVA REMNANT SPECTRA WITH MACHINE LEARNING

CLASSIFYING SUPERNOVA REMNANT SPECTRA WITH MACHINE LEARNING CLASSIFYING SUPERNOVA REMNANT SPECTRA WITH MACHINE LEARNING DAN PATNAUDE (SAO) AND HERMAN LEE (KYOTO UNIVERSITY) Chandra Theory: TM6-17003X NASA ATP: 80NSSC18K0566 SI Hydra Cluster Compute Facility SNR

More information

arxiv:astro-ph/ v1 8 Mar 2006

arxiv:astro-ph/ v1 8 Mar 2006 Astronomy & Astrophysics manuscript no. Hl121 September 11, 2018 (DOI: will be inserted by hand later) Chemical Self-Enrichment of HII Regions by the Wolf-Rayet Phase of an 85M star D. Kröger 1, G. Hensler

More information

The Interstellar Medium

The Interstellar Medium THE INTERSTELLAR MEDIUM Total mass ~ 0.5 to 1 x 10 10 solar masses of about 5 10% of the mass of the Milky Way Galaxy interior to the sun s orbit The Interstellar http://apod.nasa.gov/apod/astropix.html

More information

Low-Energy Cosmic Rays

Low-Energy Cosmic Rays Low-Energy Cosmic Rays Cosmic rays, broadly defined, are charged particles from outside the solar system. These can be electrons, protons, or ions; the latter two dominate the number observed. They are

More information

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Galactic Winds: Mathews, W. et al. 1971 Effects of Supernovae on the Early Evolution of Galaxies: Larson, R. 1974 The origin

More information