How to explain metallicity dependence??

Size: px
Start display at page:

Download "How to explain metallicity dependence??"

Transcription

1 Winds of massive stars all massive hot stars with L/L sun > 10 4 highly supersonic, strong winds basic properties explained by theory of line driven winds Mv R 1 2 L 1.8 [Z] 0.8 v 3v phot esc [Z] 0.15 v phot esc = {2G M (1 Γ) R } 1 2 Kudritzki & Puls, 2000, ARAA 38, 613 How to explain metallicity dependence??

2 Hydrodynamics of stationary line driven winds Ṁ =4πr 2 ρ(r)v(r) v(r) dv(r) dr =- 1 ρ(r) dp gas (r) dr g(r)+g rad (r) g rad (r) =g Th rad + gbf,ff rad + g lines rad

3 Contribution by one line i at ν i g i rad = photon momentum absorbed by line i time mass = 1 c L ν i (1 e τ i )dν 1 4πr 2 ρdr τ i dν = ν i dv c g Th rad (r) = n eσ e L c4πr 2 ρ g i rad =gth rad 1 c ν i L νi (1 e τ i ) 1 dv L n e σ e dr M i

4 g lines rad = gth rad M(t) line force multiplier M(t) = v th 1 c t P i ν i L νi L (1-e τ i ) τ i (r) =k i t(r) line optical depth k i = χ i(r) n e σ e n lower n e f lu λ i line strength t= n e σ e v th dv/dr optical depth parameter

5 depth dependence of line force M(t) M(t) = v th 1 c t P i ν i L νi L (1-e τ i ) τ i (r) =k i t(r) t= n e σ e v th dv/dr 2 extreme cases: k max = max {k i }, k min = min {k i } t t s = k 1 max M (t) = M max P i ν i L νi L k i = const. t t m = k 1 min M (t) = 1 t 1 n e dv dr optical thickness of lines is crucial!

6 line strength distribution function n(k,ν)dνdk k α 2 dk atomic line lists, NLTE: {k i } for some 10 6 lines power law T eff = K α = 0.65 see Puls et al. 2000, A&AS 141, 23 for detailed discussion

7 depth dependence of line force n(k,ν)dνdk k α 2 dk M(t) 1 t P i ν i L νi L (1-e k it ) M(t) N eff 1 t R kmax 0 {1 e tk }k α 2 dk log n(k) log M(t) slope: α -2 k max ~ 10 8 log k M(t) N eff t α N eff M max k α max t s M max slope: -α log t

8 v(r) dv(r) dr =- 1 ρ(r) t= n e σ e v th dv/dr dp gas (r) dr g(r){1+γm (t α )} non-linear eq. of motion M N 1 α eff L 1 α {M (1 Γ)} 1 1 α v 2.24 α 1 α vphot esc Mv R 1 2 v phot esc = {2G M (1 Γ) R } 1 2 N 1 α eff L 1 α analytic solutions, scaling relations Castor, Abbott, Klein, 1975 Kudritzki et al. 1989, Puls, Kudritzki et al., 1996, Kudritzki & Puls, 2000

9 H α fits with hydrodynamic NLTE models M Variation of by ± 20% Ṁ Kudritzki & Puls, 2000, AARA 38, 613

10 fit of v ± 5% accuracy Kudritzki & Puls, 2000, AARA 38, 613

11 Kudritzki & Puls, 2000, AARA 38, 613 data from Prinja & Massa (1998), Lamers et al., (1995)

12 Stellar wind momenta: O-stars and CSPN Kudritzki & Puls, 2000 Kudritzki et al., 1997

13 New WLR: O-stars and CSPN (blanketing) Repolust, Puls, Herrero, 2004 Markova, Puls, Repolust, Markov, 2004 Kudritzki, Urbaneja, Puls, 2006

14 theoretical wind momenta calculated observed regressions calculations by Kudritzki, 2002, ApJ 577, 389

15 Wind momentum luminosity relationship (WLR) Rome 2005 Mv R 1 2 = const.l 1 α α 2 3 Predicted by wind theory zero point and slope alpha confirmed and calibrated empirically Kudritzki et al., 89 Puls et al., 96 Kudritzki et al., 1999 Kudritzki & Puls, 2000

16 Stellar wind momenta: B and A supergiants Kudritzki & Puls, 2000 Kudritzki et al., 1999

17 Concepcion 2007 WLR for A-supergiants distances Kudritzki et al., 1999 Bresolin et al., 2001

18 metallicity log n(k) Z=Z sun k=k Z Z k max = k max Z Z log M(t) M max Z=Z sun Z<Z sun k max log k M max = M max Z Z t s Z<Z sun log t N eff = N eff { Z Z } 1 α M(t) { Z Z } 1 α t α Ṁ = Ṁ { Z } 1 α α Z Abbot, 1982 Kudritzki et al., 1989 Puls, Kudritzki et al., 1996

19 curvature of line strength distribution function log n(k) α-2 average power law fit real distribution α-2 consequences: log k contribution to M(t) mostly from lines with τ = k t = 1 M(t) t α(k= 1 t ) for lower metallicity weaker winds larger k contribute α smaller k ~ Z/Z sun distribution shifts α smaller v { Z } x Z Ṁ { Z } m Z α smaller! but no unique exponent!

20 Complication: M (t, n e /W) T eff = 50000K, Z = Z_sun n e /W

21 ionization changes through wind: N eff { n e(r) W (r) }δ log n(k) log M(t) n e /W n e /W log k log t M(t) { n e(r) W (r) }δ t α Ṁ N 1 α δ eff L 1 α δ Ṁ { Z } 1 α α δ Z v α 1 α e 2δ v esc δ 0.05 to 0.1 Kudritzki et al., 1989 Puls et al., 1996, Kudritzki & Puls, 2000

22 numerical calculations Kudritzki et al., 1987 Z/Z_sun = M { Z Z } 0.6±0.1 v { Z Z } 0.15 Leitherer et al., 1992 Z/Z_sun = Ṁ { Z Z } 0.8±0.1 v { Z Z } 0.13 Vink et al., 2001 Z/Z_sun = Ṁ { Z Z } 0.69±0.1

23 data from: Puls & Kudritzki, 2000 Crowther et al., 2002 Hillier et al., 2003, Repolust et al., 2004 Markova et al., 2004 Evans et al., 2004 Massey et al., 2004 Massey et al., 2005 Martins et al., 2004 Bouret et al., 2005

24 data from: Puls & Kudritzki, 2000 Crowther et al., 2002 Hillier et al., 2003, Trundle et al., Evans et al., 2004 Massey et al., 2004 Massey et al., 2005

25 O-star wind momenta new: MW, LMC, SMC without wind clumping observed LMC SMC theory Vink et al., 2001 MW Mokiem, dekoter, Puls et al. 2006, A&A 441, 711

26 WLR: theoretical [Z] dependence calculated calculations by Vink et al., 2002 observed SMC regression calculations by Kudritzki, 2002, ApJ 577, 389

27 NGC 300: A supergiants WLR Rome 2005 Wind analysis 6 late B, early A-type supergiants Bresolin, Kudritzki et al., 2003

28 WLR: A supergiants Bresolin, Kudritzki et al., 2001, 2003 Rome 2005 B + A spectral types plot vs M v ignores B.C. need plot vs. M bol NGC 3621 NGC 3621 and NGC 300 objects have lower metallicity Theory (Kudritzki, 2003) predicts shift of WLR to dotted line

29 Winds, ionizing fluxes and spectra of the first generations of very massive stars in the early universe Rolf-Peter Kudritzki Institute for Astronomy, University of Hawaii Kudritzki & Puls, 2000, ARAA 38, 613 Kudritzki et al., 2000, ApJ 536, 19 Bromm, Kudritzki, Loeb, 2001, ApJ 552, 464 Kudritzki, 2002, ApJ 577, Marigo, Chiosi, Kudritzki, 2003, A&A 399, 617 Rix, Pettini, Leitherer, Bresolin, Kudritzki, Steidel, 2004, ApJ 615, 98

30 Introduction evolution of galaxies in early universe heavily influenced by first generations of very massive stars cosmic z=3.5 Springel & Hernquist, 2003 WMAP very massive stars

31 Z/Z sun 10-3 star formation preferably stars with 1000 M sun > M > 100 M sun hydro-simulations: Abel et al., 2000, 2002 Bromm et al., 2000, 2002 contribution to redshift 20 > z > 6 progenitors of GRBs at high redshift Carr et al. 1984, Couchman & Rees 86, Haiman & Loeb 1997, Bennet et al. 2003, Spergel et al. 2003, Becker et al. 2001, Fan et al., 2001, Springel & Hernquist 2003 Bromm & Loeb 2002, Ciardi & Loeb 2001, Kulkarni et al. 2000, Djorgovski et al. 2001, Lamb & Reichart 2000 extreme Ly-α emitters at high redshift Kudritzki et al. 2001, Rhoads & Malhotra 2001 Malhotra & Rhoads 2002, Hu et al. 2003

32 The first stars in the universe - clues from hydrodynamic simulations Hydrodynamic simulations by Davé, Katz, & Weinberg Ly-α cooling radiation (green) Light in Ly-α from forming stars (red, yellow) z=10 z=8 z=6

33 Stars forming at z=10! Observable with a 30m telescope! 1 Mpc (comoving) GSMT Science Working Group Report, 2003, Kudritzki et al. Simulation As observed through 30-meter telescope R=3000, 10 5 seconds, Barton et al., 2004, ApJ 604, L1

34 A possible IMF diagnostic at z=10 HeII (λ1640 Å) Standard IMF HeII (λ1640 Å) Top-Heavy IMF, zero metallicity (IMF + stellar model fluxes from Bromm, Kudritzki, & Loeb 2001, ApJ 552,464)

35 questions evolution? spectra? ionizing fluxes? recombination lines? winds? old work M {Z/Z } for 0.01 Z/Z 3 Kudritzki et al. 1987, Leitherer et al. 1992, Vink et al., 2001

36 g lines rad = gth rad M(t) line force multiplier M(t) = v th 1 c t P i ν i L νi L (1-e τ i ) τ i (r) =k i t(r) line optical depth k i = χ i(r) n e σ e n lower n e f lu λ i line strength t= n e σ e v th dv/dr optical depth parameter

37 for very weak winds t=n e σ e v th dv/dr << 1 M(t) = v th 1 c t P i τ i = k i t(r) < 1, for all lines if t -1 > k max ν i L νi L (1-e τ i ) M max = v th c Pi ν i L νi L k i 2000 Z = 1 (Gayley, 1995) since for metal lines k i = k i Z Z M max = 2000 Z Z + M H,He

38 necessary for wind (at very low metallicity): g(r)-g rad (r) =g(r)[1 Γ{1+M (t)}] 0 Γ = g Th rad (r)/g(r) Γ Γ min = 1 1+M max = { Z Z + M H,He } 1 Z/Z sun Γ min / /6 minimum Γ for existence of line driven winds winds only very close to Eddington-limit!!

39 Winds at very low metallicities a challenge log M(t) Z Z 10 2 saturation of M(t) at high t k max t 1 strong curvature of M(t) n e /W influences curvature n e /W force multipliers α, δ depth dependent log t M(t) { n e W }δ(t, n e W ) t α(t, n e W ) new approach needed!!!

40 M(t,Z) T eff = 50000K α(t,z) M(t), α(t), δ(t) Z/Z sun = δ(t,z) Kudritzki, ApJ 577, 389, 2002 millions of lines in NLTE

41 α (t, n e /W) T eff = 50000K Z/Z sun = 10-4 Kudritzki, ApJ 577, 389, 2002

42 δ (t, n e /W) T eff = 50000K Z/Z sun = 10-4 Kudritzki, ApJ 577, 389, 2002

43 line driven winds with depth dependent line force multipliers v(r) dv(r) dr =- 1 ρ(r) dp gas (r) dr g(r){1+γm } M=M(t α(t,n e/w ), (n e /W ) δ(t,n e/w ) ) t= n e σ e v th dv/dr For details of numerical of numerical solution including singularity and regularity conditions at critical point see Kudritzki, ApJ 577, 389, 2002

44 wind models for evolved very massive stars at very low metallicity 10 4 Z/Z 1 100M M 300M 40000K T eff 60000K winds ionizing fluxes spectra

45 the model grid M/M sun

46 log M dot vs log Z M/M sun not a power law!!!! analytical formula for M dot = f(l,z) given by Kudritzki, 2002 Kudritzki, ApJ 577, 389, 2002

47 v /v esc vs log Z M/M sun Kudritzki, ApJ 577, 389, 2002

48 wind momentum vs log L Z/Z sun Kudritzki, ApJ 577, 389, 2002

49 wind energy vs log Z M/M sun Kudritzki, ApJ 577, 389, 2002

50 Ionizing fluxes: T eff = 60000K, M/M sun = 250 Z = 1.0 Z = 10-4 Kudritzki, ApJ 577, 389, 2002

51 Ionizing fluxes: T eff = 60000K, M/M sun = 250 HeII NeII HeI H CIII OII bound-free edges for ionizing photons Kudritzki, ApJ 577, 389, 2002

52 Number of ionizing photons:t eff = 50000K, M/M sun = 300 Kudritzki, ApJ 577, 389, 2002

53 ionizing fluxes vs. metallicity, luminosity H and He I ionizing photons unaffected O II, Ne II, C III photons moderately affected He II photons strongly affected

54 120 M sun 300 M sun 40000K 40000K 50000K 50000K 60000K 60000K

55 Spectra:T eff = 50000K, M/M sun = 250 Z/Z sun N V O V C IV He II Kudritzki, ApJ 577, 389, 2002

56 Spectra: T eff = 60000K, M/M sun = 250 Z/Z sun N V O V C IV He II Kudritzki, ApJ 577, 389, 2002

57 UV line spectra line diagnostics possible down to Z/Z sun = 10-4 GSMT JWST wind features disappear at Z/Z sun = 10-3

58 Applications evolution of massive Pop III stars low metallicity starburst galaxies at high z the first stars in the re-ionization epoch

59 Applications evolution of massive Pop III stars low metallicity starburst galaxies at high z the first stars in the re-ionization epoch

60 Evolution of massive Pop III stars with mass-loss Marigo, Chiosi, Kudritzki 2003, A&A 399, 617

61 Final stages of massive Pop III stars He & CO cores at C ignition Marigo, Chiosi, Kudritzki 2003, A&A 399, 617 initial mass

62 He enrichment of ISM He enrichment Marigo, Chiosi, Kudritzki 2003, A&A 399, 617 star formation efficiency

63 He vs Z enrichment of ISM He enrichment Marigo, Chiosi, Kudritzki 2003, A&A 399, 617 metallicity enrichment

64 Applications evolution of massive Pop III stars low metallicity starburst galaxies at high z the first stars in the re-ionization epoch

65 Spectral diagnostics of high-z starbursts Starburst models - fully synthetic spectra based on model atmospheres Rix, Pettini, Leitherer, Bresolin, Kudritzki, Steidel, 2004, ApJ 615, 98

66 Spectral diagnostics of high-z starbursts z=2.7 fully synthetic spectra vs. observation Rix, Pettini, Leitherer, Bresolin, Kudritzki, Steidel 2004, ApJ 615, 98

67 Applications evolution of massive Pop III stars low metallicity starburst galaxies at high z the first stars in the re-ionization epoch

68 Main sequence of the first stars Bromm, Kudritzki, Loeb ApJ 552, 464, 2001

69 Spectra and SEDs of the first stars Bromm, Kudritzki,Loeb,ApJ 552, 464, 2001

70 L ν / M is almost constant!!! Bromm, Kudritzki, Loeb ApJ 552, 464, 2001

71 SED of a cluster of 10 6 stars at a redshift of 10 Bromm, Kudritzki, Loeb ApJ 552, 464, 2001

72 First very massive stars - conclusions generic SEDs ~ BB with T 10 5 K rich H and HeII spectra L ν /M independent of stellar mass for M 200 M_sun N phot (H)/M stars factor ten larger than for Salpeter IMF (HeII) hundred H and HeII recombination lines observable with 30m predicted continuum spectra for 10 6 M sun cluster at z=10 - detectable with JWST - SEDs, colors different from Salpeter IMF Bromm, Kudritzki, Loeb ApJ 552, 464, 2001 Schaerer, A&A 397, 527, 2003

73 Stars forming at z=10! Observable with a 30m telescope! 1 Mpc (comoving) GSMT Science Working Group Report, 2003, Kudritzki et al. Simulation As observed through 30-meter telescope R=3000, 10 5 seconds, Barton et al., 2004, ApJ 604, L1

74 A possible IMF diagnostic at z=10 HeII (λ1640 Å) Standard IMF HeII (λ1640 Å) Top-Heavy IMF, zero metallicity (IMF + stellar model fluxes from Bromm, Kudritzki, & Loeb 2001, ApJ 552,464)

75 Instabilities a few extremely low M dot models may suffer from de-coupling of H,He and metals (Kudritzki 2002, Krticka et al. 2003) heating of winds or fallback of material strong increase of force multiplier parameter δ bi-stability of radiative line force pulsational instabilities important for very massive stars, however see Baraffe, Heger & Woosley (2001): much weaker at low Z rotation rotationally induced mass-loss (Maeder,Meynet) close to Γ = 1 Shaviv, Owocki, Gayley porosity??

76 δ (t, n e /W) Kudritzki, ApJ 577, 389, 2002

77 Instabilities a few extremely low M dot models may suffer from de-coupling of H,He and metals (Kudritzki 2002, Krticka et al. 2003) heating of winds or fallback of material strong increase of force multiplier parameter δ bi-stability of radiative line force pulsational instabilities important for very massive stars, however see Baraffe, Heger & Woosley (2001): much weaker at low Z rotation rotationally induced mass-loss (Maeder,Meynet) close to Γ = 1 Shaviv, Owocki, Gayley porosity??

v 3vesc phot [Z] 0.15

v 3vesc phot [Z] 0.15 VIII. Winds of massive stars all massive hot stars with L/L sun > 10 4 highly supersonic, strong winds basic properties explained by theory of line driven winds Mv R 1 2 L 1.8 [Z] 0.8 v 3vesc phot [Z]

More information

Stellar atmospheres: an overview

Stellar atmospheres: an overview Stellar atmospheres: an overview Core M = 2x10 33 g R = 7x10 10 cm 50 M o 20 R o L = 4x10 33 erg/s 10 6 L o 10 4 (PN) 10 6 (HII) 10 12 (QSO) L o Photosphere Envelope Chromosphere/Corona R = 200 km ~ 3x10

More information

Stellar Winds and Hydrodynamic Atmospheres of Stars. Rolf Kudritzki Spring Semester 2010

Stellar Winds and Hydrodynamic Atmospheres of Stars. Rolf Kudritzki Spring Semester 2010 Stellar Winds and Hydrodynamic Atmospheres of Stars Rolf Kudritzki Spring Semester 2010 I. Introduction First suspicion of existence of continuous stellar winds: Optical spectrum of P Cygni B2 hypergiant

More information

LINE-DRIVEN WINDS, IONIZING FLUXES, AND ULTRAVIOLET SPECTRA OF HOT STARS AT EXTREMELY LOW METALLICITY. I. VERY MASSIVE O STARS Rolf P.

LINE-DRIVEN WINDS, IONIZING FLUXES, AND ULTRAVIOLET SPECTRA OF HOT STARS AT EXTREMELY LOW METALLICITY. I. VERY MASSIVE O STARS Rolf P. The Astrophysical Journal, 577:389 408, 2002 September 20 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. LINE-DRIVEN WINDS, IONIZING FLUXES, AND ULTRAVIOLET SPECTRA OF

More information

Stellar Winds Jorick Vink (Keele University)

Stellar Winds Jorick Vink (Keele University) Stellar Winds Jorick Vink (Keele University) Outline Why predict Mass-loss rates? (as a function of Z) Monte Carlo Method Results O & B, LBV, B[e] & WR winds Cosmological implications? Why predict Mdot?

More information

VII. Hydrodynamic theory of stellar winds

VII. Hydrodynamic theory of stellar winds VII. Hydrodynamic theory of stellar winds observations winds exist everywhere in the HRD hydrodynamic theory needed to describe stellar atmospheres with winds Unified Model Atmospheres: - based on the

More information

I. Introduction. First suspicion of existence of continuous stellar winds: Optical spectrum of Wolf-Rayet stars: widths of lines

I. Introduction. First suspicion of existence of continuous stellar winds: Optical spectrum of Wolf-Rayet stars: widths of lines 8. Stellar Winds History of Stellar Winds Spectroscopic Signatures of Stellar Winds Stellar Winds in Astronomy: Extragalactic supergiants, Mass loss, Galaxy evolution 1 I. Introduction First suspicion

More information

WINDS OF HOT MASSIVE STARS III Lecture: Quantitative spectroscopy of winds of hot massive stars

WINDS OF HOT MASSIVE STARS III Lecture: Quantitative spectroscopy of winds of hot massive stars WINDS OF HOT MASSIVE STARS III Lecture: Quantitative spectroscopy of winds of hot massive stars 1 Brankica Šurlan 1 Astronomical Institute Ondřejov Selected Topics in Astrophysics Faculty of Mathematics

More information

The impact of the slow solutions in the winds of massive stars

The impact of the slow solutions in the winds of massive stars The impact of the slow solutions in the winds of massive stars Departamento de Física y Astronomía, Universidad de Valparaiso, Chile Collaborators: Lydia Cidale, Anahi Granada et al. Univ. Nac. de La Plata,

More information

RADIATIVE TRANSFER AND STELLAR ATMOSPHERES. Institute for Astronomy Fall Semester Rolf Kudritzki

RADIATIVE TRANSFER AND STELLAR ATMOSPHERES. Institute for Astronomy Fall Semester Rolf Kudritzki RADIATIVE TRANSFER AND STELLAR ATMOSPHERES Institute for Astronomy Fall Semester 2007 Rolf Kudritzki Fall 2007 Outline Introduction: Modern astronomy and the power of quantitative spectroscopy Basic assumptions

More information

Winds from massive stars

Winds from massive stars Mem. S.A.It. Vol. 82, 774 c SAIt 2011 Memorie della Winds from massive stars Joachim Puls Universitätssternwarte München, Scheinerstr. 1, 81679 München, Germany e-mail: uh101aw@usm.uni-muenchen.de Abstract.

More information

BUILDING GALAXIES. Question 1: When and where did the stars form?

BUILDING GALAXIES. Question 1: When and where did the stars form? BUILDING GALAXIES The unprecedented accuracy of recent observations of the power spectrum of the cosmic microwave background leaves little doubt that the universe formed in a hot big bang, later cooling

More information

SMC B-type Supergiants: Stellar winds in a low metallicity environment.

SMC B-type Supergiants: Stellar winds in a low metallicity environment. Stellar Evolution at low Metallicity: Mass Loss, Eplosions, Cosmology ASP Conference Series, Vol. 353, 2006 Henny J.G.L.M. Lamers, Norbert Langer, Tiit Nugis, Kalju Annuk SMC B-type Supergiants: Stellar

More information

Ionizing Photon Emission Rates from O- and Early B-Type Stars and Clusters

Ionizing Photon Emission Rates from O- and Early B-Type Stars and Clusters Ionizing Photon Emission Rates from O- and Early B-Type Stars and Clusters Amiel Sternberg School of Physics and Astronomy and the Wise Observatory, The Beverly and Raymond Sackler Faculty of Exact Sciences,

More information

Spectroscopy of Blue Supergiants in the Disks of Spiral Galaxies: Metallicities and Distances. Rolf Kudritzki

Spectroscopy of Blue Supergiants in the Disks of Spiral Galaxies: Metallicities and Distances. Rolf Kudritzki Spectroscopy of Blue Supergiants in the Disks of Spiral Galaxies: Metallicities and Distances Rolf Kudritzki ΛCDM-universe metallicity of galaxies depends on their mass Extragalactic stellar astronomy

More information

Spectral Energy Distribution of galaxies

Spectral Energy Distribution of galaxies Spectral Energy Distribution of galaxies Paola Santini PhD in Astronomy, Astrophysics and Space Science A.A. 2013 2014 Key points lecture 1 Multiwavalength astronomy: 1. Gives a complete view of the galaxy

More information

arxiv:astro-ph/ v1 25 Sep 2006

arxiv:astro-ph/ v1 25 Sep 2006 **FULL TITLE** ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** **NAMES OF EDITORS** Are Wolf-Rayet winds driven by radiation? arxiv:astro-ph/0609675v1 25 Sep 2006 Götz Gräfener & Wolf-Rainer

More information

Effects of low metallicity on the evolution and spectra of massive stars

Effects of low metallicity on the evolution and spectra of massive stars Jose Groh (Geneva Observatory, Switzerland) Image credits: NASA/ESA/J. Hester & A. Loll, Arizona State U. (Crab Nebula) Effects of low metallicity on the evolution and spectra of massive stars Take Away:

More information

Age Dating A SSP. Quick quiz: please write down a 3 sentence explanation of why these plots look like they do.

Age Dating A SSP. Quick quiz: please write down a 3 sentence explanation of why these plots look like they do. Color is only a weak function of age after ~3Gyrs (for a given metallicity) (See MBW pg 473) But there is a strong change in M/L V and weak change in M/L K Age Dating A SSP Quick quiz: please write down

More information

Energy transport: convection

Energy transport: convection Outline Introduction: Modern astronomy and the power of quantitative spectroscopy Basic assumptions for classic stellar atmospheres: geometry, hydrostatic equilibrium, conservation of momentum-mass-energy,

More information

Outflowing disk formation in B[e] supergiants due to rotation and bi-stability in radiation driven winds

Outflowing disk formation in B[e] supergiants due to rotation and bi-stability in radiation driven winds A&A 437, 929 933 (2005) DOI: 10.1051/0004-6361:20052686 c ESO 2005 Astronomy & Astrophysics Outflowing disk formation in B[e] supergiants due to rotation and bi-stability in radiation driven winds M. Curé

More information

Ionizing Photon Production from Massive Stars

Ionizing Photon Production from Massive Stars University of Colorado, Boulder CU Scholar Undergraduate Honors Theses Honors Program Spring 2014 Ionizing Photon Production from Massive Stars Michael Topping University of Colorado Boulder Follow this

More information

arxiv: v1 [astro-ph.sr] 1 Oct 2015

arxiv: v1 [astro-ph.sr] 1 Oct 2015 The True origin of Wolf-Rayet stars Jorick S. Vink 1 1 Armagh Observatory, College Hill, BT61 9DG Armagh, Northern Ireland, UK arxiv:1510.00227v1 [astro-ph.sr] 1 Oct 2015 The Wolf-Rayet (WR) phenomenon

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

WINDS FROM HOT STARS. Rolf-Peter Kudritzki and Joachim Puls 1. INTRODUCTION

WINDS FROM HOT STARS. Rolf-Peter Kudritzki and Joachim Puls 1. INTRODUCTION Annu. Rev. Astron. Astrophys. 2000. 38:613 66 Copyright c 2000 by Annual Reviews. All rights reserved WINDS FROM HOT STARS Rolf-Peter Kudritzki and Joachim Puls Institut für Astronomie und Astrophysik

More information

ζ Pup: the merger of at least two massive stars?

ζ Pup: the merger of at least two massive stars? ζ Pup: the merger of at least two massive stars? Dany Vanbeveren Astrophysical Institute, Vrije Universiteit Brussel and Leuven Engineering College, GroupT, Association KU Leuven Abstract. We first discuss

More information

Astronomy. Astrophysics. On the importance of the wind emission to the optical continuum of OB supergiants. M. Kraus 1, J. Kubát 1, and J.

Astronomy. Astrophysics. On the importance of the wind emission to the optical continuum of OB supergiants. M. Kraus 1, J. Kubát 1, and J. A&A 481, 499 506 (2008) DOI: 10.1051/0004-6361:20078991 c ESO 2008 Astronomy & Astrophysics On the importance of the wind emission to the optical continuum of OB supergiants M. Kraus 1, J. Kubát 1, and

More information

2. Basic Assumptions for Stellar Atmospheres

2. Basic Assumptions for Stellar Atmospheres 2. Basic Assumptions for Stellar Atmospheres 1. geometry, stationarity 2. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres!

More information

Review from last class:

Review from last class: Review from last class: Properties of photons Flux and luminosity, apparent magnitude and absolute magnitude, colors Spectroscopic observations. Doppler s effect and applications Distance measurements

More information

Modelling the synchrotron emission from O-star colliding wind binaries

Modelling the synchrotron emission from O-star colliding wind binaries Modelling the synchrotron emission from O-star colliding wind binaries Delia Volpi 1 1 Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium Abstract: Many early-type stars are in binary systems.

More information

Radiative Transfer and Stellar Atmospheres

Radiative Transfer and Stellar Atmospheres Radiative Transfer and Stellar Atmospheres 4 lectures within the first IMPRS advanced course Joachim Puls Institute for Astronomy & Astrophysics, Munich Contents quantitative spectroscopy: the astrophysical

More information

Supergiant Studies out to Virgo & Fornax

Supergiant Studies out to Virgo & Fornax Supergiant Studies out to Virgo & Fornax Norbert Przybilla R.P. Kudritzki, M.A. Urbaneja (IfA Hawaii), A. Seifahrt (Univ. Chicago), K. Butler (LMU Munich), M.F. Nieva (Bamberg), H.-U. Käufl, A. Kaufer

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

Mass loss from stars

Mass loss from stars Mass loss from stars Can significantly affect a star s evolution, since the mass is such a critical parameter (e.g., L ~ M 4 ) Material ejected into interstellar medium (ISM) may be nuclear-processed:

More information

arxiv: v1 [astro-ph.sr] 27 May 2011

arxiv: v1 [astro-ph.sr] 27 May 2011 Slow Radiation-Driven Wind Solutions of A-Type Supergiants arxiv:1105.5576v1 [astro-ph.sr] 27 May 2011 M. Curé Departamento de Física y Astronomía, Facultad de Ciencias, Universidad de Valparaíso Av. Gran

More information

Observations of First Light

Observations of First Light Image from Space Telescope Science Institute Observations of First Light Betsy Barton (UC Irvine) Member, TMT SAC Project Scientist, IRIS on TMT Microwave Background What reionized the universe? The End

More information

Model Atmospheres. Model Atmosphere Assumptions

Model Atmospheres. Model Atmosphere Assumptions Model Atmospheres Problem: Construct a numerical model of the atmosphere to estimate (a) Variation of physical variables (T, P) with depth (b) Emergent spectrum in continuum and lines Compare calculated

More information

Empirical Mass-Loss Rates across the Upper Hertzsprung- Russell-Diagram

Empirical Mass-Loss Rates across the Upper Hertzsprung- Russell-Diagram Hot And Cool: Bridging Gaps in Massive Star Evolution ASP Conference Series, Vol. xxx, 2009 C. Leitherer, Ph. D. Bennett, P. W. Morris & J. Th. van Loon, eds. Empirical Mass-Loss Rates across the Upper

More information

25 years of progress in modeling stellar winds

25 years of progress in modeling stellar winds Universität Kiel September 2001 Gaining Insight into Stellar Atmospheres International Workshop in the honor of the 80 th birthday of Prof. Dr. Kurt Hunger 25 years of progress in modeling stellar winds

More information

X-ray Emission from O Stars. David Cohen Swarthmore College

X-ray Emission from O Stars. David Cohen Swarthmore College X-ray Emission from O Stars David Cohen Swarthmore College Young OB stars are very X-ray X bright L x up to ~10~ 34 ergs s -1 X-ray temperatures: few up to 10+ kev (10s to 100+ million K) K Orion; Chandra

More information

arxiv: v1 [astro-ph.sr] 5 Dec 2011

arxiv: v1 [astro-ph.sr] 5 Dec 2011 Astronomy & Astrophysics manuscript no. printer c ESO 2011 December 6, 2011 Predictions for mass-loss rates and terminal wind velocities of massive O-type stars L. E. Muijres 1, Jorick S. Vink 2, A. de

More information

Chapter 10: Unresolved Stellar Populations

Chapter 10: Unresolved Stellar Populations Chapter 10: Unresolved Stellar Populations We now consider the case when individual stars are not resolved. So we need to use photometric and spectroscopic observations of integrated magnitudes, colors

More information

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward

Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward Week 8: Stellar winds So far, we have been discussing stars as though they have constant masses throughout their lifetimes. On the other hand, toward the end of the discussion of what happens for post-main

More information

2. Basic assumptions for stellar atmospheres

2. Basic assumptions for stellar atmospheres . Basic assumptions for stellar atmospheres 1. geometry, stationarity. conservation of momentum, mass 3. conservation of energy 4. Local Thermodynamic Equilibrium 1 1. Geometry Stars as gaseous spheres

More information

Massive Stars as Tracers for. Stellar & Galactochemical Evolution

Massive Stars as Tracers for. Stellar & Galactochemical Evolution as Tracers for Stellar & Galactochemical Evolution Norbert Przybilla Dr. Remeis-Observatory Bamberg M. Firnstein, F. Schiller M.F. Nieva, K. Butler, R.P. Kudritzki, G. Meynet, A. Maeder Outline Intro Diagnostics

More information

Lecture 27 The Intergalactic Medium

Lecture 27 The Intergalactic Medium Lecture 27 The Intergalactic Medium 1. Cosmological Scenario 2. The Ly Forest 3. Ionization of the Forest 4. The Gunn-Peterson Effect 5. Comment on HeII Reionization References J Miralda-Escude, Science

More information

The Probes and Sources of Cosmic Reionization Francesco Haardt University of Como INFN, Milano-Bicocca

The Probes and Sources of Cosmic Reionization Francesco Haardt University of Como INFN, Milano-Bicocca 1 The Probes and Sources of Cosmic Reionization Francesco Haardt University of Insubria@Lake Como INFN, Milano-Bicocca 2 TALK OUTLINE 1. Dark Ages and Reionization 2. Observations: QSO Absorption Lines

More information

Astrophysics Lab A. Winds from Hot Stars: Diagnostics and Wind-Momentum Luminosity Relation. Joachim Puls (University Observatory Munich) WIND STAR

Astrophysics Lab A. Winds from Hot Stars: Diagnostics and Wind-Momentum Luminosity Relation. Joachim Puls (University Observatory Munich) WIND STAR Astrophysics Lab A Winds from Hot Stars: Diagnostics and Wind-Momentum Luminosity Relation Joachim Puls (University Observatory Munich) WIND STAR OBSERVER CONTENTS 2 Contents 0 Guideline 4 1 Introduction

More information

Formation of z~6 Quasars from Hierarchical Galaxy Mergers

Formation of z~6 Quasars from Hierarchical Galaxy Mergers Formation of z~6 Quasars from Hierarchical Galaxy Mergers Yuexing Li et al Presentation by: William Gray Definitions and Jargon QUASAR stands for QUASI-stellAR radio source Extremely bright and active

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

The Quest for Primordial Stellar Populations and the James Webb Space Telescope

The Quest for Primordial Stellar Populations and the James Webb Space Telescope Chin. J. Astron. Astrophys. Vol.3 (2003), Suppl., 115 125 (http:/www.chjaa.org) Chinese Journal of Astronomy and Astrophysics The Quest for Primordial Stellar Populations and the James Webb Space Telescope

More information

GENERIC SPECTRUM AND IONIZATION EFFICIENCY OF A HEAVY INITIAL MASS FUNCTION FOR THE FIRST STARS. and

GENERIC SPECTRUM AND IONIZATION EFFICIENCY OF A HEAVY INITIAL MASS FUNCTION FOR THE FIRST STARS. and Preprint typeset using L A TEX style emulateapj v. 04/03/99 GENERIC SPECTRUM AND IONIZATION EFFICIENCY OF A HEAVY INITIAL MASS FUNCTION FOR THE FIRST STARS Volker Bromm Department of Astronomy, Yale University,

More information

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations

Galaxies 626. Lecture 9 Metals (2) and the history of star formation from optical/uv observations Galaxies 626 Lecture 9 Metals (2) and the history of star formation from optical/uv observations Measuring metals at high redshift Metals at 6 How can we measure the ultra high z star formation? One robust

More information

7. Non-LTE basic concepts

7. Non-LTE basic concepts 7. Non-LTE basic concepts LTE vs NLTE occupation numbers rate equation transition probabilities: collisional and radiative examples: hot stars, A supergiants 10/13/2003 Spring 2016 LTE LTE vs NLTE each

More information

Intergalactic Medium and Lyman-Alpha / Metal Absorbers

Intergalactic Medium and Lyman-Alpha / Metal Absorbers Intergalactic Medium and Lyman-Alpha / Metal Absorbers Image credit: Tom Abel & Ralf Kaehler (Stanford) Ji-hoon Kim (TAPIR)! Slides provided by: Phil Hopkins and Ji-hoon Kim Today s Agenda What are there

More information

Massive stars in the UV

Massive stars in the UV Massive stars in the UV F. Najarro Departamento de Astrofísica Molecular e Infrarroja, Instituto de Estructura de la Materia, CSIC, Serrano 121,28006, Madrid, Spain A. Herrero Instituto de Astrofísica

More information

The First Galaxies. Erik Zackrisson. Department of Astronomy Stockholm University

The First Galaxies. Erik Zackrisson. Department of Astronomy Stockholm University The First Galaxies Erik Zackrisson Department of Astronomy Stockholm University Outline The first galaxies what, when, why? What s so special about them? Why are they important for cosmology? How can we

More information

X-ray Spectroscopy of the O2If* Star HD 93129A

X-ray Spectroscopy of the O2If* Star HD 93129A **Volume Title** ASP Conference Series, Vol. **Volume Number** **Author** c **Copyright Year** Astronomical Society of the Pacific X-ray Spectroscopy of the O2If* Star HD 93129A David H. Cohen 1 1 Swarthmore

More information

Research Collection. How will we determine the reionization history of the universe?: introduction to session 2. Other Conference Item.

Research Collection. How will we determine the reionization history of the universe?: introduction to session 2. Other Conference Item. Research Collection Other Conference Item How will we determine the reionization history of the universe?: introduction to session 2 Author(s): Haiman, Zoltàn Publication Date: 2003 Permanent Link: https://doi.org/10.3929/ethz-a-004584667

More information

The ionizing radiation from massive stars and its impact on H II regions: results from modern model atmospheres

The ionizing radiation from massive stars and its impact on H II regions: results from modern model atmospheres Mon. Not. R. Astron. Soc. 389, 1009 1021 (2008) doi:10.1111/j.1365-2966.2008.13444.x The ionizing radiation from massive stars and its impact on H II regions: results from modern model atmospheres S. Simón-Díaz

More information

HII regions and massive stars are very valuable tools to measure present-day oxygen abundances across the Universe.

HII regions and massive stars are very valuable tools to measure present-day oxygen abundances across the Universe. Take away messages HII regions and massive stars are very valuable tools to measure present-day oxygen abundances across the Universe. We have improved A LOT in the last decades on the reliability of oxygen

More information

The First Stars and their Impact on Cosmology

The First Stars and their Impact on Cosmology The First Stars and their Impact on Cosmology V. Bromm University of Texas, Austin, TX 78712, USA Within variants of the cold dark matter model of cosmological structure formation, the first sources of

More information

Galaxies 626. Lecture 5

Galaxies 626. Lecture 5 Galaxies 626 Lecture 5 Galaxies 626 The epoch of reionization After Reionization After reionization, star formation was never the same: the first massive stars produce dust, which catalyzes H2 formation

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

Metallicity Evolution of the Universe. through observations of galaxies and AGNs. Tohru Nagao (NAOJ/JSPS)

Metallicity Evolution of the Universe. through observations of galaxies and AGNs. Tohru Nagao (NAOJ/JSPS) Metallicity Evolution of the Universe through observations of galaxies and AGNs Tohru Nagao (NAOJ/JSPS) Why Metallicity? NGC 2403 ( Subaru, 2005) Cosmic Chemical Evolution Dark Age 0 yr 0.38 Myr 0.3 Gyr

More information

Search for the FIRST GALAXIES

Search for the FIRST GALAXIES Search for the FIRST GALAXIES R. Pelló IRAP - Institut de Recherche en Astrophysique et Planétologie 1 XIème Ecole de Cosmologie : 17-22 Sep 2012 (Cargèse) Outline 1. Looking for the first galaxies a)

More information

Decoupling in the line-driven winds of early-type massive stars

Decoupling in the line-driven winds of early-type massive stars Astronomical institute Anton Pannekoek Faculty of Exact Sciences (FNWI) University of Amsterdam Decoupling in the line-driven winds of early-type massive stars Master thesis Astronomy and Astrophysics

More information

The Evolution of the Cosmic SN Rate

The Evolution of the Cosmic SN Rate The Evolution of the Cosmic SN Rate Massimo Della Valle Arcetri Astrophysical Observatory 1 Science cases (for OWL) Evolution of cosmological parameters Large scale structure Galaxy formation (Dark?) matter

More information

arxiv: v1 [astro-ph] 16 Oct 2008

arxiv: v1 [astro-ph] 16 Oct 2008 Astronomy & Astrophysics manuscript no. cnovit c ESO 2008 November 13, 2008 CNO driven winds of hot first stars J. Krtička 1 and J. Kubát 2 1 Ústav teoretické fyziky a astrofyziky PřF MU, CZ-611 37 Brno,

More information

6. Detached eclipsing binaries

6. Detached eclipsing binaries Rolf Kudritzki SS 2015 6. Detached eclipsing binaries 50% of all stars live in binary systems and some of them are eclipsing 1 Rolf Kudritzki SS 2015 classification of binary systems by geometry of equipotential

More information

X-ray Spectroscopy of Massive Star Winds: Shocks, Mass-Loss Rates, and Clumping

X-ray Spectroscopy of Massive Star Winds: Shocks, Mass-Loss Rates, and Clumping X-ray Spectroscopy of Massive Star Winds: Shocks, Mass-Loss Rates, and Clumping David Cohen Department of Physics & Astronomy Swarthmore College Maurice Leutenegger (GSFC), Jon Sundqvist (Madrid), Stan

More information

The Growth and Radiative Signatures of High Redshift Black Holes

The Growth and Radiative Signatures of High Redshift Black Holes The Growth and Radiative Signatures of High Redshift Black Holes Jarrett Johnson (LANL) with Bhaskar Agarwal (Yale) Joe Smidt (LANL) Brandon Wiggins (LANL, BYU) Dan Whalen (Heidelberg, Portsmouth) Erik

More information

Galaxy Formation/Evolution and Cosmic Reionization Probed with Multi-wavelength Observations of Distant Galaxies. Kazuaki Ota

Galaxy Formation/Evolution and Cosmic Reionization Probed with Multi-wavelength Observations of Distant Galaxies. Kazuaki Ota Galaxy Formation/Evolution and Cosmic Reionization Probed with Multi-wavelength Observations of Distant Galaxies Kazuaki Ota Department of Astronomy Kyoto University 2013 Feb. 14 GCOE Symposium Outline

More information

Universitatssternwarte, Scheinerstrae 1, D Munchen, Germany. Bartol Research Institute of the University of Delaware, Newark, DE 19716, USA

Universitatssternwarte, Scheinerstrae 1, D Munchen, Germany. Bartol Research Institute of the University of Delaware, Newark, DE 19716, USA Non-Spherical Radiation Driven Wind Models JoachimPuls 1,Peter Petrenz 1, and Stanley P.Owocki 2 1 Universitatssternwarte, Scheinerstrae 1, D-81679 Munchen, Germany 2 Bartol Research Institute of the University

More information

Abundance Constraints on Early Chemical Evolution. Jim Truran

Abundance Constraints on Early Chemical Evolution. Jim Truran Abundance Constraints on Early Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago Argonne National Laboratory MLC Workshop Probing Early Structure with

More information

Cosmological Effects of the First Stars: Evolving Spectra of Population III

Cosmological Effects of the First Stars: Evolving Spectra of Population III The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library Geschke Center Physics and Astronomy College of Arts and Sciences 2003 Cosmological Effects of the First Stars: Evolving

More information

Active Galactic Nuclei - Zoology

Active Galactic Nuclei - Zoology Active Galactic Nuclei - Zoology Normal galaxy Radio galaxy Seyfert galaxy Quasar Blazar Example Milky Way M87, Cygnus A NGC 4151 3C273 BL Lac, 3C279 Galaxy Type spiral elliptical, lenticular spiral irregular

More information

7. Non-LTE basic concepts

7. Non-LTE basic concepts 7. Non-LTE basic concepts LTE vs NLTE occupation numbers rate equation transition probabilities: collisional and radiative examples: hot stars, A supergiants 1 Equilibrium: LTE vs NLTE LTE each volume

More information

Spectral Energy Distributions as probes of star formation in the distant Universe

Spectral Energy Distributions as probes of star formation in the distant Universe MODULO meeting 2-3 December 2010 Spectral Energy Distributions as probes of star formation in the distant Universe Simona Bovinelli ISSI International Space Science Institute IRAS (1983), ISO (1995) and

More information

Astronomy. Astrophysics. Predictions of the effect of clumping on the wind properties of O-type stars

Astronomy. Astrophysics. Predictions of the effect of clumping on the wind properties of O-type stars A&A 526, A32 (20) DOI: 0.05/0004-636/2004290 c ESO 200 Astronomy & Astrophysics Predictions of the effect of clumping on the wind properties of O-type stars L. E. Muijres,A.deKoter,2,J.S.Vink 3,J.Krtička

More information

Consistent Models of the Expanding Atmospheres of Hot Star

Consistent Models of the Expanding Atmospheres of Hot Star Consistent Models of the Expanding Atmospheres of Hot Star Institute of Astronomy and Astrophysics at the Ludwig-Maximilian University Munich AWAP 05/19/05 1 May 19, 005 Adalbert W.A. Pauldrach Present

More information

STAR FORMATION RATES observational overview. Ulrike Kuchner

STAR FORMATION RATES observational overview. Ulrike Kuchner STAR FORMATION RATES observational overview Ulrike Kuchner Remember, remember.. Outline! measurements of SFRs: - techniques to see what the SF rate is - importance of massive stars and HII regions - the

More information

Rupert Croft. QuickTime and a decompressor are needed to see this picture.

Rupert Croft. QuickTime and a decompressor are needed to see this picture. Rupert Croft QuickTime and a decompressor are needed to see this picture. yesterday: Plan for lecture 1: History : -the first quasar spectra -first theoretical models (all wrong) -CDM cosmology meets the

More information

Hot Stars: Old-Fashioned or Trendy?

Hot Stars: Old-Fashioned or Trendy? ASTRONOMISCHE GESELLSCHAFT: Reviews in Modern Astronomy 16, 141 177 (2003) Hot Stars: Old-Fashioned or Trendy? A. W. A. Pauldrach Institut für Astronomie und Astrophysik der Universität München Scheinerstraße

More information

Astrophysics of Gaseous Nebulae

Astrophysics of Gaseous Nebulae Astrophysics of Gaseous Nebulae Astrophysics of Gaseous Nebulae Bright Nebulae of M33 Ken Crawford (Rancho Del Sol Observatory) Potsdam University Dr. Lidia Oskinova lida@astro.physik.uni-potsdam.de HST

More information

On the Detectability of Lyman Alpha Emission by Galaxies from the Epoch of Reionization. Mark Dijkstra (MPA, Garching)

On the Detectability of Lyman Alpha Emission by Galaxies from the Epoch of Reionization. Mark Dijkstra (MPA, Garching) On the Detectability of Lyman Alpha Emission by Galaxies from the Epoch of Reionization Mark Dijkstra (MPA, Garching) Outline Why we care about the HI Lya line. Lya transfer basics. Why direct detection

More information

The Ṁass- loss of Red Supergiants

The Ṁass- loss of Red Supergiants The Ṁass- loss of Red Supergiants Dr. Donald F. Figer Director, Center for Detectors Speaker: Yuanhao (Harry) Zhang RIT 9/12/13 1 9/12/13 2 Outline IntroducJon MoJvaJon Objects Method Need for SOFIA/FORCAST

More information

X-ray Emission from O Stars

X-ray Emission from O Stars Massive Stars as Cosmic Engines Proceedings IAU Symposium No. 250, 2008 F. Bresolin, P.A. Crowther & J. Puls, eds. c 2008 International Astronomical Union DOI: 000/X000000000000000X X-ray Emission from

More information

Radiative Transfer in a Clumpy Universe: the UVB. Piero Madau UC Santa Cruz

Radiative Transfer in a Clumpy Universe: the UVB. Piero Madau UC Santa Cruz Radiative Transfer in a Clumpy Universe: the UVB Piero Madau UC Santa Cruz The cosmic UVB originates from the integrated emission of starforming galaxies and QSOs. It determines the thermal and ionization

More information

Michael Shull (University of Colorado)

Michael Shull (University of Colorado) Early Galaxies, Stars, Metals, and the Epoch of Reionization Michael Shull (University of Colorado) Far-IR Workshop (Pasadena, CA) May 29, 2008 Submillimeter Galaxies: only the brightest? How long? [dust

More information

Introduction and Motivation

Introduction and Motivation 1 Introduction and Motivation This last two days at this conference, we ve focused on two large questions regarding the role that AGNs play in galaxy evolution: My research focuses on exploring these questions

More information

Spitzer Infrared Spectrograph (IRS) Observations of Large Magellanic Cloud Planetary Nebula SMP 83

Spitzer Infrared Spectrograph (IRS) Observations of Large Magellanic Cloud Planetary Nebula SMP 83 Spitzer Infrared Spectrograph (IRS) Observations of Large Magellanic Cloud Planetary Nebula SMP 83 J. Bernard Salas, J. R. Houck, P. W. Morris, G. C. Sloan, S. R. Pottasch, & D. J. Barry ApJS, 154, 271

More information

arxiv: v1 [astro-ph.sr] 10 Mar 2014

arxiv: v1 [astro-ph.sr] 10 Mar 2014 Astronomy & Astrophysics manuscript no. p5 c ESO 2014 March 11, 2014 The spectroscopic Hertzsprung-Russell diagram N. Langer 1 and R.P. Kudritzki 2,3 1 Argelander-Institut für Astronomie der Universität

More information

GRB Host Galaxies and the Uses of GRBs in Cosmology

GRB Host Galaxies and the Uses of GRBs in Cosmology GRB Host Galaxies and the Uses of GRBs in Cosmology S. G. Djorgovski for the Caltech-NRAO-CARA GRB Collaboration: S.R. Kulkarni, D.A. Frail, F.A. Harrison, R. Sari, J.S. Bloom, E. Berger, P. Price, D.

More information

Feedback, AGN and galaxy formation. Debora Sijacki

Feedback, AGN and galaxy formation. Debora Sijacki Feedback, AGN and galaxy formation Debora Sijacki Formation of black hole seeds: the big picture Planck data, 2013 (new results 2015) Formation of black hole seeds: the big picture CMB black body spectrum

More information

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization

Supernovae. Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization Supernovae Supernova basics Supernova types Light Curves SN Spectra after explosion Supernova Remnants (SNRs) Collisional Ionization 1 Supernova Basics Supernova (SN) explosions in our Galaxy and others

More information

Dusty star-forming galaxies at high redshift (part 5)

Dusty star-forming galaxies at high redshift (part 5) Dusty star-forming galaxies at high redshift (part 5) Flow of story 4.1 4.2 4.3 Acquiring Spectroscopic or Photometric Redshifts Infrared SED Fitting for DSFGs Estimating L IR, T dust and M dust from an

More information

Pagel s Method to derive the O/H ratio in galaxies

Pagel s Method to derive the O/H ratio in galaxies Pagel s Method to derive the O/H ratio in galaxies Manuel Peimbert Antonio Peimbert César Esteban Jorge García-Rojas Silvia Torres-Peimbert María Teresa Ruiz Leticia Carigi Tonantzintla, August 2005 Direct

More information