Spectroscopy of Blue Supergiants in the Disks of Spiral Galaxies: Metallicities and Distances. Rolf Kudritzki

Size: px
Start display at page:

Download "Spectroscopy of Blue Supergiants in the Disks of Spiral Galaxies: Metallicities and Distances. Rolf Kudritzki"

Transcription

1 Spectroscopy of Blue Supergiants in the Disks of Spiral Galaxies: Metallicities and Distances Rolf Kudritzki

2 ΛCDM-universe metallicity of galaxies depends on their mass Extragalactic stellar astronomy metal-rich metal-medium metal-poor M81 NGC 300 WLM

3 Lequeux et al., 1979, A&A 80, 155 Extragalactic stellar astronomy the pioneering paper data from HII regions using strong line methods

4 Tremonti et al., 2004, ApJ 613, 898 Extragalactic stellar astronomy strong nebular emission lines: hydrogen, oxygen, nitrogen 50,000 starforming galaxies with Sloan spectra

5 mass-metallicity relationship Extragalactic stellar astronomy Rosetta stone to understand galaxy formation and chemical evolution! Tremonti et al., 2004, ApJ 613, 898

6 mass-metallicity relationship Extragalactic stellar astronomy However Something must be wrong. MW It s based on very simplified emission line analysis. SMC LMC Tremonti et al., 2004, ApJ 613, 898

7 strong line method: R 23 = f[n(o)/n(h)] simple empirical calibration but R 23 depends on T electron n electron nature of ionizing stars gas imhomog. filling factors depletion into dust.. Pagel, Edmunds, Blackwell et al. 1979

8 Extragalactic SDSS star stellar astronomy forming galaxies 0.9 dex!!! Kewley & Ellison 2008 mass metallicity relationship depends crucially on strong line method calibration supergiant stars will come to rescue!!!!

9 supergiants objects in transition Brightest normal stars at visual light: L sun -7 M V -10 mag B1 A4 t ev ~ 10 3 yrs L, M ~ const. ideal to determine chemical compos. abundance grad. SF history extinction extinction laws distances of galaxies

10 nearby supergiants in Orion 1000 Lyrs away Rigel

11 Heidelberg, FORS transport Goettingen & to Munich P. astronomers on the way to Paranal FORS 1

12 pilot study NGC 300 Sculptor 70 blue Group supergiant (2 Mpc) spectra Kudritzki, Urbaneja, Bresolin et al. 2008, ApJ 681, 269

13 Study of metallicities

14 [Z] =

15 Spectral window Å

16 Spectral window Å

17 χ i spectral window Å

18 Χ i all windows [Z] = -0.4±0.1

19 Stellar metallicity gradient in NGC300 B0 B3 supergiants B8 A4 supergiants --- log{z/z_sun} = ρ/ρ 0 = d/kpc Kudritzki, Urbaneja, Bresolin, Przybilla, Gieren, Pietrzynski, 2008, ApJ 681, 269 angular galactocentric distance ρ 0 = 9.75 arcmin 5.7kpc

20 Extragalactic Stellar Spectroscopy Stellar vs. HII metallicity gradient Who is right??? ---- Zaritsky Dopita Kobolnicky Denicolo Pilyugin Pettini &Evans et (2001) Pagel et et al. (1994) al. (2002) (2004) (1986) (1999) Almost identical with stellar regression!!!! Kudritzki et al., 2008, ApJ 681, 265 Extragalactic Pizza IfA March 1st

21 The solution? Auroral lines!! nebular lines auroral line

22 strong lines and auroral lines auroral line strong lines Bresolin, 2009

23 VLT/FORS2 NGC 300 Bresolin, Gieren, Kudritzki, Pietrzynsky, Urbaneja & Carraro 2009, ApJ, 700, auroral line detections (previously: 2)

24

25

26 Bresolin,Gieren, Kudritzki et al HII- auroral * supergiants supergiants regression HII-auroral lines regression Excellent agreement between auroral lines and supergiants!!

27 Auroral lines vs. strong lines calibrations a horror story!! this work McGaugh91 Tremonti et al Kewley/Dopita 2002 Pettini/Pagel 2004 Bresolin,Gieren, Kudritzki et al. 2009

28 Bresolin, Gieren, Kudritzki, Pietrzynsky, Urbaneja & Carraro 2009, ApJ, 700, 309 NGC dex

29 M81 Keck LRIS Kudritzki, Urbaneja, Gazak et al., 2012, ApJ 747, 15

30 M81 object C20 Kudritzki, Urbaneja, Gazak et al., 2012, ApJ 747, 15

31 super solar [Z] M81 very shallow gradient: 0.03 dex/kpc Kudritzki, Urbaneja, Gazak et al., 2012, ApJ 747, 15

32 PNe, Stanghellini et al BSG, this work Strong chemical evolution over last 5 Gyrs Kudritzki, Urbaneja, Gazak et al., 2012, ApJ 747, 15

33 A mass-metallicity relationship only from stellar spectroscopy Kudritzki, Urbaneja, Gazak et al., 2012, ApJ 747, 15

34 Comparison with HII strong line methods (Kewley & Ellison, 2008) Kudritzki, Urbaneja, Gazak et al., 2012, ApJ 747, 15

35 trust the stars.

36 H 0 uncertainty and universe equation of state Hubble constant uncertainty EoS parameter w despite enormous effort still: δh 0 ~ 10% δw ~ 0.2 compare Freedman et al., 2001 Saha et al., 2001, Sandage et al., 2006 Mould & Sakai, 2008, 2009ab Riess et al., 2009, 2011, 2012 δh 0 ~ 3%

37 The perennial problem of extragalactic distances Extragalactic stellar astronomy patchy dust extinction metal-poor metallicity dependence of distance indicators metal-rich

38 IoA 2011 Flux weighted Gravity Luminosity Relationship (FGLR) Kudritzki, Bresolin, Przybilla, ApJ Letters, 582, L83 (2003) L,M ~ const. B1-A4 M~ g R 2 ~ L (g/t 4 ) = const. const. with L ~ M x ~ L x (g/t 4 ) x, x ~ 3 L 1-x ~ (g/t 4 ) x or with M bol ~ -2.5log L M bol = a log(g/t 4 ) + b FGLR a =2.5 x/(1-x) ~ 3.75

39 Kudritzki, Urbaneja, Bresolin et al., 2008, ApJ 681, 269 M bol = 3.41{ log(g/t 4 eff,4 ) -1.5} 8.02 σ = 0.32 mag

40 A supergiant SED Kudritzki, Urbaneja & Bresolin et al A2 Ia T eff = 9500 K log g = 1.45 SED fit E(B-V), R V A V extinction law HST/ACS + ground

41 E(B-V) distribution in NGC 300 Adopted by HST Key Project Freedman et al Distance 15% too large

42 B&A supergiants in M33 - reddening Adopted by HST Key Project Freedman et al Vivian U, Urbaneja, Kudritzki, Jacobs, Bresolin, 2009, ApJ 740, 1120

43 IoA 2011 M81 extinction Adopted by HST Key Project Freedman et al Distance too large Kudritzki, Urbaneja, Gazak et al., 2012, ApJ 747, 15

44 M81 FGLR D = 3.47 ± 0.16 Mpc Kudritzki, Urbaneja, Gazak et al., ApJ 747, 15

45 Conclusions and TMT/ELT perspectives WFOS quantitative spectroscopy possible down to m V ~ 24.5 mag with objects M V -8 mag m M ~ 32.5 mag ~ 30 Mpc possible chemical evolution studies SF ISM, extinction, extinction laws distances 10 objects per galaxy Δ(m-M) ~ 0.1 mag

46 red supergiants J-band spectroscopy Brightest stars at infrared light: -8 M J -11 mag B8 A4 Davies, Kudritzki, Figer, 2010 MNRAS, 407,1203 Evans, Davies, Kudritzki et al A&A, 527, 50 Keck/MOSFIRE, VLT/KMOS: 15 Mpc K M TMT/IRMS, E-ELT/EAGLE: 70 Mpc Star Super Clusters: ~10 times further out

Blue Supergiants in the E-ELT Era Extragalactic Stellar Astronomy

Blue Supergiants in the E-ELT Era Extragalactic Stellar Astronomy Blue Supergiants in the E-ELT Era Extragalactic Stellar Astronomy Norbert Przybilla Institute for Astro- and Particle Physics Supergiants BSGs evolved progeny of OB main-sequence stars T eff : ~ 3000...

More information

Supergiant Studies out to Virgo & Fornax

Supergiant Studies out to Virgo & Fornax Supergiant Studies out to Virgo & Fornax Norbert Przybilla R.P. Kudritzki, M.A. Urbaneja (IfA Hawaii), A. Seifahrt (Univ. Chicago), K. Butler (LMU Munich), M.F. Nieva (Bamberg), H.-U. Käufl, A. Kaufer

More information

RADIATIVE TRANSFER AND STELLAR ATMOSPHERES. Institute for Astronomy Fall Semester Rolf Kudritzki

RADIATIVE TRANSFER AND STELLAR ATMOSPHERES. Institute for Astronomy Fall Semester Rolf Kudritzki RADIATIVE TRANSFER AND STELLAR ATMOSPHERES Institute for Astronomy Fall Semester 2007 Rolf Kudritzki Fall 2007 Outline Introduction: Modern astronomy and the power of quantitative spectroscopy Basic assumptions

More information

arxiv: v1 [astro-ph.ga] 2 Oct 2018

arxiv: v1 [astro-ph.ga] 2 Oct 2018 Early Science with ELTs Proceedings IAU Symposium No. 347, 2018 N. Przybilla, K. Pollard & A. Calamida, eds. c 2018 International Astronomical Union DOI: 00.0000/X000000000000000X Quantitative Spectroscopy

More information

Stellar Metallicity of the Extended Disk and Distance of the Spiral Galaxy NGC 3621

Stellar Metallicity of the Extended Disk and Distance of the Spiral Galaxy NGC 3621 Stellar Metallicity of the Extended Disk and Distance of the Spiral Galaxy NGC 3621 Rolf-Peter Kudritzki 1,2 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA

More information

Quantitative Spectroscopy of Blue Supergiants in Metal-Poor Dwarf Galaxy NGC 3109

Quantitative Spectroscopy of Blue Supergiants in Metal-Poor Dwarf Galaxy NGC 3109 Quantitative Spectroscopy of Blue Supergiants in Metal-Poor Dwarf Galaxy NGC 3109 Matthew W. Hosek Jr. 1, Rolf-Peter Kudritzki 1, Fabio Bresolin 1, Miguel A. Urbaneja 2, Christopher J. Evans 3, Grzegorz

More information

Rolf-Peter Kudritzki. Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822; Miguel A. Urbaneja.

Rolf-Peter Kudritzki. Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822; Miguel A. Urbaneja. Quantitative Spectroscopy of 24 A supergiants in the Sculptor galaxy NGC 300 1 : Flux weighted gravity luminosity relationship, metallicity and metallicity gradient Rolf-Peter Kudritzki Institute for Astronomy,

More information

Massive Stars as Tracers for. Stellar & Galactochemical Evolution

Massive Stars as Tracers for. Stellar & Galactochemical Evolution as Tracers for Stellar & Galactochemical Evolution Norbert Przybilla Dr. Remeis-Observatory Bamberg M. Firnstein, F. Schiller M.F. Nieva, K. Butler, R.P. Kudritzki, G. Meynet, A. Maeder Outline Intro Diagnostics

More information

Pagel s Method to derive the O/H ratio in galaxies

Pagel s Method to derive the O/H ratio in galaxies Pagel s Method to derive the O/H ratio in galaxies Manuel Peimbert Antonio Peimbert César Esteban Jorge García-Rojas Silvia Torres-Peimbert María Teresa Ruiz Leticia Carigi Tonantzintla, August 2005 Direct

More information

RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: MASSIVE STAR CLUSTERS IN M83, AND THE MASS-METALLICITY RELATION OF NEARBY GALAXIES

RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: MASSIVE STAR CLUSTERS IN M83, AND THE MASS-METALLICITY RELATION OF NEARBY GALAXIES Draft version July 4, 2017 Preprint typeset using L A TEX style emulateapj v. 12/16/11 RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: MASSIVE STAR CLUSTERS IN M83, AND THE MASS-METALLICITY RELATION OF NEARBY

More information

Spitzer Infrared Spectrograph (IRS) Observations of Large Magellanic Cloud Planetary Nebula SMP 83

Spitzer Infrared Spectrograph (IRS) Observations of Large Magellanic Cloud Planetary Nebula SMP 83 Spitzer Infrared Spectrograph (IRS) Observations of Large Magellanic Cloud Planetary Nebula SMP 83 J. Bernard Salas, J. R. Houck, P. W. Morris, G. C. Sloan, S. R. Pottasch, & D. J. Barry ApJS, 154, 271

More information

Blue Supergiants as a Tool for Extragalactic Distances Empirical Diagnostics

Blue Supergiants as a Tool for Extragalactic Distances Empirical Diagnostics Blue Supergiants as a Tool for Extragalactic Distances Empirical Diagnostics Fabio Bresolin Institute for Astronomy, University of Hawaii, Honolulu HI 96822, USA bresolin@ifa.hawaii.edu Abstract. Blue

More information

The radial metallicity gradient from. OB star and HII region studies. Norbert Przybilla

The radial metallicity gradient from. OB star and HII region studies. Norbert Przybilla The radial metallicity gradient from OB star and HII region studies Norbert Przybilla HII regions Intro emission-line spectra: He, C, N, O, Ne, S, Ar excited by OB stars present-day abundances T e ~ 10

More information

HII regions and massive stars are very valuable tools to measure present-day oxygen abundances across the Universe.

HII regions and massive stars are very valuable tools to measure present-day oxygen abundances across the Universe. Take away messages HII regions and massive stars are very valuable tools to measure present-day oxygen abundances across the Universe. We have improved A LOT in the last decades on the reliability of oxygen

More information

6. Detached eclipsing binaries

6. Detached eclipsing binaries Rolf Kudritzki SS 2015 6. Detached eclipsing binaries 50% of all stars live in binary systems and some of them are eclipsing 1 Rolf Kudritzki SS 2015 classification of binary systems by geometry of equipotential

More information

The role of cold gas in the chemical evolution of nearby galaxies

The role of cold gas in the chemical evolution of nearby galaxies The Role of Hydrogen in the Evolution of Galaxies Kuching, 17 th September 2014 The role of cold gas in the chemical evolution of nearby galaxies Tom Hughes Luca Cortese (Swinburne), Alessandro Boselli

More information

arxiv: v1 [astro-ph.ga] 18 May 2018

arxiv: v1 [astro-ph.ga] 18 May 2018 Draft version May 21, 2018 Preprint typeset using L A TEX style AASTeX6 v. 1.0 QUANTITATIVE SPECTROSCOPY OF SUPERGIANTS IN THE LOCAL GROUP DWARF GALAXY IC 1613: METALLICITY AND DISTANCE Travis A. Berger

More information

Measuring the Hubble Constant through Cepheid Distances

Measuring the Hubble Constant through Cepheid Distances Measuring the Hubble Constant through Cepheid Distances Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant Freedman, Madore, Gibson, et al., Astrophysical Journal

More information

QUANTITATIVE SPECTROSCOPY OF SUPERGIANTS IN THE LOCAL GROUP DWARF GALAXY IC 1613: METALLICITY AND DISTANCE

QUANTITATIVE SPECTROSCOPY OF SUPERGIANTS IN THE LOCAL GROUP DWARF GALAXY IC 1613: METALLICITY AND DISTANCE Draft version March 24, 2018 Preprint typeset using L A TEX style AASTeX6 v. 1.0 QUANTITATIVE SPECTROSCOPY OF SUPERGIANTS IN THE LOCAL GROUP DWARF GALAXY IC 1613: METALLICITY AND DISTANCE Travis A. Berger

More information

Abstract. 2a. Star Formation Rate:

Abstract. 2a. Star Formation Rate: Investigating Rate of Star Formation and Abundance in the Star-Forming Region SDSS 1803231-01000248 Andrew McNichols, amcnicho@hawaii.edu ASTR 494, UH Hilo Abstract In this paper, the star formation rate,

More information

Planetary Nebulae beyond the Milky Way historical overview

Planetary Nebulae beyond the Milky Way historical overview Planetary Nebulae beyond the Milky Way historical overview M. J. Barlow Dept. of Physics & Astronomy University College London Outline (a) Surveys for planetary nebulae in other galaxies, PN luminosity

More information

v 3vesc phot [Z] 0.15

v 3vesc phot [Z] 0.15 VIII. Winds of massive stars all massive hot stars with L/L sun > 10 4 highly supersonic, strong winds basic properties explained by theory of line driven winds Mv R 1 2 L 1.8 [Z] 0.8 v 3vesc phot [Z]

More information

RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300*

RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300* 015. The American Astronomical Society. All rights reserved. doi:10.1088/0004-637x/805//18 RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300* J. Zachary Gazak 1, Rolf Kudritzki 1,,

More information

Age Dating A SSP. Quick quiz: please write down a 3 sentence explanation of why these plots look like they do.

Age Dating A SSP. Quick quiz: please write down a 3 sentence explanation of why these plots look like they do. Color is only a weak function of age after ~3Gyrs (for a given metallicity) (See MBW pg 473) But there is a strong change in M/L V and weak change in M/L K Age Dating A SSP Quick quiz: please write down

More information

Chapter 7: From theory to observations

Chapter 7: From theory to observations Chapter 7: From theory to observations Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle, predict the evolution of the stellar bolometric luminosity, effective

More information

arxiv:astro-ph/ v1 19 Jun 2006

arxiv:astro-ph/ v1 19 Jun 2006 Astronomy & Astrophysics manuscript no. stasinska-5516 September 17, 2018 (DOI: will be inserted by hand later) [Ar III]/[O III] and [S III]/[O III]: well-behaved oxygen abundance indicators for HII regions

More information

From theory to observations

From theory to observations Stellar Objects: From theory to observations 1 From theory to observations Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle, give the prediction of the

More information

Molecular line survey observations toward nearby galaxies with IRAM 30 m

Molecular line survey observations toward nearby galaxies with IRAM 30 m Molecular line survey observations toward nearby galaxies with IRAM 30 m Yuri Nishimura IoA/The University of Tokyo, NAOJ IRAM 30 m: 32 GHz in only two tunings FTS 200 khz resolution: simultaneously observing

More information

11. Virial Theorem Distances of Spiral and Elliptical Galaxies

11. Virial Theorem Distances of Spiral and Elliptical Galaxies Virial Theorem 11. Virial Theorem Distances of Spiral and Elliptical Galaxies v 2 rot = s G M(R 0) R 0 2 = e G M(R eff ) R eff (s1) spiral galaxies (e1) elliptical galaxies v rot rotational velocity of

More information

arxiv: v1 [astro-ph.sr] 13 Jun 2017

arxiv: v1 [astro-ph.sr] 13 Jun 2017 Preprint typeset using L s A TEX style AASTeX6 v. 1.0 LMC BLUE SUPERGIANT STARS AND THE CALIBRATION OF THE FLUX-WEIGHTED GRAVITY LUMINOSITY RELATIONSHIP. M. A. Urbaneja Institut für Astro- und Teilchenphysik,

More information

Anatomy of an X-ray detected cluster at z = 2: low metallicities and enhanced specific star formation rates in star-forming galaxies.

Anatomy of an X-ray detected cluster at z = 2: low metallicities and enhanced specific star formation rates in star-forming galaxies. Anatomy of an X-ray detected cluster at z = 2: low metallicities and enhanced specific star formation rates in star-forming galaxies. F. Valentino 1, E. Daddi 1, V. Strazzullo 1,2, R. Gobat 1,3, F. Bournaud

More information

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way

The Milky Way. Overview: Number of Stars Mass Shape Size Age Sun s location. First ideas about MW structure. Wide-angle photo of the Milky Way Figure 70.01 The Milky Way Wide-angle photo of the Milky Way Overview: Number of Stars Mass Shape Size Age Sun s location First ideas about MW structure Figure 70.03 Shapely (~1900): The system of globular

More information

{ 2{ ABSTRACT Six additional molecular clouds have been mapped in the nearby metalpoor dwarf irregular galaxy IC 10 using the Owens Valley Millimeter-

{ 2{ ABSTRACT Six additional molecular clouds have been mapped in the nearby metalpoor dwarf irregular galaxy IC 10 using the Owens Valley Millimeter- The Metallicity Dependence of the CO-to-H 2 Conversion Factor from Observations of Local Group Galaxies Christine D. Wilson Department of Physics and Astronomy, McMaster University, Hamilton Ontario Canada

More information

RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300 a

RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300 a Draft version February 1, 2015 Preprint typeset using L A TEX style emulateapj v. 04/17/13 RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE SCULPTOR GALAXY NGC 300 a J. Zachary Gazak 1, Rolf Kudritzki 1,2,

More information

O STAR EFFECTIVE TEMPERATURES AND H ii REGION IONIZATION PARAMETER GRADIENTS IN THE GALAXY

O STAR EFFECTIVE TEMPERATURES AND H ii REGION IONIZATION PARAMETER GRADIENTS IN THE GALAXY The Astrophysical Journal, 601:858 863, 2004 February 1 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. O STAR EFFECTIVE TEMPERATURES AND H ii REGION IONIZATION PARAMETER

More information

The Star Clusters of the Magellanic Clouds

The Star Clusters of the Magellanic Clouds The Dance of Stars MODEST-14 The Star Clusters of the Magellanic Clouds Eva K. Grebel Astronomisches Rechen-Institut Zentrum für Astronomie der Universität Heidelberg Star Clusters in the Magellanic Clouds!

More information

Measuring the Hubble Constant. Fundamental Cosmic Distance Scale Naples, May 3, 2011 Wendy Freedman Carnegie Observatories

Measuring the Hubble Constant. Fundamental Cosmic Distance Scale Naples, May 3, 2011 Wendy Freedman Carnegie Observatories Measuring the Hubble Constant Fundamental Cosmic Distance Scale Naples, May 3, 2011 Wendy Freedman Carnegie Observatories Allan Sandage (1926-2010) UnProgress in Measuring H o HST Factor of 2 Era Era of

More information

From theory to observations

From theory to observations Stellar Objects: From theory to observations 1 From theory to observations Update date: December 13, 2010 Given the stellar mass and chemical composition of a ZAMS, the stellar modeling can, in principle,

More information

Building the cosmic distance scale: from Hipparcos to Gaia

Building the cosmic distance scale: from Hipparcos to Gaia The Fundamental Distance Scale: state of the art and the Gaia perspectives 3-6 May 2011 Building the cosmic distance scale: from Hipparcos to Gaia Catherine TURON and Xavier LURI 1 ESA / ESO-H. Heyer Fundamental

More information

A new mechanism for the formation of PRGs

A new mechanism for the formation of PRGs A new mechanism for the formation of PRGs Spavone Marilena (INAF-OAC) Iodice Enrica (INAF-OAC), Arnaboldi Magda (ESO-Garching), Longo Giuseppe (Università Federico II ), Gerhard Ortwin (MPE-Garching).

More information

The direct oxygen abundances of metal-rich galaxies derived from electron temperature ABSTRACT

The direct oxygen abundances of metal-rich galaxies derived from electron temperature ABSTRACT A&A 473, 411 421 (2007) DOI: 10.1051/0004-6361:20077436 c ESO 2007 Astronomy & Astrophysics The direct oxygen abundances of metal-rich galaxies derived from electron temperature Y. C. Liang 1,2,F.Hammer

More information

V. Chemical Evolution of the Galaxy: C, N, and O Gradients. Manuel Peimbert Instituto de Astronomía, UNAM

V. Chemical Evolution of the Galaxy: C, N, and O Gradients. Manuel Peimbert Instituto de Astronomía, UNAM V. Chemical Evolution of the Galaxy: C, N, and O Gradients Manuel Peimbert Instituto de Astronomía, UNAM Tonantzintla, August 2005 C,N, and O Galactic Gradients, Role of the Stellar Winds in the C Enrichment

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

Active Galactic Nuclei OIII

Active Galactic Nuclei OIII Active Galactic Nuclei In 1908, Edward Fath (1880-1959) observed NGC 1068 with his spectroscope, which displayed odd (and very strong) emission lines. In 1926 Hubble recorded emission lines of this and

More information

Oxygen abundances in dwarf irregular galaxies and the metallicity luminosity relationship

Oxygen abundances in dwarf irregular galaxies and the metallicity luminosity relationship A&A 374, 412 420 (2001) DOI: 10.1051/0004-6361:20010732 c ESO 2001 Astronomy & Astrophysics Oxygen abundances in dwarf irregular galaxies and the metallicity luminosity relationship L. S. Pilyugin Main

More information

Small-Scale Physical Properties of Nebulae in Nearby Disk Galaxies

Small-Scale Physical Properties of Nebulae in Nearby Disk Galaxies Abstract Small-Scale Physical Properties of Nebulae in Nearby Disk Galaxies My research project consists of analyzing small-scale physical properties of star-forming regions (HII regions) in several nearby

More information

Mapping the oxygen abundance in an elliptical galaxy (NGC 5128)

Mapping the oxygen abundance in an elliptical galaxy (NGC 5128) Mapping the oxygen abundance in an elliptical galaxy (NGC 5128) Jeremy R. Walsh, ESO Collaborators: George H. Jacoby, GMT Observatory, Carnegie; Reynier Peletier, Kapteyn Lab., Groningen; Nicholas A. Walton,

More information

Allan Sandage and the Cosmic Expansion

Allan Sandage and the Cosmic Expansion Allan Sandage and the Cosmic Expansion The Fundamental Cosmic Distance Scale Conference, Naples May 2 6, 2011 G. A. Tammann Allan Sandage a mentor, a collaborator, a friend for 47 years G. A. Tammann A.

More information

Stars and Stellar Astrophysics. Kim Venn U. Victoria

Stars and Stellar Astrophysics. Kim Venn U. Victoria Stars and Stellar Astrophysics with ngcfht Kim Venn U. Victoria Stellar SWG: Katia Cunha (NOAO), Rolf-Peter Kudritzki (IfA), Else Starkenburg (U. Victoria) Patrick Dufour (U.Montreal) Zhanwen Han (Yunnan

More information

M31 Color Mag Diagram Brown et al 592:L17-L20!

M31 Color Mag Diagram Brown et al 592:L17-L20! The physical origin of the form of the IMF is not well understood Use the stellar mass-luminosity relation and present day stellar luminosity function together with a model of how the star formation rate

More information

the Local Group with mid-ir

the Local Group with mid-ir Identification of red supergiants in the Local Group with mid-ir photometry Nikolay Britavskiy NOA supervisor: Dr. Alceste Bonanos UoA supervisor: Assoc. Prof. Despina Hatzidimitriou Motivation: Mind the

More information

Open questions in our knowledge of the evolution of Galactic OB stars

Open questions in our knowledge of the evolution of Galactic OB stars Open questions in our knowledge of the evolution of Galactic OB stars Georges Meynet Geneva Observatory, Geneva University Andre Maeder (Uni. Geneva, Switzerland) Sylvia Ekström (Uni. Geneva, Switzerland)

More information

Metallicity Evolution of the Universe. through observations of galaxies and AGNs. Tohru Nagao (NAOJ/JSPS)

Metallicity Evolution of the Universe. through observations of galaxies and AGNs. Tohru Nagao (NAOJ/JSPS) Metallicity Evolution of the Universe through observations of galaxies and AGNs Tohru Nagao (NAOJ/JSPS) Why Metallicity? NGC 2403 ( Subaru, 2005) Cosmic Chemical Evolution Dark Age 0 yr 0.38 Myr 0.3 Gyr

More information

Hertzprung-Russel and colormagnitude. ASTR320 Wednesday January 31, 2018

Hertzprung-Russel and colormagnitude. ASTR320 Wednesday January 31, 2018 Hertzprung-Russel and colormagnitude diagrams ASTR320 Wednesday January 31, 2018 H-R diagram vs. Color- Magnitude Diagram (CMD) H-R diagram: Plot of Luminosity vs. Temperature CMD: Plot of magnitude vs.

More information

7. Non-LTE basic concepts

7. Non-LTE basic concepts 7. Non-LTE basic concepts LTE vs NLTE occupation numbers rate equation transition probabilities: collisional and radiative examples: hot stars, A supergiants 10/13/2003 Spring 2016 LTE LTE vs NLTE each

More information

Chapter 10: Unresolved Stellar Populations

Chapter 10: Unresolved Stellar Populations Chapter 10: Unresolved Stellar Populations We now consider the case when individual stars are not resolved. So we need to use photometric and spectroscopic observations of integrated magnitudes, colors

More information

Measurement of the stellar irradiance

Measurement of the stellar irradiance Measurement of the stellar irradiance Definitions Specific Intensity : (monochromatic) per unit area normal to the direction of radiation per unit solid angle per unit wavelength unit (or frequency) per

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

The Extragalactic Distance Scale

The Extragalactic Distance Scale One of the important relations in Astronomy. It lets us Measure the distance to distance objects. Each rung on the ladder is calibrated using lower-rung calibrations. Distance Objects Technique 1-100 AU

More information

The Next 2-3 Weeks. Important to read through Chapter 17 (Relativity) before I start lecturing on it.

The Next 2-3 Weeks. Important to read through Chapter 17 (Relativity) before I start lecturing on it. The Next 2-3 Weeks [27.1] The Extragalactic Distance Scale. [27.2] The Expansion of the Universe. [29.1] Newtonian Cosmology [29.2] The Cosmic Microwave Background [17] General Relativity & Black Holes

More information

RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE MAGELLANIC CLOUDS

RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE MAGELLANIC CLOUDS Draft version October 26, 2014 Preprint typeset using L A TEX style emulateapj v. 12/16/11 RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE MAGELLANIC CLOUDS Ben Davies 1,5, Rolf-Peter Kudritzki 2,3, Zach

More information

Hot Massive Stars: The Impact of HST

Hot Massive Stars: The Impact of HST Hot Massive Stars: The Impact of HST Mk34 (30 Dor) Paul Crowther Outline Massive stars - Introduction Stellar winds - Metallicity dependent winds Ejecta nebulae - Signatures of mass ejections Massive binaries

More information

Environmental effects on galaxy evolution in the distant Universe

Environmental effects on galaxy evolution in the distant Universe Environmental effects on galaxy evolution in the distant Universe Francesco Valentino Advisor: Dr. Emanuele Daddi Journées des thésards, Saclay, July 1 st 2015 All you want to know about me First name,

More information

3D spectroscopy of massive stars, SNe, and other point sources in crowded fields

3D spectroscopy of massive stars, SNe, and other point sources in crowded fields 3D spectroscopy of massive stars, SNe, and other point sources in crowded fields Martin M. Roth Sebastian Kamann, Christer Sandin, Ana Monreal, Peter Weilbacher, Lutz Wisotzki Leibniz-Institut für Astrophysik

More information

Astronomy II (ASTR-1020) Homework 2

Astronomy II (ASTR-1020) Homework 2 Astronomy II (ASTR-1020) Homework 2 Due: 10 February 2009 The answers of this multiple choice homework are to be indicated on a Scantron sheet (either Form # 822 N-E or Ref # ABF-882) which you are to

More information

The Extragalactic Distance Scale

The Extragalactic Distance Scale One of the important relations in Astronomy. It lets us Measure the distance to distance objects. Each rung on the ladder is calibrated using lower-rung calibrations. Distance Objects Technique 1-100 AU

More information

THE GAS MASS AND STAR FORMATION RATE

THE GAS MASS AND STAR FORMATION RATE THE GAS MASS AND STAR FORMATION RATE OF STAR-FORMING GALAXIES AT z ~ 1.3 Nissim Kanekar National Centre for Radio Astrophysics, Pune Apurba Bera Shiv Sethi Ben Weiner K. Dwarakanath Image: B. Premkumar

More information

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio. More abs. Dust [1.1] kev V Wavelength Optical Infra-red More abs. Wilms et al. 000, ApJ, 54, 914 No grains Grains from http://www.astro.princeton.edu/~draine/dust/dustmix.html See DraineH 003a, column

More information

The Stellar Populations of Galaxies H. W. Rix IMPRS Galaxies Course March 11, 2011

The Stellar Populations of Galaxies H. W. Rix IMPRS Galaxies Course March 11, 2011 The Stellar Populations of Galaxies H. W. Rix IMPRS Galaxies Course March 11, 2011 Goal: Determine n * (M *,t age,[fe/h],r) for a population of galaxies How many stars of what mass and metallicity formed

More information

BUT, what happens when atoms, with electrons attached, are packed really close together? The electrons from the neighboring atoms can have a small

BUT, what happens when atoms, with electrons attached, are packed really close together? The electrons from the neighboring atoms can have a small Quiz #5 There are two stars, star A and star B. Star A is approaching the Earth at 100 km/s and Star B is moving away from the Earth at 200 km/s. Compare the Doppler shift for these two stars by explaining

More information

The HII Regions of Sextans A

The HII Regions of Sextans A Publications of the Astronomical Society of the Pacific 6: 765-769, 1994 July The HII Regions of Sextans A Paul Hodge 1 Astronomy Department, University of Washington, Seattle, Washington 98195 Electronic

More information

Classical Methods for Determining Stellar Masses, Temperatures, and Radii

Classical Methods for Determining Stellar Masses, Temperatures, and Radii Classical Methods for Determining Stellar Masses, Temperatures, and Radii Willie Torres Harvard-Smithsonian Center for Astrophysics 2010 Sagan Exoplanet Summer Workshop 1 Outline Basic properties of stars

More information

Hubble s Law and the Cosmic Distance Scale

Hubble s Law and the Cosmic Distance Scale Lab 7 Hubble s Law and the Cosmic Distance Scale 7.1 Overview Exercise seven is our first extragalactic exercise, highlighting the immense scale of the Universe. It addresses the challenge of determining

More information

Crash Course II: Overview of Methods for Measuring Chemical Abundances and Modeling Ionized Gas Emission. Liese van Zee Indiana University

Crash Course II: Overview of Methods for Measuring Chemical Abundances and Modeling Ionized Gas Emission. Liese van Zee Indiana University Crash Course II: Overview of Methods for Measuring Chemical Abundances and Modeling Ionized Gas Emission Liese van Zee Indiana University Overview: Elemental abundances from intensity- weighted emission-

More information

Physical properties of high-z star-forming galaxies with FMOS-COSMOS

Physical properties of high-z star-forming galaxies with FMOS-COSMOS Physical properties of high-z star-forming galaxies with FMOS-COSMOS John Silverman Kavli IPMU Daichi Kashino, Alvio Renzini, Emanuele Daddi, Giulia Rodighiero, Nobuo Arimoto, Tohru Nagao, Dave Sanders,

More information

Lecture 32: The Expanding Universe Readings: Sections 26-5 and 28-2

Lecture 32: The Expanding Universe Readings: Sections 26-5 and 28-2 Lecture 32: The Expanding Universe Readings: Sections 26-5 and 28-2 Key Ideas Measuring the Distances to Galaxies and Determining the Scale of the Universe Distance Methods: Trigonometric Parallaxes Spectroscopic

More information

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney Class 3 January 23, 2017 The Milky Way Galaxy: Vertical Distributions of Stars & the Stellar Disk disks exist in many astrophysical systems

More information

STAR FORMATION RATES observational overview. Ulrike Kuchner

STAR FORMATION RATES observational overview. Ulrike Kuchner STAR FORMATION RATES observational overview Ulrike Kuchner Remember, remember.. Outline! measurements of SFRs: - techniques to see what the SF rate is - importance of massive stars and HII regions - the

More information

Classical observations of stellar properties

Classical observations of stellar properties Classical observations of stellar properties Luca Casagrande M. Bessell - J. Meléndez - I. Ramírez / M. Asplund R. Schönrich / V. Silva Aguirre Spectroscopy F(l) : lots of info, but also model dependent

More information

Stellar atmospheres: an overview

Stellar atmospheres: an overview Stellar atmospheres: an overview Core M = 2x10 33 g R = 7x10 10 cm 50 M o 20 R o L = 4x10 33 erg/s 10 6 L o 10 4 (PN) 10 6 (HII) 10 12 (QSO) L o Photosphere Envelope Chromosphere/Corona R = 200 km ~ 3x10

More information

How to explain metallicity dependence??

How to explain metallicity dependence?? Winds of massive stars all massive hot stars with L/L sun > 10 4 highly supersonic, strong winds basic properties explained by theory of line driven winds Mv R 1 2 L 1.8 [Z] 0.8 v 3v phot esc [Z] 0.15

More information

Galaxy classification

Galaxy classification Galaxy classification Questions of the Day What are elliptical, spiral, lenticular and dwarf galaxies? What is the Hubble sequence? What determines the colors of galaxies? Top View of the Milky Way The

More information

Myung Gyoon Lee with In Sung Jang

Myung Gyoon Lee with In Sung Jang Myung Gyoon Lee with In Sung Jang Department of Physics & Astronomy Seoul National University, Korea Cosmological Quests for the Next Decade, Apr 16-18, 2014, KASI, Korea 1 Past: Two number cosmology A

More information

Tracing the Evolution and Distribution of Metallicity in the Early Universe

Tracing the Evolution and Distribution of Metallicity in the Early Universe Tracing the Evolution and Distribution of Metallicity in the Early Universe Shelley A. Wright 1, 2, David R. Law 3, Richard S. Ellis 4, Dawn K. Erb 5, James E. Larkin 3, Jessica R. Lu 4, Charles C. Steidel

More information

A galaxy is a self-gravitating system composed of an interstellar medium, stars, and dark matter.

A galaxy is a self-gravitating system composed of an interstellar medium, stars, and dark matter. Chapter 1 Introduction 1.1 What is a Galaxy? It s surprisingly difficult to answer the question what is a galaxy? Many astronomers seem content to say I know one when I see one. But one possible definition

More information

Stellar Populations in the Local Group

Stellar Populations in the Local Group Stellar Populations in the Local Group Recall what we ve learned from the Milky Way: Age and metallicity tend to be correlated: older -> lower heavy element content younger -> greater heavy element content

More information

The Composition of the Old, Metal-Rich Open Cluster, NGC 6791

The Composition of the Old, Metal-Rich Open Cluster, NGC 6791 The Composition of the Old, Metal-Rich Open Cluster, NGC 6791 Liz Jensen --- Smith College, REU at IFA, University of Hawaii 2006 Mentor: Ann M. Boesgaard --- Institute for Astronomy, University of Hawaii

More information

Jens Melinder. With financial support from CNES/CNRS convention #

Jens Melinder. With financial support from CNES/CNRS convention # Jens Melinder With financial support from CNES/CNRS convention # 131425 u u u u The Lyman-α line in emission u The hydrogen Lyman-α emission line is the intrinsically brightest spectral feature from star-forming

More information

The Physical Interpretation of Optical Spectra of High Redshift Galaxies

The Physical Interpretation of Optical Spectra of High Redshift Galaxies The Physical Interpretation of Optical Spectra of High Redshift Galaxies Henry J. Pearce 1 Introduction In observational astronomy the most basic observation that can be made is how bright an astronomical

More information

Fundamental stellar parameters

Fundamental stellar parameters Fundamental stellar parameters flux received at Earth f º = direct determination of Teff R = radius of the spherical star, D = distance to the star. Luminosity : L = 4π R 2 F º dº T eff 4 = 4π R 2 F =

More information

Spectroscopy of M81 Globular Clusters. Julie B. Nantais & John P. Huchra MMT Science Symposium 5/19/10

Spectroscopy of M81 Globular Clusters. Julie B. Nantais & John P. Huchra MMT Science Symposium 5/19/10 Spectroscopy of M81 Globular Clusters Julie B. Nantais & John P. Huchra MMT Science Symposium 5/19/10 Galaxy Formation and Globular Clusters Questions: How did galaxies get to be different? Did all galaxies

More information

arxiv: v1 [astro-ph.ga] 10 Feb 2017

arxiv: v1 [astro-ph.ga] 10 Feb 2017 The lives and death-throes of massive stars Proceedings IAU Symposium No. 329, 2017 J.J. Eldridge et al., ed. c 2017 International Astronomical Union DOI: 00.0000/X000000000000000X The Tarantula Nebula

More information

Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas)

Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas) Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas) Emission lines arise from permitted (recombination) and forbidden

More information

Red Supergiant Stars as Cosmic Abundance Probes: NLTE Effects in J-band Iron and Titanium Lines

Red Supergiant Stars as Cosmic Abundance Probes: NLTE Effects in J-band Iron and Titanium Lines Red Supergiant Stars as Cosmic Abundance Probes: NLTE Effects in J-band Iron and Titanium Lines Maria Bergemann Max-Planck-Institute for Astrophysics, Karl-Schwarzschild-Str.1, D-85741 Garching, Germany

More information

THE ARAUCARIA PROJECT: AN ACCURATE DISTANCE TO THE LOCAL GROUP GALAXY NGC 6822 FROM NEAR-INFRARED PHOTOMETRY OF CEPHEID VARIABLES 1

THE ARAUCARIA PROJECT: AN ACCURATE DISTANCE TO THE LOCAL GROUP GALAXY NGC 6822 FROM NEAR-INFRARED PHOTOMETRY OF CEPHEID VARIABLES 1 The Astrophysical Journal, 647:1056Y1064, 2006 August 20 # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. A THE ARAUCARIA PROJECT: AN ACCURATE DISTANCE TO THE LOCAL GROUP

More information

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Chapter 6 Distances 6.1 Preliminaries Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Absolute distance measurements involve objects possibly unique

More information

Galaxies. Lecture Topics. Lecture 23. Discovering Galaxies. Galaxy properties. Local Group. History Cepheid variable stars. Classifying galaxies

Galaxies. Lecture Topics. Lecture 23. Discovering Galaxies. Galaxy properties. Local Group. History Cepheid variable stars. Classifying galaxies Galaxies Lecture 23 APOD: NGC 3628 (The Hamburger Galaxy) 1 Lecture Topics Discovering Galaxies History Cepheid variable stars Galaxy properties Classifying galaxies Local Group 2 23-1 Discovering Galaxies

More information

Neon Emission in HST Emission- Line Galaxies at z 2. Greg Zeimann

Neon Emission in HST Emission- Line Galaxies at z 2. Greg Zeimann Neon Emission in HST Emission- Line Galaxies at z 2 Greg Zeimann grzeimann@psu.edu Using radia@ve transfer modeling to infer the physical condi@ons of the warm ionized gas and the ionizing source Modeling

More information

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen

Lines of Hydrogen. Most prominent lines in many astronomical objects: Balmer lines of hydrogen The Family of Stars Lines of Hydrogen Most prominent lines in many astronomical objects: Balmer lines of hydrogen The Balmer Thermometer Balmer line strength is sensitive to temperature: Most hydrogen

More information