The HII Regions of Sextans A

Size: px
Start display at page:

Download "The HII Regions of Sextans A"

Transcription

1 Publications of the Astronomical Society of the Pacific 6: , 1994 July The HII Regions of Sextans A Paul Hodge 1 Astronomy Department, University of Washington, Seattle, Washington Electronic mail: hodge@astro.washington.edu Robert C. Kennicutt 1 Steward Observatory, University of Arizona, Tucson, Arizona Nicolas Strobel Astronomy Department, University of Washington, Seattle, Washington Electronic mail: strobel@astro.washington.edu Received 1993 November 15; accepted 1994 April 26 ABSTRACT. Calibrated Ha and continuum CCD frames are used to measure the emission-line luminosities, sizes, and morphological characteristics of 25 Hu regions in the dwarf irregular galaxy Sextans A, a probable member of the Local Group. The luminosity function fits a power law with slope 1.70 and the size distribution is roughly exponential with a scale length of 62 pc. We identify 56 candidate exciting stars, from which we find that the estimated ultraviolet flux in the HII regions is approximately proportional to the Ha flux. Comparison with the HI distribution shows good positional agreement, except with an approximate 300 pc offset of Ha peak from HI peak. 1. INTRODUCTION Sextans A (=DD075) is one of the most thoroughly studied dwarf galaxies in or near the Local Group. Its distance of 1.3 Mpc (Sandage and Carlson 1982, 1985; Visvanathan 1989; Madore and Freedman 1991), based on Cepheid variables, makes it a probable member of the Group, but if so, it lies in the outer regions of the Group. In addition to the work on Cepheids (of which it has five confirmed examples) cited above, there have been three photometric studies of its resolved stars (Hoessel, Schommer, and Danielson 1983; Aparicio et al. 1987; Walker 1987), a discovery of a planetary nebula (Jacoby and Lesser 1981), a search for CO emission (Rowan-Robinson, Phillips, and White 1980), a study of the dust emission from IRAS imaging (Hunter et al. 1989), and a high-resolution VLA study of its HI distribution and velocities (Skillman et al. 1988). The HII regions of Sex A have also been studied previously. An early map of the brightest three HII regions was described by Hodge (19) and subsequent studies were published by Hunter and Gallagher (1990, 1992) and Hunter, Hawley, and Gallagher (1993), who detected faint emission in the form of what they termed interstellar froth and supergiant filaments. 2 Spectra of the H II regions have been used to determine abundances by Skillman, Kennicutt, and Hodge (1989). The present paper is based on observational material obtained for the purposes of identifying HII regions to be used in the Skillman et al. (1989) spectroscopic study. 3 In this paper we will adopt the distance derived by Madore and Freedman (1991), who give a distance of 1.31 Mpc. Their adopted foreground extinction is A B = Visiting Astronomer, Kitt Peak National Observatory, operated by AURA, Inc., under contract to the National Science Foundation. 2 Their filament numbers 2 and 3 are our diffuse H n regions numbers 12 and 8, respectively. Their number 1 was not detected on our frames. 3 In that paper, spectra were described for 4 H n regions in Sextans A. Numbers 1-4 there correspond to H n regions, 20, 19, and, respectively, in this paper. 2. OBSERVATIONS A set of CCD frames was obtained at the Kitt Peak National Observatory with the 0.9-m telescope on 1987 March 20. The night was photometric and calibration was achieved by comparison with the spectrophotometric standard Feige 34. The Ha filter had a HPBW of 38 Â and the comparison off-ha frame was exposed through a 400 Â wide filter centered at 6000 Â. Further details of the photometric procedure can be found in Strobel et al. (1991). The continuum-subtracted image was examined with various contrast and intensity levels to identify the HII regions. Individual HII regions were defined in terms most likely to be physically meaningful, such that significant peaks, with at least a twofold contrast between peaks and any valleys of emission separating peaks, were interpreted as having separate exciting stars. (Less well-separated peaks could be merely the result of gas density fluctuations or variable extinction.) Most of the HII regions are well-enough separated that this did not turn out to be a crucial matter. A total of 25 separate HII regions were identified (Fig. 1). Tests on the detection efficiency, as well as consideration of the possibility of missed overlapped Hu regions in the two more crowded areas of the galaxy, lead us to estimate that our detection is complete to a flux level of about 14 ergs cm -2 s _1. The faintest HII region detected in Sextans A is three times fainter than this completeness limit. 3. LUMINOSITIES AND THE LUMINOSITY FUNCTION The luminosities of the HII regions (Table 1) were measured on a calibrated frame from which the continuum emission had been removed photometrically. The boundaries were set at a surface brightness of ~2X~ erg cm -2 s -1 arcsec 2 (Fig. 1). The flux values include [N n] emission, for which we could not correct in detail without Astronomical Society of the Pacific

2 766 HODGE, KENNICUTT, AND STROBEL PIXELS Fig. 1 Composite of two deep Hor images (continuum-subtracted) of Sextans A. Each square area is 5X5 arcmin. North is up and east is to the left. H n regions are identified. individual spectra. The [N il] contribution is probably small, on the order of 5%-%, as the heavy element abundances in Sextans A are small (Skillman et al. 1989). Internal photometric errors are on the order of 3%, but the choice of borders is such that flux measurements can be as much as % different for different choices. Therefore, our estimate is that the total uncertainties for the H n regions fluxes is 15%. Using the adopted distance and reddening, we have calculated total Ha luminosities for each Hu region, which range from 7X 35 ergs s _1 for No. 11 to 5X 37 ergs s -1 for No.. The luminosity function is plotted in Fig. 2, where it is compared with that for NGC 6822, a similar irregular galaxy (Hodge, Lee, and Kennicutt 1989). For HII regions brighter than ~ 365 ergss -1 (below which our sample is surely incomplete), the data can be fit by a power law of slope 1.70, in good agreement with slopes found for other irregular galaxies (Kennicutt, Edgar, and Hodge 1989). 4. SIZES AND THE SIZE DISTRIBUTION It has been shown that the size distribution of H II regions (defined in terms of a particular surface brightness) generally fits an exponential relationship (van den Bergh 1981). Figure 3 shows the size distribution for Sextans A HII regions. Incompleteness affects the distribution for sizes less than about

3 H il REGIONS OF SEXTANS A 767 Table 1 H il Region Characteristics of Sextans A Position (1950) Diameter S (P c Flux (xlo -15 ) (erg cm -2 sec. -1 ) Morphology 1 h 08 m 22 B '41" * * Identified by Jacoby and Lesser (1981) as a planetary nebula. 50 pc. A least-squares fit to the data (Strobel 1990) results in a scale length of 62±3 pc. This value is similar to those for other galaxies of the same type, distance, and luminosity (Strobel et al. 1991). 5. H II REGION MORPHOLOGIES Although the morphological characteristics of HII regions can be complex, we have found that a simple classification based on inspection of the frames provides a convenient way to compare HII region morphological populations in different kinds of galaxies (e.g., see Hodge and Lee 1990). An astrophysical discussion of NGC 6822 s Hu region morphologies measured quantitatively, based on photometric maps of each Hll region, is given elsewhere (Collier and Hodge 1992, 1994), where these morphological classes are compared to quantitative physical properties of the objects. Table 1 gives morphological classifications for the Hll regions, as defined in Hodge and Lee (1990), where the scheme is as follows: Composite: c Bright compact: b Faint compact: / Loop or ring-shaped: / Diffuse: d 6. EXCITING STARS Because of the availability of several multicolor photometric studies of Sextans A it is possible to identify possible exciting stars for the HII regions. Unlike giant galaxies, Sextans A has a low dust content and star-formation regions are expected to be relatively transparent (Hunter et al. 1989). Thus the hot stars exciting the gas should be visible optically. We have searched the lists of Sandage and Carlson (1982), Hoessel et al. (1983), Walker (1987), and Aparicio et al. (1987) to identify candidate exciting stars, basing our selection on central position within an H n region and color. At the adopted distance of Sextans A, an unreddened star of spectral type BO would have a magnitude of U=19.2 to V=.9, depending on its luminosity class, and a color of U V = 1.4. We have chosen stars according to the criteria that U-VC-1.0 or that -V<-0.2 in cases where no U magnitude is available. Table 2 lists the resulting candidates, identified by Aparicio et al. (1987) numbers and using their photometry, which is the most complete of those published. The absolute magnitudes (neglecting any internal reddening) range from M v = 1.8 to M v = 6.2 and values of U V range from 1.01 to All but one of the Hll regions (No. 13) have candidates and 16 of the 25 HII regions have multiple candidates. It is likely that these, which include most of the largest clouds, are composite regions, the UV flux coming from two or more hot stars within them. Unfortunately, spectral types are not available for stars in Sextans A and the available photometry is not accurate enough to derive reliable temperatures (for example, star 1370, the candidate exciting star for HII region No. 1, has a measured B V of 0.77, corresponding to a star even bluer than one with an infinite surface temperature). As a first step for looking at the physical conditions in the HII regions, we Diam. (pc) Fig. 2 The luminosity function of H n regions in Sextans A compared to that for NGC 6822 (Hodge et al. 1989). Fig. 3 The size distribution for H n regions in Sextans A.

4 768 HODGE, KENNICUTT, AND STROBEL H II Region Table 2 Candidate Exciting Stars Star No. U-V M a Fig. A The relationship between the total U magnitudes of candidate exciting stars and the Hi* fluxes of the H n regions. The line (not a fit) indicates a slope appropriate to direct proportionality. 7. COMPARISON WITH HI Detailed HI mapping exists for Sex A (Skillman et al. 1988). A comparison of their HI contours with our HII map (Fig. 5) shows that there is a close overall correlation between the positions of the neutral and the excited gas, with two strong maxima at opposite ends of the optical image, which is also the location of the two recent star-forming areas (Aparicio et al. 1987; Hoessel et al. 1983). However, the positional correspondence is not perfect. The brightest HII regions near the HI maxima are displaced from these maxima by a distance of approximately 300 pc in each case. This kind of displacement is known to occur in other dwarf irregular galaxies, such as IC (Hodge and Lee 1990) for which the displacement is also approximately 300 pc. As we have suggested in that paper, this fact is consistent with a pattern of sequential star formation (Elmegreen and Lada 1977). a Assuming no internal reddening. have used the U magnitudes of the stars as a rough guide to stellar UV flux and have looked for any correlation with Ha flux, as is expected and as was found for GR8 (Hodge, Lee, and Kennicutt 1989), another nearly dust-free galaxy. For multiple candidates, we have added the U fluxes to produce a composite U magnitude. Figure 4 shows the relationship between the U magnitudes and the Ha flux. There is considerable scatter, but an approximate proportionality exists. The scatter is probably the result of the relative insensitivity of even the U magnitude to the true UV flux, and possibly also reflects any internal reddening, which we have neglected. Of course, true UV spectra of the stars would be much more informative for this comparison RA Fig. 5 A comparison of the H i contours (Skillman et al. 1988) with the positions of the H n regions (shaded areas).

5 H il REGIONS OF SEXTANS A CONCLUSIONS The assemblage of H il regions in the Local Group dwarf galaxy Sextans A has a normal luminosity function and size distribution, indicating that the physical process of star formation in this galaxy is normal, as measured by these parameters. Candidate exciting stars have been identified from published UBV photometry. The total UV flux involved in each H II region is estimated from the stellar photometry and it is roughly proportional to the Ha flux. The H n regions cluster towards regions of high H I density, but are displaced from the peaks in the H I contours. We are indebted to the NSF for partial support through grants AST-958 (to P.H.) and AST (to R.C.K., Jr.). REFERENCES Aparicio, A., Garcia-Pelayo, J. M., Moles, M., and Melnick, J. 1987, AApS, 71, 297 Collier, J., and Hodge, P. 1992, BAAS, 24, 1201 Collier, J., and Hodge, P. 1994, ApJ, in press Elmegreen, B. G., and Lada, C. J. 1977, ApJ, 4, 725 Hodge, P. W. 19, ApJS, 27, 113 Hodge, P W., Lee, M. G., and Kennicutt, R. C. 1989, PASP, 1, 32 Hodge, P. W., and Lee, M. G. 1990, PASP, 2, 26 Hoessel, J. G., Schommer, R. A., and Danielson, G. E. 1983, ApJ, 2, 577 Hunter, D. A., and Gallagher, J. S. 1990, ApJ, 362, 480 Hunter, D. A., and Gallagher, J. S. 1992, ApJ, 391, L9 Hunter, D. A., Gallagher, J. S., Rice, W. L., and Gillett, F. C. 1989, ApJ, 336, 152 Hunter, D. A., Hawley, W. N., and Gallagher, J. S. 1993, AJ, 6, 97 Jacoby, G. H., and Lesser, M. P 1981, AJ, 86, 5 Kennicutt, R. C., Edgar, B. K., and Hodge, P. W. 1989, ApJ, 337, 761 Madore, B. E, and Freedman, W. L. 1991, PASP, 3, 933 Rowan-Robinson, M., Phillips, T. G., and White, G. 1980, A&A, 82, 381 Sandage, A. R., and Carlson, G. 1982, ApJ, 258, 439 Sandage, A. R., and Carlson, G. 1985, AJ, 90, 19 Skillman, E. D., Kennicutt, R. C., and Hodge, P W. 1989, ApJ, 347, 875 Skillman, E. D., Terlevich, R., Teuben, P. T, and van Woerden, H. 1988, A&A, 198, 33 Strobel, N. V. 1990, BAAS, 23, 909 Strobel, N. V., Hodge, P. W., and Kennicutt, R. C. 1991, ApJ, 383, 148 van den Bergh, S. 1981, AJ, 86, 1464 Visvanathan, N. 1989, ApJ, 346, 629 Walker, A. R. 1987, MNRAS, 224, 935

THE BRIGHTEST STAR IN THE MAGELLANIC IRREGULAR GALAXY DDO 155

THE BRIGHTEST STAR IN THE MAGELLANIC IRREGULAR GALAXY DDO 155 Publications of the Astronomical Society of the Pacific 98:1282-1286, December 1986 THE BRIGHTEST STAR IN THE MAGELLANIC IRREGULAR GALAXY DDO 155 C. MOSS* Vatican Observatory, Castel Gandolfo, Italy AND

More information

STRUCTURE OF GALAXIES

STRUCTURE OF GALAXIES STRUCTURE OF GALAXIES 2., classification, surface photometry Piet van der Kruit Kapteyn Astronomical Institute University of Groningen the Netherlands February 2010, classification, surface photometry

More information

The H II Regions of M33. II. A Photometric Catalog of 1272 Newly IdentiÐed Emission Regions

The H II Regions of M33. II. A Photometric Catalog of 1272 Newly IdentiÐed Emission Regions PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF THE PACIFIC, 111:685È690, 1999 June ( 1999. The Astronomical Society of the PaciÐc. All rights reserved. Printed in U.S.A. The H II Regions of M33. II. A Photometric

More information

Luminosity Functions of Planetary Nebulae & Globular Clusters. By Azmain Nisak ASTR 8400

Luminosity Functions of Planetary Nebulae & Globular Clusters. By Azmain Nisak ASTR 8400 Luminosity Functions of Planetary Nebulae & Globular Clusters By Azmain Nisak ASTR 8400 Calculating Distance! m = apparent magnitude! M = absolute magnitude! r = distance in pc GLOBULAR CLUSTERS AS DISTANCE

More information

C Star survey of Local Group Dwarf Galaxies. III The Sagittarius dwarf irregular and the Leo I dwarf spheroidal galaxies

C Star survey of Local Group Dwarf Galaxies. III The Sagittarius dwarf irregular and the Leo I dwarf spheroidal galaxies C Star survey of Local Group Dwarf Galaxies. III The Sagittarius dwarf irregular and the Leo I dwarf spheroidal galaxies Serge Demers 1 Département de Physique, Université de Montréal, Montreal, Qc H3C

More information

INT Proposal. Santos; Loukotová. Measurement of the Hα flux in the nearby early-type galaxy NGC Abstract

INT Proposal. Santos; Loukotová. Measurement of the Hα flux in the nearby early-type galaxy NGC Abstract Santos; Loukotová INT Proposal Measurement of the Hα flux in the nearby early-type galaxy NGC 4203 Abstract The evolution of galaxies is one of the most rich fields of research on current Astronomy, and

More information

Young Star Clusters in the Dwarf Irregular Galaxy, UGC 7636, Interacting with the Giant Elliptical Galaxy NGC 4472

Young Star Clusters in the Dwarf Irregular Galaxy, UGC 7636, Interacting with the Giant Elliptical Galaxy NGC 4472 Young Star Clusters in the Dwarf Irregular Galaxy, UGC 7636, Interacting with the Giant Elliptical Galaxy NGC 4472 Myung Gyoon Lee 1, Eunhyeuk Kim Department of Astronomy, Seoul National University, Seoul

More information

Red giants in the halo of the SO galaxy NGC 3115: a distance and a bimodal metallicity distribution

Red giants in the halo of the SO galaxy NGC 3115: a distance and a bimodal metallicity distribution Mon. Not. R. Astron. Soc. 286, 771-776 (1997) Red giants in the halo of the SO galaxy NGC 3115: a distance and a bimodal metallicity distribution Rebecca A. W. Elson* Institute of Astronomy, Madingley

More information

the corresponding absolute magnitudes are

the corresponding absolute magnitudes are THE ASTRONOMICAL JOURNAL, 119:777È786, 2000 February ( 2000. The American Astronomical Society. All rights reserved. Printed in U.S.A. STELLAR POPULATIONS OF THE SAGITTARIUS DWARF IRREGULAR GALAXY MYUNG

More information

A Calibration Method for Wide Field Multicolor. Photometric System 1

A Calibration Method for Wide Field Multicolor. Photometric System 1 A Calibration Method for Wide Field Multicolor Photometric System 1 Xu Zhou,Jiansheng Chen, Wen Xu, Mei Zhang... Beijing Astronomical Observatory,Chinese Academy of Sciences, Beijing 100080, China Beijing

More information

CEPHEIDS AND LONG-PERIOD VARIABLES IN NGC 4395

CEPHEIDS AND LONG-PERIOD VARIABLES IN NGC 4395 The Astronomical Journal, 127:2322 2343, 2004 April # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. A CEPHEIDS AND LONG-PERIOD VARIABLES IN NGC 4395 F. Thim 1,2 National

More information

Oxygen abundances in dwarf irregular galaxies and the metallicity luminosity relationship

Oxygen abundances in dwarf irregular galaxies and the metallicity luminosity relationship A&A 374, 412 420 (2001) DOI: 10.1051/0004-6361:20010732 c ESO 2001 Astronomy & Astrophysics Oxygen abundances in dwarf irregular galaxies and the metallicity luminosity relationship L. S. Pilyugin Main

More information

C STAR SURVEY OF LOCAL GROUP DWARF GALAXIES. III. THE SAGITTARIUS DWARF IRREGULAR AND THE LEO I DWARF SPHEROIDAL GALAXIES Serge Demers 1

C STAR SURVEY OF LOCAL GROUP DWARF GALAXIES. III. THE SAGITTARIUS DWARF IRREGULAR AND THE LEO I DWARF SPHEROIDAL GALAXIES Serge Demers 1 The Astronomical Journal, 123:238 243, 2002 January # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. C STAR SURVEY OF LOCAL GROUP DWARF GALAXIES. III. THE SAGITTARIUS DWARF

More information

STELLAR POPULATIONS OF THE DWARF GALAXY UKS IN THE SCULPTOR GROUP. and

STELLAR POPULATIONS OF THE DWARF GALAXY UKS IN THE SCULPTOR GROUP. and Draft version May 7, 1999 Preprint typeset using L A TEX style emulateapj STELLAR POPULATIONS OF THE DWARF GALAXY UKS 2323 326 IN THE SCULPTOR GROUP Myung Gyoon Lee Department of Astronomy, Seoul National

More information

Measuring stellar distances.

Measuring stellar distances. Measuring stellar distances This method can be used to measure distances up to 100pc Some new technology allows measuring distances up to 200pc using this method p= 1/d Stellar Parallax.htm This method

More information

THE DISTRIBUTION OF ATOMIC HYDROGEN AROUND TWO IRREGULAR GALAXIES Deidre A. Hunter. and Eric M. Wilcots

THE DISTRIBUTION OF ATOMIC HYDROGEN AROUND TWO IRREGULAR GALAXIES Deidre A. Hunter. and Eric M. Wilcots The Astronomical Journal, 123:2449 2461, 22 May # 22. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE DISTRIBUTION OF ATOMIC HYDROGEN AROUND TWO IRREGULAR GALAXIES Deidre

More information

Measurement of the stellar irradiance

Measurement of the stellar irradiance Measurement of the stellar irradiance Definitions Specific Intensity : (monochromatic) per unit area normal to the direction of radiation per unit solid angle per unit wavelength unit (or frequency) per

More information

DISCOVERY OF VERY RED GIANTS IN THE FORNAX GALAXY

DISCOVERY OF VERY RED GIANTS IN THE FORNAX GALAXY Publications of the Astronomical Society of the Pacific 91:761-765, December 1979 DISCOVERY OF VERY RED GIANTS IN THE FORNAX GALAXY SERGE DEMERS 0 Université de Montréal, Observatoire Astronomique du mont

More information

Measuring the Hubble Constant through Cepheid Distances

Measuring the Hubble Constant through Cepheid Distances Measuring the Hubble Constant through Cepheid Distances Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant Freedman, Madore, Gibson, et al., Astrophysical Journal

More information

A CCD BV I color-magnitude study of the metal-rich globular cluster NGC 5927,

A CCD BV I color-magnitude study of the metal-rich globular cluster NGC 5927, ASTRONOMY & ASTROPHYSICS OCTOBER II 1996, PAGE 191 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 119, 191-197 (1996) A CCD BV I color-magnitude study of the metal-rich globular cluster NGC 5927, N.

More information

Lecture 12. November 20, 2018 Lab 6

Lecture 12. November 20, 2018 Lab 6 Lecture 12 November 20, 2018 Lab 6 News Lab 4 Handed back next week (I hope). Lab 6 (Color-Magnitude Diagram) Observing completed; you have been assigned data if you were not able to observe. Due: instrumental

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

DWARF GALAXIES ALSO HAVE STELLAR HALOS

DWARF GALAXIES ALSO HAVE STELLAR HALOS THE ASTROPHYSICAL JOURNAL, 467 : L13 L16, 1996 August 10 1996. The American Astronomical Society. All rights reserved. Printed in U.S.A. DWARF GALAXIES ALSO HAVE STELLAR HALOS DANTE MINNITI 1, 2 AND ALBERT

More information

A PRELIMINARY CLASSIFICATION SCHEME FOR THE CENTRAL REGIONS OF LATE-TYPE GALAXIES

A PRELIMINARY CLASSIFICATION SCHEME FOR THE CENTRAL REGIONS OF LATE-TYPE GALAXIES A PRELIMINARY CLASSIFICATION SCHEME FOR THE CENTRAL REGIONS OF LATE-TYPE GALAXIES SIDNEY VAN DEN BERGH* Dominion Astrophysical Observatory, National Research Council 5071 West Saanich Road, Victoria, B.C.,

More information

Samuel Boissier, Laboratoire d'astrophysique de Marseille

Samuel Boissier, Laboratoire d'astrophysique de Marseille http://mission.lam.fr/vestige/index.html Samuel Boissier, Laboratoire d'astrophysique de Marseille 1 The Team 2 Galaxies and gas in clusters Cluster environment: - high galaxy density (ρgal~ 100 gal Mpc-3)

More information

{ 2{ ABSTRACT Six additional molecular clouds have been mapped in the nearby metalpoor dwarf irregular galaxy IC 10 using the Owens Valley Millimeter-

{ 2{ ABSTRACT Six additional molecular clouds have been mapped in the nearby metalpoor dwarf irregular galaxy IC 10 using the Owens Valley Millimeter- The Metallicity Dependence of the CO-to-H 2 Conversion Factor from Observations of Local Group Galaxies Christine D. Wilson Department of Physics and Astronomy, McMaster University, Hamilton Ontario Canada

More information

CCD imaging of twenty nearby isolated irregular galaxies

CCD imaging of twenty nearby isolated irregular galaxies ASTRONOMY & ASTROPHYSICS DECEMBER I 1998, PAGE 181 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 133, 181 196 (1998) CCD imaging of twenty nearby isolated irregular galaxies L.N. Makarova and I.D. Karachentsev

More information

Lifecycle of Dust in Galaxies

Lifecycle of Dust in Galaxies Lifecycle of Dust in Galaxies Karl Gordon Space Telescope Science Institute 3700 San Martin Drive Baltimore, MD 21218 Email: kgordon@stsci.edu Phone: 410-338-5031 co-authors: Margaret Meixner (Space Telescope

More information

The HST Set of Absolute Standards for the 0.12 µm to 2.5 µm Spectral Range

The HST Set of Absolute Standards for the 0.12 µm to 2.5 µm Spectral Range Instrument Science Report CAL/SCS-010 The HST Set of Absolute Standards for the 0.12 µm to 2.5 µm Spectral Range L. Colina, R. Bohlin, D. Calzetti, C. Skinner, S. Casertano October 3, 1996 ABSTRACT A proposal

More information

Photometric and spectroscopic observations of the outburst of the symbiotic star AG Draconis between March and June 2016

Photometric and spectroscopic observations of the outburst of the symbiotic star AG Draconis between March and June 2016 Photometric and spectroscopic observations of the outburst of the symbiotic star AG Draconis between March and June 2016 David Boyd Variable Star Section, British Astronomical Association, [davidboyd@orion.me.uk]

More information

AstroBITS: Open Cluster Project

AstroBITS: Open Cluster Project AstroBITS: Open Cluster Project I. Introduction The observational data that astronomers have gathered over many years indicate that all stars form in clusters. In a cloud of hydrogen gas, laced with helium

More information

European Organisation for Astronomical Research in the Southern Hemisphere. 1. Title Category: D 2

European Organisation for Astronomical Research in the Southern Hemisphere. 1. Title Category: D 2 European Organisation for Astronomical Research in the Southern Hemisphere Organisation Européenne pour des Recherches Astronomiques dans l Hémisphère Austral Europäische Organisation für astronomische

More information

IRS Spectroscopy of z~2 Galaxies

IRS Spectroscopy of z~2 Galaxies IRS Spectroscopy of z~2 Galaxies Houck et al., ApJ, 2005 Weedman et al., ApJ, 2005 Lutz et al., ApJ, 2005 Astronomy 671 Jason Marshall Opening the IR Wavelength Regime for Discovery One of the primary

More information

UVOT Measurements of Dust and Star Formation in the SMC and M33

UVOT Measurements of Dust and Star Formation in the SMC and M33 UVOT Measurements of Dust and Star Formation in the SMC and M33 Lea M. Z. Hagen E-mail: lea.zernow.hagen@gmail.com Michael Siegel E-mail: siegel@swift.psu.edu Caryl Gronwall E-mail: caryl@astro.psu.edu

More information

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT SUPERNOVA REMNANTS

SKINAKAS OBSERVATORY. Astronomy Projects for University Students PROJECT SUPERNOVA REMNANTS PROJECT 10 SUPERNOVA REMNANTS Objective: The purpose of this exercise is also twofold. The first one is to gain further experience with the analysis of narrow band images (as in the case of planetary nebulae)

More information

The magnitude system. ASTR320 Wednesday January 30, 2019

The magnitude system. ASTR320 Wednesday January 30, 2019 The magnitude system ASTR320 Wednesday January 30, 2019 What we measure: apparent brightness How bright a star appears to be in the sky depends on: How bright it actually is Luminosity and its distance

More information

Determining the Properties of the Stars

Determining the Properties of the Stars Determining the Properties of the Stars This set of notes by Nick Strobel covers: The properties of stars--their distances, luminosities, compositions, velocities, masses, radii, and how we determine those

More information

arxiv:astro-ph/ v1 26 Nov 2004

arxiv:astro-ph/ v1 26 Nov 2004 13 Color Photometry of Open Cluster M48 Zhen-Yu Wu, Xu Zhou, Jun Ma, Zhao-Ji Jiang, Jian-Sheng Chen National Astronomical Observatories, Chinese Academy of Sciences, 20A Datun Road, arxiv:astro-ph/0411711v1

More information

The Distances and Ages of Star Clusters

The Distances and Ages of Star Clusters Name: Partner(s): Lab #7 The Distances and Ages of Star Clusters 0.1 Due July 14th Very few stars are born isolated. Instead, most stars form in small groups, known as clusters. The stars in a cluster

More information

Problem Set 3, AKA First midterm review Astrophysics 4302 Due Date: Sep. 23, 2013

Problem Set 3, AKA First midterm review Astrophysics 4302 Due Date: Sep. 23, 2013 Problem Set 3, AKA First midterm review Astrophysics 4302 Due Date: Sep. 23, 2013 1. δ Cephei is a fundamental distance scale calibrator. It is a Cepheid with a period of 5.4 days. A campaign with the

More information

Taurus stars membership in the Pleiades open cluster

Taurus stars membership in the Pleiades open cluster Taurus stars membership in the Pleiades open cluster Tadross, A. L., Hanna, M. A., Awadalla, N. S. National Research Institute of Astronomy & Geophysics, NRIAG, 11421 Helwan, Cairo, Egypt ABSTRACT In this

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION 1. Identification of classical Cepheids: We identified three classical Cepheids amongst the 45 short-period variables discovered. Our sample includes classical Cepheids, type II Cepheids, eclipsing binaries

More information

Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review

Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review Astronomy 100 Spring 2006 Lecture Questions Twelve Weeks Review 16-1 Fusion in the Sun The solar corona has temperatures roughly the same as temperatures in the Sun's core, where nuclear fusion takes place.

More information

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei SECOND EDITION Astrophysics of Gaseous Nebulae and Active Galactic Nuclei Donald E. Osterbrock Lick Observatory, University of California, Santa Cruz Gary J. Ferland Department of Physics and Astronomy,

More information

Color-Magnitude Diagram Lab Manual

Color-Magnitude Diagram Lab Manual Color-Magnitude Diagram Lab Manual Due Oct. 21, 2011 1 Pre-Lab 1.1 Photometry and the Magnitude Scale The brightness of stars is represented by its value on the magnitude scale. The ancient Greek astronomer

More information

Lecture 11: SDSS Sources at Other Wavelengths: From X rays to radio. Astr 598: Astronomy with SDSS

Lecture 11: SDSS Sources at Other Wavelengths: From X rays to radio. Astr 598: Astronomy with SDSS Astr 598: Astronomy with SDSS Spring Quarter 4, University of Washington, Željko Ivezić Lecture : SDSS Sources at Other Wavelengths: From X rays to radio Large Surveys at Many Wavelengths SDSS: UV-IR five-band

More information

Mapping the oxygen abundance in an elliptical galaxy (NGC 5128)

Mapping the oxygen abundance in an elliptical galaxy (NGC 5128) Mapping the oxygen abundance in an elliptical galaxy (NGC 5128) Jeremy R. Walsh, ESO Collaborators: George H. Jacoby, GMT Observatory, Carnegie; Reynier Peletier, Kapteyn Lab., Groningen; Nicholas A. Walton,

More information

BV RI photometric sequences for nine selected dark globules

BV RI photometric sequences for nine selected dark globules ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 126, 73-80 (1997) NOVEMBER II 1997, PAGE73 BV RI photometric sequences for nine selected dark globules J.F. Lahulla 1, A. Aguirre

More information

arxiv:astro-ph/ v1 1 Aug 1998

arxiv:astro-ph/ v1 1 Aug 1998 The Recent Star Formation in Sextans A Schuyler D. Van Dyk 1 IPAC/Caltech, Mail Code 100-22, Pasadena, CA 91125 arxiv:astro-ph/9808001v1 1 Aug 1998 Daniel Puche 1 Tellabs TG, 3403 Griffith, St-Laurent,

More information

Type II Supernovae as Standardized Candles

Type II Supernovae as Standardized Candles Type II Supernovae as Standardized Candles Mario Hamuy 1 2 Steward Observatory, The University of Arizona, Tucson, AZ 85721 Philip A. Pinto Steward Observatory, The University of Arizona, Tucson, AZ 85721

More information

Astronomy II (ASTR-1020) Homework 2

Astronomy II (ASTR-1020) Homework 2 Astronomy II (ASTR-1020) Homework 2 Due: 10 February 2009 The answers of this multiple choice homework are to be indicated on a Scantron sheet (either Form # 822 N-E or Ref # ABF-882) which you are to

More information

arxiv:astro-ph/ v1 20 Feb 2004

arxiv:astro-ph/ v1 20 Feb 2004 Discovery of Face-On Counterparts of Chain Galaxies in the Tadpole ACS Field arxiv:astro-ph/42477v1 Feb 4 Debra Meloy Elmegreen Vassar College, Dept. of Physics & Astronomy, Box 745, Poughkeepsie, NY 1264;

More information

The cosmic distance scale

The cosmic distance scale The cosmic distance scale Distance information is often crucial to understand the physics of astrophysical objects. This requires knowing the basic properties of such an object, like its size, its environment,

More information

The GALEX Observations of Planetary Nebulae. Ananta C. Pradhan 1, M. Parthasarathy 2, Jayant Murthy 3 and D. K. Ojha 4

The GALEX Observations of Planetary Nebulae. Ananta C. Pradhan 1, M. Parthasarathy 2, Jayant Murthy 3 and D. K. Ojha 4 The GALEX Observations of Planetary Nebulae. Ananta C. Pradhan 1, M. Parthasarathy 2, Jayant Murthy 3 and D. K. Ojha 4 1 National Institute of Technology, Odisha 769008, India 2 Inter-University Centre

More information

ASTR-1020: Astronomy II Course Lecture Notes Section III

ASTR-1020: Astronomy II Course Lecture Notes Section III ASTR-1020: Astronomy II Course Lecture Notes Section III Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

More information

UNRESOLVED H ENHANCEMENTS AT HIGH GALACTIC LATITUDE IN THE WHAM SKY SURVEY MAPS

UNRESOLVED H ENHANCEMENTS AT HIGH GALACTIC LATITUDE IN THE WHAM SKY SURVEY MAPS The Astronomical Journal, 129:927 934, 2005 February # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. UNRESOLVED H ENHANCEMENTS AT HIGH GALACTIC LATITUDE IN THE WHAM SKY

More information

Today in Astronomy 142: observations of stars

Today in Astronomy 142: observations of stars Today in Astronomy 142: observations of stars What do we know about individual stars?! Determination of stellar luminosity from measured flux and distance Magnitudes! Determination of stellar surface temperature

More information

Galaxy formation and evolution. Astro 850

Galaxy formation and evolution. Astro 850 Galaxy formation and evolution Astro 850 Introduction What are galaxies? Systems containing many galaxies, e.g. 10 11 stars in the Milky Way. But galaxies have different properties. Properties of individual

More information

THE GRAVITATIONAL HARASSMENT OF OUR DWARF GALACTIC NEIGHBORS

THE GRAVITATIONAL HARASSMENT OF OUR DWARF GALACTIC NEIGHBORS THE GRAVITATIONAL HARASSMENT OF OUR DWARF GALACTIC NEIGHBORS Rachael L. Beaton University of Virginia The Local Group of galaxies contains some 40 galaxies, most of which fall into two morphological classes:

More information

Age Determination of Possible Binary Open Clusters NGC 2383/NGC 2384 and Pismis 6/Pismis 8

Age Determination of Possible Binary Open Clusters NGC 2383/NGC 2384 and Pismis 6/Pismis 8 Bulg. J. Phys. 33 (6) 68 7 Age Determination of Possible Binary Open Clusters NGC 383/NGC 384 and Pismis 6/Pismis 8 V. Kopchev 1, G. Petrov 1, P. Nedialkov 1 Institute of Astronomy, Bulgarian Academy of

More information

Techniques for measuring astronomical distances generally come in two variates, absolute and relative.

Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Chapter 6 Distances 6.1 Preliminaries Techniques for measuring astronomical distances generally come in two variates, absolute and relative. Absolute distance measurements involve objects possibly unique

More information

Astro Fall 2012 Lecture 8. T. Howard

Astro Fall 2012 Lecture 8. T. Howard Astro 101 003 Fall 2012 Lecture 8 T. Howard Measuring the Stars How big are stars? How far away? How luminous? How hot? How old & how much longer to live? Chemical composition? How are they moving? Are

More information

Extragalactic Background Light Rebecca A Bernstein. Encyclopedia of Astronomy & Astrophysics P. Murdin

Extragalactic Background Light Rebecca A Bernstein. Encyclopedia of Astronomy & Astrophysics P. Murdin eaa.iop.org DOI: 10.1888/0333750888/2639 Extragalactic Background Light Rebecca A Bernstein From Encyclopedia of Astronomy & Astrophysics P. Murdin IOP Publishing Ltd 2006 ISBN: 0333750888 Institute of

More information

arxiv:astro-ph/ v1 13 Aug 2003

arxiv:astro-ph/ v1 13 Aug 2003 The Discovery of a Twelfth Wolf-Rayet Star in the Small Magellanic Cloud Philip Massey 1 arxiv:astro-ph/0308237v1 13 Aug 2003 Lowell Observatory, 1400 W. Mars Hill Road, Flagstaff, AZ 86001 Phil.Massey@lowell.edu

More information

Near-Infrared Imaging Observations of the Orion A-W Star Forming Region

Near-Infrared Imaging Observations of the Orion A-W Star Forming Region Chin. J. Astron. Astrophys. Vol. 2 (2002), No. 3, 260 265 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics Near-Infrared Imaging Observations of the Orion

More information

Journal Club Presentation on The BIMA Survey of Nearby Galaxies. I. The Radial Distribution of CO Emission in Spiral Galaxies by Regan et al.

Journal Club Presentation on The BIMA Survey of Nearby Galaxies. I. The Radial Distribution of CO Emission in Spiral Galaxies by Regan et al. Journal Club Presentation on The BIMA Survey of Nearby Galaxies. I. The Radial Distribution of CO Emission in Spiral Galaxies by Regan et al. ApJ, 561:218-237, 2001 Nov 1 1 Fun With Acronyms BIMA Berkely

More information

Astrophysical Quantities

Astrophysical Quantities Astr 8300 Resources Web page: http://www.astro.gsu.edu/~crenshaw/astr8300.html Electronic papers: http://adsabs.harvard.edu/abstract_service.html (ApJ, AJ, MNRAS, A&A, PASP, ARAA, etc.) General astronomy-type

More information

Universe. Tenth Edition. The Nature of the Stars. Parallax. CHAPTER 17 The Nature of Stars

Universe. Tenth Edition. The Nature of the Stars. Parallax. CHAPTER 17 The Nature of Stars Universe Tenth Edition The Nature of the Stars Roger A. Freedman, Robert M. Geller, William J. Kaufmann III CHAPTER 17 The Nature of Stars W. H. Freeman and Company Parallax Careful measurements of the

More information

Astrochemistry (2) Interstellar extinction. Measurement of the reddening

Astrochemistry (2) Interstellar extinction. Measurement of the reddening Measurement of the reddening The reddening of stellar colours casts light on the properties of interstellar dust Astrochemistry (2) Planets and Astrobiology (2016-2017) G. Vladilo The reddening is measured

More information

ASTRONOMY AND ASTROPHYSICS. Large scale star formation in galaxies. I. The spirals NGC 7217, NGC 1058 and UGC Young star groupings in spirals

ASTRONOMY AND ASTROPHYSICS. Large scale star formation in galaxies. I. The spirals NGC 7217, NGC 1058 and UGC Young star groupings in spirals Astron. Astrophys. 357, 437 442 (2000) Large scale star formation in galaxies I. The spirals NGC 7217, NGC 1058 and UGC 12732. Young star groupings in spirals ASTRONOMY AND ASTROPHYSICS P. Battinelli 1,

More information

Interstellar Dust and Gas

Interstellar Dust and Gas Interstellar Dust and Gas In 1783 William Herschel began a survey of the heavens using an 18 ¾ inch reflector of his own construction. His goal was to discover new star clusters, nebulae, and double stars.

More information

Energy Sources of the Far IR Emission of M33

Energy Sources of the Far IR Emission of M33 Energy Sources of the Far IR Emission of M33 Hinz, Reike et al., ApJ 154: S259 265 (2004). Presented by James Ledoux 24 µm 70 µm 160 µm Slide 1 M33 Properties Distance 840kpc = 2.7 Mlyr (1'' ~ 4 pc) Also

More information

STUDIES OF SELECTED VOIDS. SURFACE PHOTOMETRY OF FAINT GALAXIES IN THE DIRECTION OF IN HERCULES VOID

STUDIES OF SELECTED VOIDS. SURFACE PHOTOMETRY OF FAINT GALAXIES IN THE DIRECTION OF IN HERCULES VOID STUDIES OF SELECTED VOIDS. SURFACE PHOTOMETRY OF FAINT GALAXIES IN THE DIRECTION OF 1600+18 IN HERCULES VOID G.Petrov [1], A.Y.Kniazev [2], and J.W. Fried [2] 1 Institute of Astronomy, Bulgarian Academy

More information

4/6/17. SEMI-WARM stuff: dust. Tour of Galaxies. Our Schedule

4/6/17. SEMI-WARM stuff: dust. Tour of Galaxies. Our Schedule ASTR 1040: Stars & Galaxies Super-bubble blowout in NGC 3709 Prof. Juri Toomre TAs: Piyush Agrawal, Connor Bice Lecture 22 Thur 6 Apr 2017 zeus.colorado.edu/astr1040-toomre Tour of Galaxies Look at complex

More information

The relation between cold dust and star formation in nearby galaxies

The relation between cold dust and star formation in nearby galaxies The relation between cold dust and star formation in nearby galaxies George J. Bendo (with the Herschel Local Galaxies Guaranteed-Time Surveys and the Herschel Virgo Cluster Survey) Outline Analyses before

More information

Page # Astronomical Distances. Lecture 2. Astronomical Distances. Cosmic Distance Ladder. Distance Methods. Size of Earth

Page # Astronomical Distances. Lecture 2. Astronomical Distances. Cosmic Distance Ladder. Distance Methods. Size of Earth Size of Astronomical istances ecture 2 Astronomical istances istance to the Moon (1 sec) istance to the Sun (8 min) istance to other stars (years) istance to centre of our Galaxy ( 30,000 yr to centre)

More information

Chapter 10 The Interstellar Medium

Chapter 10 The Interstellar Medium Chapter 10 The Interstellar Medium Guidepost You have begun your study of the sun and other stars, but now it is time to study the thin gas and dust that drifts through space between the stars. This chapter

More information

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)?

Clicker Question: Clicker Question: What is the expected lifetime for a G2 star (one just like our Sun)? How Long do Stars Live (as Main Sequence Stars)? A star on Main Sequence has fusion of H to He in its core. How fast depends on mass of H available and rate of fusion. Mass of H in core depends on mass

More information

Open Cluster Research Project

Open Cluster Research Project Open Cluster Research Project I. Introduction The observational data indicate that all stars form in clusters. In a cloud of hydrogen gas, laced with helium and a trace of other elements, something triggers

More information

9. Evolution with redshift - z > 1.5. Selection in the rest-frame UV

9. Evolution with redshift - z > 1.5. Selection in the rest-frame UV 11-5-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c09-1 11-5-10see http://www.strw.leidenuniv.nl/ franx/college/galaxies10 10-c09-2 9. Evolution with redshift - z > 1.5 Selection in

More information

Chapter 14 The Milky Way Galaxy

Chapter 14 The Milky Way Galaxy Chapter 14 The Milky Way Galaxy Spiral Galaxy M81 - similar to our Milky Way Galaxy Our Parent Galaxy A galaxy is a giant collection of stellar and interstellar matter held together by gravity Billions

More information

Open Cluster Photometry: Part II

Open Cluster Photometry: Part II Project 4 Open Cluster Photometry: Part II Observational Astronomy ASTR 310 Fall 2005 1 Introduction The objective of this and the previous project is to learn how to produce color-magnitude diagrams of

More information

Out with magnitudes, in with monochromatic luminosities!

Out with magnitudes, in with monochromatic luminosities! When teaching: Out with magnitudes, in with monochromatic luminosities! arxiv:0807.1393v1 [astro-ph] 9 Jul 2008 Frank Verbunt Astronomical Institute University Utrecht, the Netherlands Abstract email:

More information

SKINAKAS OBSERVATORY Astronomy Projects for University Students COLOUR IN ASTRONOMY

SKINAKAS OBSERVATORY Astronomy Projects for University Students COLOUR IN ASTRONOMY P R O J E C T 3 COLOUR IN ASTRONOMY Objective: Explain what colour means in an astronomical context and its relationship with the temperature of a star. Learn how to create colour-colour diagrams and how

More information

AN OPTICAL-IR COUNTERPART FOR SGR B1900+l4? and. 1. Introduction

AN OPTICAL-IR COUNTERPART FOR SGR B1900+l4? and. 1. Introduction AN OPTICAL-IR COUNTERPART FOR SGR B1900+l4? F. J. VRBA, C. B. LUGINBUHL U.S. Naval Observatory Flagstaff Station, P.O. Box 1149, Flagstaff AZ 86002-1149, USA D. HARTMANN Department of Physics and Astronomy,

More information

Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1

Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1 Lecture 25: The Cosmic Distance Scale Sections 25-1, 26-4 and Box 26-1 Key Ideas The Distance Problem Geometric Distances Trigonometric Parallaxes Luminosity Distances Standard Candles Spectroscopic Parallaxes

More information

Protoplanetary discs of isolated VLMOs discovered in the IPHAS survey

Protoplanetary discs of isolated VLMOs discovered in the IPHAS survey Protoplanetary discs of isolated VLMOs discovered in the IPHAS survey Luisa Valdivielso Casas Collaborators: E. Martín, H. Bouy, E. Solano,J. Drew,R. Greimel 1 IAC - ULL 14 de septiembre 2010 Outline Introduction

More information

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs

Energy. mosquito lands on your arm = 1 erg. Firecracker = 5 x 10 9 ergs. 1 stick of dynamite = 2 x ergs. 1 ton of TNT = 4 x ergs Energy mosquito lands on your arm = 1 erg Firecracker = 5 x 10 9 ergs 1 stick of dynamite = 2 x 10 13 ergs 1 ton of TNT = 4 x 10 16 ergs 1 atomic bomb = 1 x 10 21 ergs Magnitude 8 earthquake = 1 x 10 26

More information

A survey of the ISM in early-type galaxies

A survey of the ISM in early-type galaxies ASTRONOMY & ASTROPHYSICS APRIL II 1999, PAGE 269 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 136, 269 284 (1999) A survey of the ISM in early-type galaxies II. The dust F. Ferrari 1, M.G. Pastoriza

More information

Types of Stars and the HR diagram

Types of Stars and the HR diagram Types of Stars and the HR diagram Full window version (looks a little nicer). Click button to get back to small framed version with content indexes. This material (and images) is copyrighted! See

More information

Lecture Three: Stellar Populations. Stellar Properties: Stellar Populations = Stars in Galaxies. What defines luminous properties of galaxies

Lecture Three: Stellar Populations. Stellar Properties: Stellar Populations = Stars in Galaxies. What defines luminous properties of galaxies Lecture Three: ~2% of galaxy mass in stellar light Stellar Populations What defines luminous properties of galaxies face-on edge-on https://www.astro.rug.nl/~etolstoy/pog16/ 18 th April 2016 Sparke & Gallagher,

More information

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy?

View of the Galaxy from within. Lecture 12: Galaxies. Comparison to an external disk galaxy. Where do we lie in our Galaxy? Lecture 12: Galaxies View of the Galaxy from within The Milky Way galaxy Rotation curves and dark matter External galaxies and the Hubble classification scheme Plotting the sky brightness in galactic coordinates,

More information

Previous research of NGC 1496 includes photoelectric UBV and photographic RGU photometry by del Rio and Huestamendía in 1987.

Previous research of NGC 1496 includes photoelectric UBV and photographic RGU photometry by del Rio and Huestamendía in 1987. An Examination of the Age of and Distance to NGC 1496 Andrew Wade and Curtis Roberts Sullivan South High School, Kingsport, TN Teacher: Thomas Rutherford, RBSE 2005 ABSTRACT Using the 0.9-meter SARA telescope

More information

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Name: Seat Number: Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional

More information

Lab 4 Radial Velocity Determination of Membership in Open Clusters

Lab 4 Radial Velocity Determination of Membership in Open Clusters Lab 4 Radial Velocity Determination of Membership in Open Clusters Sean Lockwood 1, Dipesh Bhattarai 2, Neil Lender 3 December 2, 2007 Abstract We used the Doppler velocity of 29 stars in the open clusters

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

STRUCTURE AND DYNAMICS OF GALAXIES

STRUCTURE AND DYNAMICS OF GALAXIES STRUCTURE AND DYNAMICS OF GALAXIES 3., classification of galaxies Piet van der Kruit Kapteyn Astronomical Institute University of Groningen, the Netherlands www.astro.rug.nl/ vdkruit Beijing, September

More information

Fundamental stellar parameters

Fundamental stellar parameters Fundamental stellar parameters flux received at Earth f º = direct determination of Teff R = radius of the spherical star, D = distance to the star. Luminosity : L = 4π R 2 F º dº T eff 4 = 4π R 2 F =

More information

Introduction to SDSS -instruments, survey strategy, etc

Introduction to SDSS -instruments, survey strategy, etc Introduction to SDSS -instruments, survey strategy, etc (materials from http://www.sdss.org/) Shan Huang 17 February 2010 Survey type Status Imaging and Spectroscopy Basic Facts SDSS-II completed, SDSS-III

More information

A New Analysis in the Field of the Open Cluster Collinder 223

A New Analysis in the Field of the Open Cluster Collinder 223 Chin. J. Astron. Astrophys. Vol. 4 (2004), No. 1, 67 74 ( http: /www.chjaa.org or http: /chjaa.bao.ac.cn ) Chinese Journal of Astronomy and Astrophysics A New Analysis in the Field of the Open Cluster

More information