Michael Shull (University of Colorado)

Size: px
Start display at page:

Download "Michael Shull (University of Colorado)"

Transcription

1 Early Galaxies, Stars, Metals, and the Epoch of Reionization Michael Shull (University of Colorado) Far-IR Workshop (Pasadena, CA) May 29, 2008

2 Submillimeter Galaxies: only the brightest? How long? [dust forming? de-shrouding]

3 Some Big Picture Questions (1) When and how did the first galaxies form? Was the IMF different? (Mmax, Mmin, slope) Where did the first metals & dust come from? Which galaxies reionized the IGM? Star-formation, ionization efficiency? Primordial coolants? (H2, metals, dust) (2) How did later stars/galaxies assemble? Mergers, cold accretion, rise of metallicity Black Hole Co-Evolution and deshrouding Duration of rapid-accretion, dusty phase?

4 CMB Optical Depth (5-year data: Hinshaw etal 2008) τe = ± zrei 10.8 ± 1.4 This optical depth can be produced by a fully ionized IGM (at z zr 7) τe = 0.05 Plus additional optical depth Δτe 0.03 at z > 7

5 Shull & Venkatesan 2008 CMB Opt Depth: τe (0.05)[(1+zr)/8] 3/2 ioniz by stars/agn (z 7) Barkana 2003

6 Evolution of Low-Metal Stars Tumlinson, Shull, & Venkatesan (2003, ApJ, 584, 608) Why important? Pop III Increased Teff for Pop III stars Pop II at low metallicity Z C = 10-8, 10-7, Msun dominate the IGM ionization but for how long? 10 7 to 10 8 yrs

7 When is the transition (Zero-metal to Pop II stars?) Tumlinson, Venkatesan, & Shull (2004) ApJ, 612, 602 Zero-Metal Peak ~100 Msun Produce Msun of heavy elements (O, Si, Fe) Msun Pair Instability Supernovae

8 Cosmology: Halo Mass Distribution and Baryon fraction fb(z) = baryon fraction in halos f*(z) = fraction of stars formed efficiency of ionization (Ioniz Frac) = fb(z) [f*(z) Nγ fesc(z)] / (clumping) Star formation and stellar astrophysics Interstellar physics and radiative transfer

9 Ionization Efficiency = [f* Nγ fesc ] (type of halos and stars needed at zr > 7) Low Efficiency (zero-metal stars) (Z >10-3 Zsun) High-Effic. Tvir 10 3 K Shull & Venkatesan 2008 Extra CMB optical depth (at z > zr) Pop III mini-halos, stars transition to Pop II

10

11 High-Redshift Star Formation (z = 12.5) -- Cosmic Web H2 cooling

12 What might the First Stars look like? Slow cooling and gravitational collapse of proto-galactic clouds (Abel 2007)

13 Ricotti, Gnedin, & Shull 2008 (ApJ, arxiv: ) < Z < 0.05 Zsun Molecular Hydrogen in Z < 5x10-4 Zsun the Dark Ages With positive feedback xh T 5000 K No feedback

14 Early Star Formation (Mini-halos) DM Halos: f* = x10 7 Msun

15 Star-Formation Rates SFR 0.05 Msun/yr M* 5x10 6 Msun MDM 10 8 Msun

16 Predictions for JWST (K-band) [dwarf primordial galaxies at z > 8] NIRCAM detection limit (10 5 sec) 100 njy sources 10 per field

17 Structure Formation & Metal Transport Oppenheimer, Davé, & Finlator (Princeton Univ.)

18 Growth rate of IGM metallicity (for SFR density over 1 Gyr) Z 1% solar in Gyr Assumed metal yield y m = (per M sun ) SFR density scaled to peak value (z = 2-6) SFR 0.1 M sun yr -1 Mpc -3

19 The first stars, galaxies, and quasars enrich the surrounding gas High-mass stars make O, Si, Fe (and some C) They are prodigious LyC emitters (reionization) What happens next? When does gas cooling exceed adiabatic heating? At what Zcrit does F-S cooling exceed H2 cooling? Transition from (zero-metal) to Pop II stars? Dependence on stellar mass range (O, Si, Fe)? Time-dependent cooling, coupling to CMB?

20 Duration of Metal-Free Phase? (Self-polluting 10 6 Msun halos at z =10-20) t 10 7 to 10 8 yr Rvir = (160 pc) M6 1/3 [20/(1+z)] Tvir = (1060 K) M6 2/3 [(1+z)/20] nvir, H = (0.27 cm -3 ) [(1+z)/20] 3 The rest of metals blow out into the IGM

21 Molecular Cooling (H2 rotational lines) Strongest transitions are from ortho-h 2 (J = 3-1) and from para (J = 2-0) rotational states, excited in neutral clouds primarily by H o - H2 collisions Strongest transitions have critical densities ncr 10 3 to 10 4 cm μm J=3 J = 2 0 (28.22 microns) T exc = 510 K J = 3 1 (17.03 microns) T exc = 1015 K Santoro & Shull (2006, 2008) 28 μm J=2 J=1 J=0

22 Abundant Heavy Elements (with ground-state fine structure lines*) No fine structure in S II, Mg II, Ca II, Ar I C II (2p) 2 P1/2,3/2 O I (2p 4 ) 3 P2,1,0 Si II (3p) 2 P1/2,3/2 Fe II (4s 3d 6 ) 6 D9/2,7/ microns & microns 34.8 microns microns *Assume ionization state set by FUV photons (E < 13.6 ev) Thus, dominant ions are C II, Si II, Fe II

23 Locus of Minimum Zcrit values High-mass stars: nucleosynthetic products (O, Si, Fe) % Solar q Low-density Zcrit track LTE High-density values for Zcrit

24 3.2 3 Time-dependent Cooling zi = 30 Santoro & Shull 2008 temperature 2.8 [Fe/H] = log(t/k) 2.4 Inflection Pt K TCMB 80 K log(n/cm^(-3)) Cooling to n = 10 4 cm -3 requires Zcrit 10-2 Zsun at n = 100 cm -3

25 Jeans Mass [Fe/H] = -4.0 [Fe/H] = Msun 10 Msun LTE fsantoro 17-Oct :57 [1]

26 Fine-Structure Line Luminosities (LTE) (10 8 Msun cooling at 200 K and 0.01 Zsun) [FeII] 26 μm [OI] 63 μm [SiII] 34.8 μm Strongest lines: Fe II 26 μm, O I 63 μm and Si II 35 μm [O I] 63 μm redshifted into the FIR/sub-mm (e.g., 350 μm window) Li = erg/s Fluxes (z=4) to W m -2

27 H2 emission will be much stronger in merging systems More gas ( Msun) and hotter (shocks)

28 Astrophysical Summary Primordial Dwarf galaxies (106-7 Msun) njy sources (K-band) Reionization (z 8-10) by early massive stars and BHs (X-rays) High-z: individual values of Z(C, O, Si, Fe) - enhanced O,Si,Fe) Primordial cooling H 2 and FS lines: FIR at to W m -2 (easier to detect H2 in shocked/merging systems) These observations will require major (large) telescopes

The Pop III/II Transition

The Pop III/II Transition The First Stars and Galaxies: Challenges for the Next Decade March 8-11, 2010 Austin, Texas The Pop III/II Transition Raffaella Schneider INAF/Osservatorio Astrofisico di Arcetri What are the minimal conditions

More information

Outline: Part II. The end of the dark ages. Structure formation. Merging cold dark matter halos. First stars z t Univ Myr.

Outline: Part II. The end of the dark ages. Structure formation. Merging cold dark matter halos. First stars z t Univ Myr. Outline: Part I Outline: Part II The end of the dark ages Dark ages First stars z 20 30 t Univ 100 200 Myr First galaxies z 10 15 t Univ 300 500 Myr Current observational limit: HST and 8 10 m telescopes

More information

Astrochemistry. Lecture 10, Primordial chemistry. Jorma Harju. Department of Physics. Friday, April 5, 2013, 12:15-13:45, Lecture room D117

Astrochemistry. Lecture 10, Primordial chemistry. Jorma Harju. Department of Physics. Friday, April 5, 2013, 12:15-13:45, Lecture room D117 Astrochemistry Lecture 10, Primordial chemistry Jorma Harju Department of Physics Friday, April 5, 2013, 12:15-13:45, Lecture room D117 The first atoms (1) SBBN (Standard Big Bang Nucleosynthesis): elements

More information

The First Galaxies. Erik Zackrisson. Department of Astronomy Stockholm University

The First Galaxies. Erik Zackrisson. Department of Astronomy Stockholm University The First Galaxies Erik Zackrisson Department of Astronomy Stockholm University Outline The first galaxies what, when, why? What s so special about them? Why are they important for cosmology? How can we

More information

Galaxies 626. Lecture 5

Galaxies 626. Lecture 5 Galaxies 626 Lecture 5 Galaxies 626 The epoch of reionization After Reionization After reionization, star formation was never the same: the first massive stars produce dust, which catalyzes H2 formation

More information

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ =

Outline. Walls, Filaments, Voids. Cosmic epochs. Jeans length I. Jeans length II. Cosmology AS7009, 2008 Lecture 10. λ = Cosmology AS7009, 2008 Lecture 10 Outline Structure formation Jeans length, Jeans mass Structure formation with and without dark matter Cold versus hot dark matter Dissipation The matter power spectrum

More information

WFIRST and JWST synergies in the study of First Light. M. Stiavelli STScI, Baltimore

WFIRST and JWST synergies in the study of First Light. M. Stiavelli STScI, Baltimore WFIRST and JWST synergies in the study of First Light M. Stiavelli STScI, Baltimore 1 WFIRST and JWST synergies in the study of First Light Plan: - Detecting the First Stars WFIRST-AFTA as an object finder

More information

Probing the End of Dark Ages with High-redshift Quasars. Xiaohui Fan University of Arizona Dec 14, 2004

Probing the End of Dark Ages with High-redshift Quasars. Xiaohui Fan University of Arizona Dec 14, 2004 Probing the End of Dark Ages with High-redshift Quasars Xiaohui Fan University of Arizona Dec 14, 2004 High-redshift Quasars and the End of Cosmic Dark Ages Existence of SBHs at the end of Dark Ages BH

More information

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan)

Recent Progress in Modeling of Galaxy Formation. Oleg Gnedin (University of Michigan) Recent Progress in Modeling of Galaxy Formation Oleg Gnedin (University of Michigan) In current simulations, galaxies look like this: 10 kpc Disk galaxy at z=3: stars, molecular gas, atomic gas (Zemp,

More information

The First Stars and their Impact on Cosmology

The First Stars and their Impact on Cosmology The First Stars and their Impact on Cosmology V. Bromm University of Texas, Austin, TX 78712, USA Within variants of the cold dark matter model of cosmological structure formation, the first sources of

More information

Age-redshift relation. The time since the big bang depends on the cosmological parameters.

Age-redshift relation. The time since the big bang depends on the cosmological parameters. Age-redshift relation The time since the big bang depends on the cosmological parameters. Lyman Break Galaxies High redshift galaxies are red or absent in blue filters because of attenuation from the neutral

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

FORMATION OF PRIMORDIAL STARS

FORMATION OF PRIMORDIAL STARS Talk@INT, UW, July 5, 2006 FORMATION OF PRIMORDIAL STARS Naoki Yoshida Department of Physics Nagoya University Outline Thermal evolution of a primordial gas - Physics at high densities (cooling, chem.

More information

Abundance Constraints on Early Chemical Evolution. Jim Truran

Abundance Constraints on Early Chemical Evolution. Jim Truran Abundance Constraints on Early Chemical Evolution Jim Truran Astronomy and Astrophysics Enrico Fermi Institute University of Chicago Argonne National Laboratory MLC Workshop Probing Early Structure with

More information

Formation of z~6 Quasars from Hierarchical Galaxy Mergers

Formation of z~6 Quasars from Hierarchical Galaxy Mergers Formation of z~6 Quasars from Hierarchical Galaxy Mergers Yuexing Li et al Presentation by: William Gray Definitions and Jargon QUASAR stands for QUASI-stellAR radio source Extremely bright and active

More information

Astro-2: History of the Universe

Astro-2: History of the Universe Astro-2: History of the Universe Lecture 13; May 30 2013 Previously on astro-2 Energy and mass are equivalent through Einstein s equation and can be converted into each other (pair production and annihilations)

More information

Research Collection. How will we determine the reionization history of the universe?: introduction to session 2. Other Conference Item.

Research Collection. How will we determine the reionization history of the universe?: introduction to session 2. Other Conference Item. Research Collection Other Conference Item How will we determine the reionization history of the universe?: introduction to session 2 Author(s): Haiman, Zoltàn Publication Date: 2003 Permanent Link: https://doi.org/10.3929/ethz-a-004584667

More information

stelle e galassie primordiali

stelle e galassie primordiali stelle e galassie primordiali Raffaella Schneider INAF/Osservatorio Astronomico di Roma Matteo de Bennassuti, PhD INAF/OAR Stefania Marassi, Pdoc INAF/OAR Luca Graziani, Pdoc INAF/OAR Rosa Valiante, Pdoc

More information

Physics of Primordial Star Formation

Physics of Primordial Star Formation Physics of Primordial Star Formation Naoki Yoshida University of Tokyo SFDE17 Bootcamp, Quy Nhon, August 6th So far, we learned 1. The standard cosmological model 2. Growth of density fluctuations 3. Assembly

More information

Search for the FIRST GALAXIES

Search for the FIRST GALAXIES Search for the FIRST GALAXIES R. Pelló IRAP - Institut de Recherche en Astrophysique et Planétologie 1 XIème Ecole de Cosmologie : 17-22 Sep 2012 (Cargèse) Outline 1. Looking for the first galaxies a)

More information

The Probes and Sources of Cosmic Reionization Francesco Haardt University of Como INFN, Milano-Bicocca

The Probes and Sources of Cosmic Reionization Francesco Haardt University of Como INFN, Milano-Bicocca 1 The Probes and Sources of Cosmic Reionization Francesco Haardt University of Insubria@Lake Como INFN, Milano-Bicocca 2 TALK OUTLINE 1. Dark Ages and Reionization 2. Observations: QSO Absorption Lines

More information

Galaxy formation and evolution II. The physics of galaxy formation

Galaxy formation and evolution II. The physics of galaxy formation Galaxy formation and evolution II. The physics of galaxy formation Gabriella De Lucia Astronomical Observatory of Trieste Outline: ü Observational properties of galaxies ü Galaxies and Cosmology ü Gas

More information

Lecture 11: Ages and Metalicities from Observations A Quick Review

Lecture 11: Ages and Metalicities from Observations A Quick Review Lecture 11: Ages and Metalicities from Observations A Quick Review Ages from main-sequence turn-off stars Main sequence lifetime: lifetime = fuel / burning rate $ M " MS = 7 #10 9 % & M $ L " MS = 7 #10

More information

Lyman-alpha intensity mapping during the Epoch of Reionization

Lyman-alpha intensity mapping during the Epoch of Reionization Lyman-alpha intensity mapping during the Epoch of Reionization Mário G. Santos CENTRA IST (Austin, May 15, 2012) Marta Silva, Mario G. Santos, Yan Gong, Asantha Cooray (2012), arxiv:1205.1493 Intensity

More information

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency!

Theoretical ideas About Galaxy Wide Star Formation! Star Formation Efficiency! Theoretical ideas About Galaxy Wide Star Formation Theoretical predictions are that galaxy formation is most efficient near a mass of 10 12 M based on analyses of supernova feedback and gas cooling times

More information

The chemistry and thermodynamics of Pop III star formation

The chemistry and thermodynamics of Pop III star formation The chemistry and thermodynamics of Pop III star formation Where do the first stars form Form in dark matter minihalos with mass Mhalo 5 10 5 M Redshift z = 16-20 Tvir ~ 1000 K Gas density is around 1

More information

Supermassive black hole formation at high redshift

Supermassive black hole formation at high redshift Supermassive black hole formation at high redshift Muhammad Latif Institut d'astrophysique de Paris, France Marta Volonteri, Dominik Schleicher, Melanie Habouzit,Tilman Hartwig, Kazu Omukai, Jens Niemeyer,

More information

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web

3/1/18 LETTER. Instructors: Jim Cordes & Shami Chatterjee. Reading: as indicated in Syllabus on web Astro 2299 The Search for Life in the Universe Lecture 9 Last time: Star formation Formation of protostars and planetary systems This time A few things about the epoch of reionization and free fall times

More information

Published in: LOW-METALLICITY STAR FORMATION: FROM THE FIRST STARS TO DWARF GALAXIES

Published in: LOW-METALLICITY STAR FORMATION: FROM THE FIRST STARS TO DWARF GALAXIES University of Groningen Interstellar Chemistry Spaans, Marco Published in: LOW-METALLICITY STAR FORMATION: FROM THE FIRST STARS TO DWARF GALAXIES DOI: 10.1017/S1743921308024885 IMPORTANT NOTE: You are

More information

Star Formation at the End of the Dark Ages

Star Formation at the End of the Dark Ages Star Formation at the End of the Dark Ages...or when (rest-frame) UV becomes (observed) IR Piero Madau University of California Santa Cruz Distant Star Formation: what who came first? neanderthal Outline

More information

The first black holes

The first black holes The first black holes Marta Volonteri Institut d Astrophysique de Paris M. Habouzit, Y. Dubois, M. Latif (IAP) A. Reines (NOAO) M. Tremmel (University of Washington) F. Pacucci (SNS) High-redshift quasars

More information

Quasar Absorption Lines

Quasar Absorption Lines Tracing the Cosmic Web with Diffuse Gas DARK MATTER GAS STARS NEUTRAL HYDROGEN Quasar Absorption Lines use quasars as bright beacons for probing intervening gaseous material can study both galaxies and

More information

Massive black hole formation in cosmological simulations

Massive black hole formation in cosmological simulations Institut d Astrophysique de Paris IAP - France Massive black hole formation in cosmological simulations Mélanie HABOUZIT Marta Volonteri In collaboration with Yohan Dubois Muhammed Latif Outline Project:

More information

Feedback and Galaxy Formation

Feedback and Galaxy Formation Heating and Cooling in Galaxies and Clusters Garching August 2006 Feedback and Galaxy Formation Simon White Max Planck Institute for Astrophysics Cluster assembly in ΛCDM Gao et al 2004 'Concordance'

More information

First Light And Reionization. Nick Gnedin

First Light And Reionization. Nick Gnedin First Light And Reionization Nick Gnedin Reionization and 5-Year Plans Sovier leaders would love reionization it is a field where every 5 years something interesting happens. SDSS Quasars ~ 2005 z=5.7

More information

The Growth and Radiative Signatures of High Redshift Black Holes

The Growth and Radiative Signatures of High Redshift Black Holes The Growth and Radiative Signatures of High Redshift Black Holes Jarrett Johnson (LANL) with Bhaskar Agarwal (Yale) Joe Smidt (LANL) Brandon Wiggins (LANL, BYU) Dan Whalen (Heidelberg, Portsmouth) Erik

More information

Galaxy Formation, Reionization, the First Stars and Quasars

Galaxy Formation, Reionization, the First Stars and Quasars Ay 127 Galaxy Formation, Reionization, the First Stars and Quasars Coral Wheeler Galaxy Formation The early stages of galaxy evolution no clear-cut boundary has two principal aspects: assembly of the mass,

More information

Feedback, AGN and galaxy formation. Debora Sijacki

Feedback, AGN and galaxy formation. Debora Sijacki Feedback, AGN and galaxy formation Debora Sijacki Formation of black hole seeds: the big picture Planck data, 2013 (new results 2015) Formation of black hole seeds: the big picture CMB black body spectrum

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

3 Observational Cosmology Evolution from the Big Bang Lecture 2

3 Observational Cosmology Evolution from the Big Bang Lecture 2 3 Observational Cosmology Evolution from the Big Bang Lecture 2 http://www.sr.bham.ac.uk/~smcgee/obscosmo/ Sean McGee smcgee@star.sr.bham.ac.uk http://www.star.sr.bham.ac.uk/~smcgee/obscosmo Nucleosynthesis

More information

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio.

Dust [12.1] Star clusters. Absorb and scatter light Effect strongest in blue, less in red, zero in radio. More abs. Dust [1.1] kev V Wavelength Optical Infra-red More abs. Wilms et al. 000, ApJ, 54, 914 No grains Grains from http://www.astro.princeton.edu/~draine/dust/dustmix.html See DraineH 003a, column

More information

Physics of the hot evolving Universe

Physics of the hot evolving Universe Physics of the hot evolving Universe Science themes for a New-Generation X-ray Telescope Günther Hasinger Max-Planck-Institut für extraterrestrische Physik Garching ESA Cosmic Vision 2015-2025 Workshop,

More information

Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas)

Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas) Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas) Emission lines arise from permitted (recombination) and forbidden

More information

Theoretical Cosmology and Galaxy Formation at UMD

Theoretical Cosmology and Galaxy Formation at UMD Theoretical Cosmology and Galaxy Formation at UMD Massimo Ricotti (Associate Professor, Dept. of Astronomy) Current group members: Owen Parry (Postdoc) Sam Leithner (CTC postdoc) Emil Polisensky (PhD student)

More information

Simulations of First Star Formation

Simulations of First Star Formation Simulations of First Star Formation Michael L. Norman (UCSD) Brian O Shea (LANL) 1 Formation of the first stars: current paradigm (Abel et al. 2002, Bromm et al. 2002,Yoshida et al. 2006) DM halos of M~10

More information

Emission lines from galaxies in the Epoch of Reioniza5on

Emission lines from galaxies in the Epoch of Reioniza5on Emission lines from galaxies in the Epoch of Reioniza5on Simona Gallerani Emanuele Sobacchi, Andrea Ferrara, Livia Vallini, Andrea PalloBni, CarloDa Gruppioni, Andrei Mesinger Monte Mario, Roma, SPICA

More information

Cosmological simulations of X-ray heating during the Universe s Dark Ages

Cosmological simulations of X-ray heating during the Universe s Dark Ages Cosmological simulations of X-ray heating during the Universe s Dark Ages Jordan Mirocha 1,5, Jack Burns 1,5, Eric Hallman 2,5, Steven Furlanetto 3,6, John Wise 4 1 University of Colorado at Boulder 2

More information

The Interplay Between Galaxies and Black Holes A Theoretical Overview. Massimo Ricotti (U of Maryland)

The Interplay Between Galaxies and Black Holes A Theoretical Overview. Massimo Ricotti (U of Maryland) The Interplay Between Galaxies and Black Holes A Theoretical Overview Massimo Ricotti (U of Maryland) ..a tale of many sleepless nights Maya and Noemi Ricotti Cosmological Context Outline Formation of

More information

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History.

Lecture 11: Ages and Metalicities from Observations. A Quick Review. Multiple Ages of stars in Omega Cen. Star Formation History. Ages from main-sequence turn-off stars Lecture 11: Main sequence lifetime: Ages and Metalicities from Observations R diagram lifetime = fuel / burning rate MV *1 M ' L ' MS = 7 10 9 ) ) M. ( L. ( A Quick

More information

Astronomy 730. Evolution

Astronomy 730. Evolution Astronomy 730 Evolution Outline } Evolution } Formation of structure } Processes on the galaxy scale } Gravitational collapse, merging, and infall } SF, feedback and chemical enrichment } Environment }

More information

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures

The Iguaçu Lectures. Nonlinear Structure Formation: The growth of galaxies and larger scale structures April 2006 The Iguaçu Lectures Nonlinear Structure Formation: The growth of galaxies and larger scale structures Simon White Max Planck Institute for Astrophysics z = 0 Dark Matter ROT EVOL Cluster structure

More information

Bridging the near and the far: constraints on first star formation from stellar archaeology. Raffaella Schneider Sapienza University of Rome

Bridging the near and the far: constraints on first star formation from stellar archaeology. Raffaella Schneider Sapienza University of Rome Bridging the near and the far: constraints on first star formation from stellar archaeology Raffaella Schneider Sapienza University of Rome Kyoto,First Stars IV 2012 Kyoto,First Stars IV 2012 "As we extend

More information

The Supermassive Seeds of Supermassive Black Holes

The Supermassive Seeds of Supermassive Black Holes The Supermassive Seeds of Supermassive Black Holes Jarrett Johnson (LANL) with Hui Li, Joe Smidt, Dan Whalen, Wes Even, Chris Fryer (LANL) Bhaskar Agarwal, Claudio Dalla Vecchia, Eyal Neistein (MPE) Ken

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Formation and growth of galaxies in the young Universe: progress & challenges

Formation and growth of galaxies in the young Universe: progress & challenges Obergurgl. April 2014 Formation and growth of galaxies in the young Universe: progress & challenges Simon White Max Planck Institute for Astrophysics Ly α forest spectra and small-scale initial structure

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

Lecture 27 The Intergalactic Medium

Lecture 27 The Intergalactic Medium Lecture 27 The Intergalactic Medium 1. Cosmological Scenario 2. The Ly Forest 3. Ionization of the Forest 4. The Gunn-Peterson Effect 5. Comment on HeII Reionization References J Miralda-Escude, Science

More information

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas Photodissociation Regions Radiative Transfer Dr. Thomas G. Bisbas tbisbas@ufl.edu Interstellar Radiation Field In the solar neighbourhood, the ISRF is dominated by six components Schematic sketch of the

More information

The Intergalactic Medium: Overview and Selected Aspects

The Intergalactic Medium: Overview and Selected Aspects The Intergalactic Medium: Overview and Selected Aspects Draft Version Tristan Dederichs June 18, 2018 Contents 1 Introduction 2 2 The IGM at high redshifts (z > 5) 2 2.1 Early Universe and Reionization......................................

More information

Formation and cosmic evolution of supermassive black holes. Debora Sijacki

Formation and cosmic evolution of supermassive black holes. Debora Sijacki Formation and cosmic evolution of supermassive black holes Debora Sijacki Summer school: Black Holes at all scales Ioannina, Greece, Sept 16-19, 2013 Lecture 1: - formation of black hole seeds - low mass

More information

QSO ABSORPTION LINE STUDIES with the HUBBLE SPACE TELESCOPE

QSO ABSORPTION LINE STUDIES with the HUBBLE SPACE TELESCOPE QSO ABSORPTION LINE STUDIES with the HUBBLE SPACE TELESCOPE COLORADO GROUP: JOHN STOCKE, MIKE SHULL, JAMES GREEN, STEVE PENTON, CHARLES DANFORTH, BRIAN KEENEY Results thus far based on: > 300 QSO ABSORBERS

More information

The Pop III IMF: A Progress Report. Michael L. Norman University of California, San Diego & San Diego Supercomputer Center

The Pop III IMF: A Progress Report. Michael L. Norman University of California, San Diego & San Diego Supercomputer Center The Pop III IMF: A Progress Report Michael L. Norman University of California, San Diego & San Diego Supercomputer Center Disclaimer Notion of Pop III IMF is not well-defined We don t observe Pop III stars

More information

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg

THE GALACTIC CORONA. In honor of. Jerry Ostriker. on his 80 th birthday. Chris McKee Princeton 5/13/2017. with Yakov Faerman Amiel Sternberg THE GALACTIC CORONA In honor of Jerry Ostriker on his 80 th birthday Chris McKee Princeton 5/13/2017 with Yakov Faerman Amiel Sternberg A collaboration that began over 40 years ago and resulted in a lifelong

More information

GALAXIES 626. The Milky Way II. Chemical evolution:

GALAXIES 626. The Milky Way II. Chemical evolution: GALAXIES 626 The Milky Way II. Chemical evolution: Chemical evolution Observation of spiral and irregular galaxies show that the fraction of heavy elements varies with the fraction of the total mass which

More information

The Tempest Simulations Milky Way-type Galaxies, their Environments and Progenitors

The Tempest Simulations Milky Way-type Galaxies, their Environments and Progenitors The Tempest Simulations Milky Way-type Galaxies, their Environments and Progenitors John Wise Brian O Shea (PI, MSU) David Collins (FSU), Cameron Hummels (Caltech), Devin Silvia (MSU), Britton Smith (SDSC)

More information

Chapter One. Introduction

Chapter One. Introduction Chapter One Introduction The subject of this book is the most beautiful component of galaxies the gas and dust between the stars, or interstellar medium. The interstellar medium, or ISM, is, arguably,

More information

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau Bachelor of Physics, Master of Astrophysics Université de Strasbourg PhD, Université Paris-Diderot Observatoire de Strasbourg Les

More information

The First Black Holes and. their Host Galaxies. John Wise

The First Black Holes and. their Host Galaxies. John Wise The First Black Holes and John Wise Chao Shi (GT), Pengfei Chen (UCSD), Ayçin Aykutalp (GT), Tom Abel (Stanford), Peter Johansson (Helsinki), Michael Norman (UCSD), Brian O Shea (MSU), John Regan (Helsinki),

More information

High-Redshift Galaxies at the Epoch of Cosmic Reionization

High-Redshift Galaxies at the Epoch of Cosmic Reionization High-Redshift Galaxies at the Epoch of Cosmic Reionization Linhua Jiang ( 江林华 ) (KIAA, Peking University) 2014 KIAA-PKU Astrophysics Forum Collaborators: F. Bian, B. Clement, S. Cohen, R. Dave, E. Egami,

More information

Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation. Bram Venemans MPIA Heidelberg

Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation. Bram Venemans MPIA Heidelberg Illuminating the Dark Ages: Luminous Quasars in the Epoch of Reionisation Bram Venemans MPIA Heidelberg Workshop The Reionization History of the Universe Bielefeld University, March 8-9 2018 History of

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

Are most galaxies in the Universe TSTS:Too shy to shine?

Are most galaxies in the Universe TSTS:Too shy to shine? Are most galaxies in the Universe TSTS:Too shy to shine? R. Giovanelli UAT Workshop @ AO is grand Jan 2015 Some statistical tools with paucity of flashy pix (* ): The HI mass function which tells us the

More information

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009

Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Supernova Feedback in Low and High Mass Galaxies: Luke Hovey 10 December 2009 Galactic Winds: Mathews, W. et al. 1971 Effects of Supernovae on the Early Evolution of Galaxies: Larson, R. 1974 The origin

More information

The first stars and primordial IMBHs

The first stars and primordial IMBHs The first stars and primordial IMBHs Ab initio predictions of black hole merger rates by the time LISA flies? Tom Abel Penn State Initial Conditions Time Evolution z=100 z=24 z=20.4 10 comoving kpc Cosmological

More information

M. Dijkstra (UiO) Aspen, Mark Dijkstra. with: Shiv Sethi (RRI), Abraham Loeb (CfA), Max Gronke (UiO) & David Sobral (Lancaster)

M. Dijkstra (UiO) Aspen, Mark Dijkstra. with: Shiv Sethi (RRI), Abraham Loeb (CfA), Max Gronke (UiO) & David Sobral (Lancaster) Mark Dijkstra with: Shiv Sethi (RRI), Abraham Loeb (CfA), Max Gronke (UiO) & David Sobral (Lancaster) arxiv:1601.04712 (ApJ accepted), Dijkstra, Sethi & Loeb arxiv:1602.07695 (resubmitted to ApJ), Dijkstra,

More information

The Formation and Evolution of Galaxy Clusters

The Formation and Evolution of Galaxy Clusters IAU Joint Discussion # 10 Sydney, July, 2003 The Formation and Evolution of Galaxy Clusters Simon D.M. White Max Planck Institute for Astrophysics The WMAP of the whole CMB sky Bennett et al 2003 > 105

More information

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics

The Millennium Simulation: cosmic evolution in a supercomputer. Simon White Max Planck Institute for Astrophysics The Millennium Simulation: cosmic evolution in a supercomputer Simon White Max Planck Institute for Astrophysics The COBE satellite (1989-1993) Two instruments made maps of the whole sky in microwaves

More information

The Epoch of Reionization: Observational & Theoretical Topics

The Epoch of Reionization: Observational & Theoretical Topics The Epoch of Reionization: Observational & Theoretical Topics Lecture 1 Lecture 2 Lecture 3 Lecture 4 Current constraints on Reionization Physics of the 21cm probe EoR radio experiments Expected Scientific

More information

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies!

3/6/12! Astro 358/Spring 2012! Galaxies and the Universe! Dark Matter in Spiral Galaxies. Dark Matter in Galaxies! 3/6/12 Astro 358/Spring 2012 Galaxies and the Universe Dark Matter in Galaxies Figures + Tables for Lectures (Feb 16-Mar 6) Dark Matter in Spiral Galaxies Flat rotation curve of Milky Way at large radii

More information

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %).

Galaxies. The majority of known galaxies fall into one of three major classes: spirals (78 %), ellipticals (18 %) and irregulars (4 %). Galaxies Collection of stars, gas and dust bound together by their common gravitational pull. Galaxies range from 10,000 to 200,000 light-years in size. 1781 Charles Messier 1923 Edwin Hubble The distribution

More information

arxiv:astro-ph/ v2 2 Feb 2003

arxiv:astro-ph/ v2 2 Feb 2003 submitted to ApJ, February 1 Preprint typeset using L A TEX style emulateapj v. 04/03/99 SIMULATIONS OF EARLY STRUCTURE FORMATION: PRIMORDIAL GAS CLOUDS arxiv:astro-ph/0301645v2 2 Feb 2003 Naoki Yoshida

More information

THE ROLE OF RADIATION PRESSURE IN HIGH-Z DWARF GALAXIES

THE ROLE OF RADIATION PRESSURE IN HIGH-Z DWARF GALAXIES THE ROLE OF RADIATION PRESSURE IN HIGH-Z DWARF GALAXIES John Wise (Georgia Tech) Tom Abel (Stanford), Michael Norman (UC San Diego), Britton Smith (Michigan State), Matthew Turk (Columbia) 14 Dec 2012

More information

Black Holes in the Early Universe Accretion and Feedback

Black Holes in the Early Universe Accretion and Feedback 1 1 Black Holes in the Early Universe Accretion and Feedback 1 1 Black Holes in the Early Universe Accretion and Feedback Geoff Bicknell & Alex Wagner Australian National University 1 1 High redshift radio

More information

BUILDING GALAXIES. Question 1: When and where did the stars form?

BUILDING GALAXIES. Question 1: When and where did the stars form? BUILDING GALAXIES The unprecedented accuracy of recent observations of the power spectrum of the cosmic microwave background leaves little doubt that the universe formed in a hot big bang, later cooling

More information

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy

Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher accuracy 12-14 April 2006, Rome, Italy Francesco Melchiorri Memorial Conference Planck was conceived to confirm the robustness of the ΛCDM concordance model when the relevant quantities are measured with much higher

More information

High-Redshift Galaxies: A brief summary

High-Redshift Galaxies: A brief summary High-Redshift Galaxies: A brief summary Brant Robertson (Caltech) on behalf of David Law (UCLA), Bahram Mobasher (UCR), and Brian Siana (Caltech/Incoming CGE) Observable Cosmological History t~3.7x10 5

More information

Galaxy formation in cold dark matter

Galaxy formation in cold dark matter Galaxy formation in cold dark matter Cheng Zhao Tsinghua Center for Astrophysics Oct 27, 2017 Main references: Press & Schechter, 1974 White & Rees, 1978 Galaxy formation mechanism Cosmological initial

More information

Galaxy Formation: Overview

Galaxy Formation: Overview Galaxy Formation: Overview Houjun Mo March 30, 2004 The basic picture Formation of dark matter halos. Gas cooling in dark matter halos Star formation in cold gas Evolution of the stellar populaion Metal

More information

Supernova events and neutron stars

Supernova events and neutron stars Supernova events and neutron stars So far, we have followed stellar evolution up to the formation of a C-rich core. For massive stars ( M initial > 8 M Sun ), the contracting He core proceeds smoothly

More information

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc.

Chapter 16 Lecture. The Cosmic Perspective Seventh Edition. Star Birth Pearson Education, Inc. Chapter 16 Lecture The Cosmic Perspective Seventh Edition Star Birth 2014 Pearson Education, Inc. Star Birth The dust and gas between the star in our galaxy is referred to as the Interstellar medium (ISM).

More information

Isotropy and Homogeneity

Isotropy and Homogeneity Cosmic inventory Isotropy and Homogeneity On large scales the Universe is isotropic (looks the same in all directions) and homogeneity (the same average density at all locations. This is determined from

More information

A1199 Are We Alone? " The Search for Life in the Universe

A1199 Are We Alone?  The Search for Life in the Universe ! A1199 Are We Alone? " The Search for Life in the Universe Instructor: Shami Chatterjee! Summer 2018 Web Page: http://www.astro.cornell.edu/academics/courses/astro1199/! HW2 now posted...! So far: Cosmology,

More information

Components of Galaxies Gas The Importance of Gas

Components of Galaxies Gas The Importance of Gas Components of Galaxies Gas The Importance of Gas Fuel for star formation (H 2 ) Tracer of galaxy kinematics/mass (HI) Tracer of dynamical history of interaction between galaxies (HI) The Two-Level Atom

More information

Dust production by various types of supernovae

Dust production by various types of supernovae Dust production by various types of supernovae Takaya Nozawa ( 野沢貴也 ) IPMU, University of Tokyo, Kashiwa, Japan Collaborators: T. Kozasa (Hokkaido Univ.), N. Tominaga (Konan Univ.) K. Maeda, M. Tanaka,

More information

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab Dark Matter ASTR 2120 Sarazin Bullet Cluster of Galaxies - Dark Matter Lab Mergers: Test of Dark Matter vs. Modified Gravity Gas behind DM Galaxies DM = location of gravity Gas = location of most baryons

More information

Lecture 9. Quasars, Active Galaxies and AGN

Lecture 9. Quasars, Active Galaxies and AGN Lecture 9 Quasars, Active Galaxies and AGN Quasars look like stars but have huge redshifts. object with a spectrum much like a dim star highly red-shifted enormous recessional velocity huge distance (Hubble

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

How to cheat with maps. perfectly sensible, honest version

How to cheat with maps. perfectly sensible, honest version How to cheat with maps watch out for weasel maps : logarithmic (favors solar system) conformal (blows up BB singularity into something significant, popular with CMB types) comoving (makes the local universe

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture11; November 1, 2016 Previously on Astro-1 Introduction to stars Measuring distances Inverse square law: luminosity vs brightness Colors and spectral types, the H-R diagram

More information

AST Cosmology and extragalactic astronomy. Lecture 19. Let there be light! Stars...

AST Cosmology and extragalactic astronomy. Lecture 19. Let there be light! Stars... AST4320 - Cosmology and extragalactic astronomy Lecture 19 Let there be light! Stars... 1 GMCs are `supersonically turbulent. Turbulence: Starformation Inside GMCs. GMCs are `supersonically turbulent.

More information