Claudius Ptolemy. Logic at its Best. Mathematical Reasoning. Saving the Heavens

Size: px
Start display at page:

Download "Claudius Ptolemy. Logic at its Best. Mathematical Reasoning. Saving the Heavens"

Transcription

1 Claudius Ptolemy Saving the Heavens SC/STS 3760, V 1 Logic at its Best Where Plato and Aristotle agreed was over the role of reason and precise logical thinking. Plato: From abstraction to new abstraction. Aristotle: From empirical generalizations to unknown truths. SC/STS 3760, V 2 Mathematical Reasoning Plato s Academy excelled in training mathematicians. Aristotle s Lyceum excelled in working out logical systems. They came together in a great mathematical system. SC/STS 3760, V 3

2 The Structure of Ancient Greek Civilization Ancient Greek civilization is divided into two major periods, marked by the death of Alexander the Great. SC/STS 3760, V 4 Hellenic Period From the time of Homer to the death of Alexander is the Hellenic Period, BCE. When the written Greek language evolved. When the major literary and philosophical works were written. When the Greek colonies grew strong and were eventually pulled together into an empire by Alexander the Great. SC/STS 3760, V 5 Hellenistic Period From the death of Alexander to the annexation of the Greek peninsula into the Roman Empire, and then on with diminishing influence until the fall of Rome. 323 BCE to 27 BCE, but really continuing its influence until the 5 th century CE. SC/STS 3760, V 6

3 Science in the Hellenistic Age The great philosophical works were written in the Hellenic Age. The most important scientific works from Ancient Greece came from the Hellenistic Age. SC/STS 3760, V 7 Alexandria, Egypt Alexander the Great conquered Egypt, where a city near the mouth of the Nile was founded in his honour. Ptolemy Soter, Alexander s general in Egypt, established a great center of learning and research in Alexandria: The Museum. SC/STS 3760, V 8 The Museum The Museum temple to the Muses became the greatest research centre of ancient times, attracting scholars from all over the ancient world. Its centerpiece was the Library, the greatest collection of written works in antiquity, about 600,000 papyrus rolls. SC/STS 3760, V 9

4 Euclid Euclid headed up mathematical studies at the Museum. Little else is known about his life. He may have studied at Plato s Academy. SC/STS 3760, V 10 Euclid s Elements Euclid is now remembered for only one work, called The Elements. 13 books or volumes. Contains almost every known mathematical theorem, with logical proofs. SC/STS 3760, V 11 The Influence of the Elements Euclid s Elements is the second most widely published book in the world, after the Bible. It was the definitive and basic textbook of mathematics used in schools up to the early 20 th century. SC/STS 3760, V 12

5 Axioms What makes Euclid s Elements distinctive is that it starts with stated assumptions and derives all results from them, systematically. The style of argument is Aristotelian logic. The subject matter is Platonic forms. SC/STS 3760, V 13 Axioms, 2 The axioms, or assumptions, are divided into three types: Definitions Postulates Common notions All are assumed true. SC/STS 3760, V 14 Definitions The definitions simply clarify what is meant by technical terms. E.g., 1. A point is that which has no part. 2. A line is breadthless length. 10. When a straight line set up on a straight line makes the adjacent angles equal to one another, each of the equal angles is right, and the straight line standing on the other is called a perpendicular to that on which it stands. 15. A circle is a plane figure contained by one line such that all the straight lines falling upon it from one point among those lying within the figure are equal to one another. SC/STS 3760, V 15

6 Postulates There are 5 postulates. The first 3 are construction postulates, saying that he will assume that he can produce (Platonic) figures that meet his ideal definitions: 1. To draw a straight line from any point to any point. 2. To produce a finite straight line continuously in a straight line. 3. To describe a circle with any centre and distance. SC/STS 3760, V 16 Postulate 4 4. That all right angles are equal to one another. Note that the equality of right angles was not rigorously implied by the definition. 10. When a straight line set up on a straight line makes the adjacent angles equal to one another, each of the equal angles is right. There could be other right angles not equal to these. The postulate rules that out. SC/STS 3760, V 17 The Controversial Postulate 5 d a e c f b g 5. That, if a straight line falling on two straight lines make the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely, meet on that side on which are the angles less than the two right angles. SC/STS 3760, V 18

7 The Parallel Postulate d a e c f b g One of Euclid s definitions was that lines are parallel if they never meet. Postulate 5, usually called the parallel postulate, gives a criterion for lines not being parallel. SC/STS 3760, V 19 The Common Notions Finally, Euclid adds 5 common notions for completeness. These are really essentially logical principles rather than specifically mathematical ideas: 1. Things which are equal to the same thing are also equal to one another. 2. If equals be added to equals, the wholes are equal. 3. If equals be subtracted from equals, the remainders are equal. 4. Things which coincide with one another are equal to one another. 5. The whole is greater than the part. SC/STS 3760, V 20 An Axiomatic System After all this preamble, Euclid is finally ready to prove some mathematical propositions. The virtue of this approach is that the assumptions are all laid out ahead. Nothing that follows makes further assumptions. SC/STS 3760, V 21

8 Axiomatic Systems The assumptions are clear and can be referred to. The deductive arguments are also clear and can be examined for logical flaws. The truth of any proposition then depends entirely on the assumptions and on the logical steps. And, the system builds. Once some propositions are established, they can be used to establish others. Aristotle s methodology applied to mathematics. SC/STS 3760, V 22 Building Knowledge with an Axiomatic System Generally agreed upon premises ("obviously" true) Tight logical implication Proofs by: 1. Construction 2. Exhaustion 3. Reductio ad absurdum (reduction to absurdity) -- assume a premise to be true -- deduce an absurd result SC/STS 3760, V 23 Example: Proposition IX.20 There is no limit to the number of prime numbers Proved by 1. Constructing a new number. 2. Considering the consequences whether it is prime or not (method of exhaustion). 3. Showing that there is a contraction if there is not another prime number. (reduction ad absurdum). SC/STS 3760, V 24

9 Proof of Proposition IX.20 Given a set of prime numbers, {P 1,P 2,P 3,...P k } 1. Let Q = P 1 P 2 P 3...P k + 1 (Multiply them all together and add 1) 2. Q is either a new prime or a composite 3. If a new prime, the given set of primes is not complete. Example 1: {2,3,5} Q=2x3x5+1 =31 Q is prime, so the original set was not complete. 31 is not 2, 3, or 5 Example 2: {3,5,7} Q=3x5x7+1 =106 Q is composite. SC/STS 3760, V 25 Proof of Proposition IX If a composite, Q must be divisible by a prime number. -- Due to Proposition VII.31, previously proven. -- Let that prime number be G. 5. G is either a new prime or one of the original set, {P 1,P 2,P 3,...P k } 6. If G is one of the original set, it is divisible into P 1 P 2 P 3...P k If so, G is also divisible into 1, (since G is divisible into Q) 7. This is an absurdity. Q=106=2x53. Let G=2. G is a new prime (not 3, 5, or 7). If G was one of 3, 5, or 7, then it would be divisible into 3x5x7=105. But it is divisible into 106. Therefore it would be divisible into 1. This is absurd. SC/STS 3760, V 26 Proof of Proposition IX.20 Follow the absurdity backwards. Trace back to assumption (line 6), that G was one of the original set. That must be false. The only remaining possibilities are that Q is a new prime, or G is a new prime. In any case, there is a prime other than the original set. Since the original set was of arbitrary size, there is always another prime, no matter how many are already accounted for. SC/STS 3760, V 27

10 Euclid s Elements at work Euclid s Elements quickly became the standard text for teaching mathematics at the Museum at Alexandria. Philosophical questions about the world could now be attacked with exact mathematical reasoning. SC/STS 3760, V 28 Eratosthenes of Cyrene BCE Born in Cyrene, in North Africa (now in Lybia). Studied at Plato s Academy. Appointed Librarian at the Museum in Alexandria. SC/STS 3760, V 29 Beta Eratosthenes was prolific. He worked in many fields. He was a: Poet Historian Mathematician Astronomer Geographer He was nicknamed Beta. Not the best at anything, but the second best at many things. SC/STS 3760, V 30

11 Eratosthenes Map He coined the word geography and drew one of the first maps of the world (above). SC/STS 3760, V 31 Using Euclid Eratosthenes made very clever use of a few scant observations, plus a theorem from Euclid to decide one of the great unanswered questions about the world. SC/STS 3760, V 32 Eratosthenes had heard that in the town of Syene (now Aswan) in the south of Egypt, at noon on the summer solstice (June 21 for us) the sun was directly overhead. I.e. A perfectly upright pole (a gnomon) cast no shadow. Or, one could look directly down in a well and see one s reflection. His data SC/STS 3760, V 33

12 Based on reports from on a heavily travelled trade route, Eratosthenes calculated that Alexandria was 5000 stadia north of Syene. His data, 2 SC/STS 3760, V 34 Eratosthenes then measured the angle formed by the sun s rays and the upright pole (gnomon) at noon at the solstice in Alexandria. (Noon marked by when the shadow is shortest.) The angle was His data, 3 SC/STS 3760, V 35 Proposition I.29 from Euclid b a b a a b a b A straight line falling on parallel straight lines makes the alternate angles equal to one another, the exterior angle equal to the interior and opposite angle, and the interior angles on the same side equal to two right angles. SC/STS 3760, V 36

13 Eratosthenes reasoned that by I.29, the angle produced by the sun s rays falling on the gnomon at Alexandria is equal to the angle between Syene and Alexandria at the centre of the Earth. SC/STS 3760, V 37 Calculating the size of the Earth The angle at the gnomon, α, was 7 12, therefore the angle at the centre of the Earth, β, was is also 7 12 which is 1/50 of a complete circle. Therefore the circumference of the Earth had to be stadia = 250,000 stadia x 50 = x 5000 = 250,000 SC/STS 3760, V 38 Eratosthenes working assumptions 1. The Sun is very far away, so any light coming from it can be regarded as traveling in parallel lines. 2. The Earth is a perfect sphere. 3. A vertical shaft or a gnomon extended downwards will pass directly through the center of the Earth. 4. Alexandria is directly north of Syene, or close enough for these purposes. SC/STS 3760, V 39

14 A slight correction Later Eratosthenes made a somewhat finer observation and calculation and concluded that the circumference was 252,000 stadia. So, how good was his estimate. It depends. SC/STS 3760, V 40 What, exactly, are stadia? Stadia are long measures of length in ancient times. A stade (singular of stadia) is the length of a stadium. And that was? SC/STS 3760, V 41 Stadium lengths In Greece the typical stadium was 185 metres. In Egypt, where Eratosthenes was, the stade unit was metres. SC/STS 3760, V 42

15 Comparative figures Stade Length m m 185 m 185 m In Stadia 250, , , ,000 Circumference In km 39,375 39,690 46,250 46,620 Compared to the modern figure for polar circumference of 39,942 km, Eratosthenes was off by at worst 17% and at best by under 1%. SC/STS 3760, V 43 An astounding achievement Eratosthenes showed that relatively simple mathematics was sufficient to determine answers to many of the perplexing questions about nature. SC/STS 3760, V 44 Hipparchus of Rhodes Hipparchus of Rhodes Became a famous astronomer in Alexandria. Around 150 BCE developed a new tool for measuring relative distances of the stars from each other by the visual angle between them. SC/STS 3760, V 45

16 The Table of Chords Hipparchus invented the table of chords, a list of the ratio of the size of the chord of a circle to its radius associated with the angle from the centre of the circle that spans the chord. The equivalent of the sine function in trigonometry. SC/STS 3760, V 46 Precession of the equinoxes Hipparchus also calculated that there is a very slow shift in the heavens that makes the solar year not quite match the siderial ( star ) year. This is called precession of the equinoxes. He noted that the equinoxes come slightly earlier every year. The entire cycle takes about 26,000 years to complete. Hipparchus was able to discover this shift and to calculate its duration accurately, but the ancients had no understanding what might be its cause. SC/STS 3760, V 47 The Problem of the Planets, again 300 years after Hipparchus, another astronomer uses his calculating devices to create a complete system of the heavens, accounting for the weird motions of the planets. Finally a system of geometric motions is devised to account for the positions of the planets in the sky mathematically. SC/STS 3760, V 48

17 Claudius Ptolemy Lived about 150 CE, and worked in Alexandria at the Museum. SC/STS 3760, V 49 Like Eratosthenes, Ptolemy studied the Earth as well as the heavens. One of his major works was his Geography, one of the first realistic atlases of the known world. Ptolemy s s Geography SC/STS 3760, V 50 The Almagest Ptolemy s major work was his Mathematical Composition. In later years it was referred as The Greatest (Composition), in Greek, Megiste. When translated into Arabic it was called al Megiste. When the work was translated into Latin and later English, it was called The Almagest. SC/STS 3760, V 51

18 The Almagest, 2 The Almagest attempts to do for astronomy what Euclid did for mathematics: Start with stated assumptions. Use logic and established mathematical theorems to demonstrate further results. Make one coherent system It even had 13 books, like Euclid. SC/STS 3760, V 52 Euclid-like like assumptions 1. The heavens move spherically. 2. The Earth is spherical. 3. Earth is in the middle of the heavens. 4. The Earth has the ratio of a point to the heavens. 5. The Earth is immobile. SC/STS 3760, V 53 Plato versus Aristotle Euclid s assumptions were about mathematical objects. Matters of definition. Platonic forms, idealized. Ptolemy s assumptions were about the physical world. Matters of judgement and decision. Empirical assessments and common sense. SC/STS 3760, V 54

19 Ptolemy s s Universe The basic framework of Ptolemy s view of the cosmos is the Empedocles two-sphere model: Earth in the center, with the four elements. The celestial sphere at the outside, holding the fixed stars and making a complete revolution once a day. The seven wandering stars planets were deemed to be somewhere between the Earth and the celestial sphere. SC/STS 3760, V 55 The Eudoxus-Aristotle system for the Planets In the system of Eudoxus, extended by Aristotle, the planets were the visible dots embedded on nested rotating spherical shells, centered on the Earth. SC/STS 3760, V 56 The Eudoxus-Aristotle system for the Planets, 2 The motions of the visible planet were the result of combinations of circular motions of the spherical shells. For Eudoxus, these may have just been geometric, i.e. abstract, paths. For Aristotle the spherical shells were real physical objects, made of the fifth element. SC/STS 3760, V 57

20 The Ptolemaic system Ptolemy s system was purely geometric, like Eudoxus, with combinations of circular motions. But they did not involve spheres centered on the Earth. Instead they used a device that had been invented by Hipparchus 300 years before: Epicycles and Deferents. SC/STS 3760, V 58 Epicycles and Deferents Ptolemy s system for each planet involves a large (imaginary) circle around the Earth, called the deferent, on which revolves a smaller circle, the epicycle. The visible planet sits on the edge of the epicycle. Both deferent and epicycle revolve in the same direction. SC/STS 3760, V 59 Accounting for Retrograde Motion The combined motions of the deferent and epicycle make the planet appear to turn and go backwards against the fixed stars. SC/STS 3760, V 60

21 Saving the Appearances An explanation for the strange apparent motion of the planets as acceptable motions for perfect heavenly bodies. The planets do not start and stop and change their minds. They just go round in circles, eternally. SC/STS 3760, V 61 How did it fit the facts? The main problem with Eudoxus and Aristotle s models was that they did not track that observed motions of the planets very well. Ptolemy s was much better at putting the planet in the place where it is actually seen. SC/STS 3760, V 62 But only up to a point. Ptolemy s basic model was better than anything before, but still planets deviated a lot from where his model said they should be. First solution: Vary the relative sizes of epicycle, deferent, and rates of motion. SC/STS 3760, V 63

22 Second solution: The Eccentric Another tack: Move the centre of the deferent away from the Earth. The planet still goes around the epicycle and the epicycle goes around the deferent. SC/STS 3760, V 64 Third Solution: The Equant Point The most complex solution was to define another centre for the deferent. The equant point was the same distance from the centre of the deferent as the Earth, but on the other side. SC/STS 3760, V 65 Third Solution: The Equant Point, 2 The epicycle maintained a constant distance from the physical centre of the deferent, while maintaining a constant angular motion around the equant point. SC/STS 3760, V 66

23 Ptolemy s s system worked Unlike other astronomers, Ptolemy actually could specify where in the sky a star or planet would appear throughout its cycle within acceptable limits. He saved the appearances. He produced an abstract, mathematical account that explained the sensible phenomena by reference to Platonic forms. SC/STS 3760, V 67 But did it make any sense? Ptolemy gave no reasons why the planets should turn about circles attached to circles in arbitrary positions in the sky. Despite its bizarre account, Ptolemy s model remained the standard cosmological view for 1400 years. SC/STS 3760, V 68

4 ERATOSTHENES OF CYRENE

4 ERATOSTHENES OF CYRENE 4 ERATOSTHENES OF CYRENE BIOGRAPHY 990L ERATOSTHENES OF CYRENE MEASURING THE CIRCUMFERENCE OF THE EARTH Born c. 276 BCE Cyrene, Libya Died c. 195 BCE Alexandria, Egypt By Cynthia Stokes Brown, adapted

More information

4 ERATOSTHENES OF CYRENE

4 ERATOSTHENES OF CYRENE 4 ERATOSTHENES OF CYRENE BIOGRAPHY 770L ERATOSTHENES OF CYRENE MEASURING THE CIRCUMFERENCE OF THE EARTH Born c. 276 BCE Cyrene, Libya Died c. 195 BCE Alexandria, Egypt By Cynthia Stokes Brown, adapted

More information

4 ERATOSTHENES OF CYRENE

4 ERATOSTHENES OF CYRENE 4 ERATOSTHENES OF CYRENE BIOGRAPHY 1180L ERATOSTHENES OF CYRENE MEASURING THE CIRCUMFERENCE OF THE EARTH Born c. 276 BCE Cyrene, Libya Died c. 195 BCE Alexandria, Egypt By Cynthia Stokes Brown More than

More information

Inventors and Scientists: Eratosthenes

Inventors and Scientists: Eratosthenes Inventors and Scientists: Eratosthenes By Cynthia Stokes Brown, Big History Project on 06.15.16 Word Count 1,033 TOP: An undated illustration of scholars at the Library of Alexandria. MIDDLE:A reconstruction

More information

Upon Whose Shoulders We Stand: A History of Astronomy Up to 200 A.D. Dick Mallot 3/17/2005

Upon Whose Shoulders We Stand: A History of Astronomy Up to 200 A.D. Dick Mallot 3/17/2005 Upon Whose Shoulders We Stand: A History of Astronomy Up to 200 A.D. Dick Mallot 3/17/2005 Who were these ancient astronomers? Where did real astronomy begin? What did we know about astronomy 2000+ years

More information

Greek astronomy: Introduction

Greek astronomy: Introduction 1 Greek astronomy: Introduction Jan P. Hogendijk Mathematics Dept, Utrecht University May 12, 2011 2 Greek astronomy Rough periodization 600-400 B.C. Philosophical speculations on the universe 400-300

More information

2X CLAUDIUS PTOLEMY BIOGRAPHY 1260L

2X CLAUDIUS PTOLEMY BIOGRAPHY 1260L 2X CLAUDIUS PTOLEMY BIOGRAPHY 1260L CLAUDIUS PTOLEMY AN EARTH-CENTERED VIEW OF THE UNIVERSE Born 85 CE Hermiou, Egypt Died 165 CE Alexandria, Egypt By Cynthia Stokes Brown The Earth was the center of the

More information

The History and Philosophy of Astronomy

The History and Philosophy of Astronomy Astronomy 350L (Fall 2006) The History and Philosophy of Astronomy (Lecture 3: Antiquity I) Instructor: Volker Bromm TA: Jarrett Johnson The University of Texas at Austin Astronomy and Cosmology in Antiquity:

More information

Hipparchus of Rhodes.

Hipparchus of Rhodes. Hipparchus of Rhodes Hipparchus worked from about 160 to 130 B.C. He was a mathematician who used geometry to try to solve the problem of retrograde motion. http://universe-review.ca/i08-18-hipparchus.jpg

More information

Eratosthenes method of measuring the Earth

Eratosthenes method of measuring the Earth Eratosthenes method of measuring the Earth Credit for the first determination of the size of the Earth goes to the Greek polymath Eratosthenes, who lived from around 276 BC to 195 BC. Born in the Greek

More information

Today FIRST HOMEWORK DUE. Ancient Astronomy. Competing Cosmologies. Geocentric vs. Heliocentric. Ptolemy vs. copernicus.

Today FIRST HOMEWORK DUE. Ancient Astronomy. Competing Cosmologies. Geocentric vs. Heliocentric. Ptolemy vs. copernicus. Today FIRST HOMEWORK DUE Ancient Astronomy Competing Cosmologies Geocentric vs. Heliocentric Ptolemy vs. copernicus Retrograde Motion Phases of Venus Galileo 1 3.1 The Ancient Roots of Science Our goals

More information

The Birth of Astronomy. Lecture 3 1/24/2018

The Birth of Astronomy. Lecture 3 1/24/2018 The Birth of Astronomy Lecture 3 1/24/2018 Fundamental Questions of Astronomy (life?) What is the shape of the Earth? How big is the planet we live on? Why do the stars move across the sky? Where is Earth

More information

Ancient Cosmology: A Flat Earth. Alexandria

Ancient Cosmology: A Flat Earth. Alexandria Today Competing Cosmologies Geocentric vs. Heliocentric Ptolemy vs. copernicus Retrograde Motion Phases of Venus Galileo FIRST HOMEWORK DUE How d it work? Ancient Cosmology: A Flat Earth Here there be

More information

A100 Exploring the Universe: The Rise of Science. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: The Rise of Science. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: The Rise of Science Martin D. Weinberg UMass Astronomy weinberg@astro.umass.edu September 11, 2012 Read: Chap 3 09/11/12 slide 1 Problem Set #1 due this afternoon at 5pm! Read:

More information

How the Greeks Used Geometry to Understand the Stars

How the Greeks Used Geometry to Understand the Stars previous index next How the Greeks Used Geometry to Understand the Stars Michael Fowler, University of Virginia 9/16/2008 Crystal Spheres: Plato, Eudoxus, Aristotle Plato, with his belief that the world

More information

A100 Exploring the Universe: The Invention of Science. Martin D. Weinberg UMass Astronomy

A100 Exploring the Universe: The Invention of Science. Martin D. Weinberg UMass Astronomy A100 Exploring the Universe: The Invention of Science Martin D. Weinberg UMass Astronomy astron100-mdw@courses.umass.edu September 09, 2014 Read: Chap 3 09/09/14 slide 1 Problem Set #1: due this afternoon

More information

Lecture #4: Plan. Early Ideas of the Heavens (cont d): Geocentric Universe Heliocentric Universe

Lecture #4: Plan. Early Ideas of the Heavens (cont d): Geocentric Universe Heliocentric Universe Lecture #4: Plan Early Ideas of the Heavens (cont d): Shape & size of the Earth Size & distance of Moon & Sun Geocentric Universe Heliocentric Universe Shape of the Earth Aristotle (Greece, 384 322 B.C.)

More information

Chapter 3 The Science of Astronomy

Chapter 3 The Science of Astronomy Chapter 3 The Science of Astronomy 3.1 The Ancient Roots of Science Our goals for learning: In what ways do all humans employ scientific thinking? How did astronomical observations benefit ancient societies?

More information

The Copernican Revolution

The Copernican Revolution The Copernican Revolution Nicolaus Copernicus (1473-1543) De Revolutionibus Orbium Coelestium (1543) [ On the Revolutions of the Celestial Spheres ] The Ptolemaic Cosmology: Geocentric and Geostatic The

More information

Lecture 3: History of Astronomy. Astronomy 111 Monday September 4, 2017

Lecture 3: History of Astronomy. Astronomy 111 Monday September 4, 2017 Lecture 3: History of Astronomy Astronomy 111 Monday September 4, 2017 Reminders Labs start this week Homework #2 assigned today Astronomy of the ancients Many ancient cultures took note of celestial objects

More information

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System A. Geography: mapping the earth Geometry: measure the earth! 1) The earth

More information

Origins of Modern Astronomy

Origins of Modern Astronomy PHYS 1411 Introduction to Astronomy Origins of Modern Astronomy Chapter 4 Topics in Chapter 4 Chapter 4 talks about the history of Astronomy and the development of the model of the solar system. Brief

More information

Early Ideas of the Universe

Early Ideas of the Universe Early Ideas of the Universe Though much of modern astronomy deals with explaining the Universe, through History astronomy has dealt with such practical things as keeping time, marking the arrival of seasons,

More information

HISTORY OF ASTRONOMY

HISTORY OF ASTRONOMY HISTORY OF ASTRONOMY A Short History of Astronomy Ancient (before 500 BC) Egyptians, Babylonians, Mayans, Incas, Chinese Classical Antiquity (500 BC-500 AD) Greeks, Romans: Plato, Aristotle, Ptolemy Middle

More information

Lecture 2 : Early Cosmology

Lecture 2 : Early Cosmology Lecture 2 : Early Cosmology Getting in touch with your senses Greek astronomy/cosmology The Renaissance (part 1) 8/28/13 1 Sidney Harris Discussion : What would an unaided observer deduce about the Universe?

More information

Benefit of astronomy to ancient cultures

Benefit of astronomy to ancient cultures Benefit of astronomy to ancient cultures Usefulness as a tool to predict the weather (seasons) Usefulness as a tool to tell time (sundials) Central Africa (6500 B.C.) Alignments Many ancient cultures built

More information

Dr. Tariq Al-Abdullah

Dr. Tariq Al-Abdullah 1 Chapter 1 Charting the Heavens The Foundations of Astronomy 2 Learning Goals: 1. Our Place in Space 2. The Obvious view 3. Earth s Orbital Motion 4. The Motion of the Moon 5. The Measurement of Distance

More information

Credited with formulating the method of exhaustion for approximating a circle by polygons

Credited with formulating the method of exhaustion for approximating a circle by polygons MATH 300 History of Mathematics Figures in Greek Mathematics Sixth Century BCE Thales of Miletus May have formulated earliest theorems in geometry (e.g., ASA) Predicted an eclipse in 585 BCE Pythagoras

More information

Wednesday, January 28

Wednesday, January 28 Ptolemy to Copernicus Wednesday, January 28 Astronomy of the ancients Many ancient cultures took note of celestial objects and celestial lphenomena. They noted tdcertain ti patterns in the heavens and

More information

Lecture 8. Eudoxus and the Avoidance of a Fundamental Conflict

Lecture 8. Eudoxus and the Avoidance of a Fundamental Conflict Lecture 8. Eudoxus and the Avoidance of a Fundamental Conflict Eudoxus of Cnidus Eudoxus, 480 BC - 355 BC, was a Greek philosopher, mathematician and astronomer who contributed to Euclid s Elements. His

More information

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 2 The Rise of Astronomy Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Periods of Western Astronomy Western astronomy divides into 4 periods Prehistoric

More information

The following text is for tailored for reading aloud to Delta Six students at Diamond Middle School by Jennifer Burgin while showing The Librarian

The following text is for tailored for reading aloud to Delta Six students at Diamond Middle School by Jennifer Burgin while showing The Librarian The following text is for tailored for reading aloud to Delta Six students at Diamond Middle School by Jennifer Burgin while showing The Librarian who Measured the Earth by Kathryn Lasky. Most of the text

More information

Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1

Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1 Astronomy 1010 Planetary Astronomy Sample Questions for Exam 1 Chapter 1 1. A scientific hypothesis is a) a wild, baseless guess about how something works. b) a collection of ideas that seems to explain

More information

Things to do today. Terminal, Astronomy is Fun. Lecture 24 The Science of Astronomy. Scientific Thinking. After this lecture, please pick up:

Things to do today. Terminal, Astronomy is Fun. Lecture 24 The Science of Astronomy. Scientific Thinking. After this lecture, please pick up: Things to do today After this lecture, please pick up: Review questions for the final exam Homework#6 (due next Tuesday) No class on Thursday (Thanksgiving) Final exam on December 2 (next Thursday) Terminal,

More information

Time and Diurnal Motion

Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated Sep 30, 2012 A. Geography: mapping the earth Geometry: measure

More information

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion

Time and Diurnal Motion. 1a. The Earth Is Flat. 1c. Aristotle ( BC) 1b. The Earth Is Round. Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated April 12, 2006 A. Geography: mapping the earth Geometry: measure

More information

Astronomy 311: Historical Astronomy

Astronomy 311: Historical Astronomy Astronomy 311: Historical Astronomy Greek scientific thought started with a school of Philosphers in Ionia in the sixth century BC. The most prominent was Thales. Examples of this early thought was that

More information

Astronomical Distances

Astronomical Distances Astronomical Distances 13 April 2012 Astronomical Distances 13 April 2012 1/27 Last Time We ve been discussing methods to measure lengths and objects such as mountains, trees, and rivers. Astronomical

More information

2X CLAUDIUS PTOLEMY BIOGRAPHY 780L

2X CLAUDIUS PTOLEMY BIOGRAPHY 780L 2X CLAUDIUS PTOLEMY BIOGRAPHY 780L CLAUDIUS PTOLEMY AN EARTH-CENTERED VIEW OF THE UNIVERSE Born 85 CE Hermiou, Egypt Died 165 CE Alexandria, Egypt By Cynthia Stokes Brown, adapted by Newsela Claudius Ptolemy

More information

Time and Diurnal Motion

Time and Diurnal Motion Time and Diurnal Motion Time and Diurnal Motion A. Geography: mapping the earth 2 B. Equatorial Coordinates C. Local Horizon System Updated 2014Jan11 A. Geography: mapping the earth Geometry: measure the

More information

Euclidean Geometry. The Elements of Mathematics

Euclidean Geometry. The Elements of Mathematics Euclidean Geometry The Elements of Mathematics Euclid, We Hardly Knew Ye Born around 300 BCE in Alexandria, Egypt We really know almost nothing else about his personal life Taught students in mathematics

More information

The Copernican System: A Detailed Synopsis

The Copernican System: A Detailed Synopsis Oglethorpe Journal of Undergraduate Research Volume 5 Issue 1 Article 2 April 2015 The Copernican System: A Detailed Synopsis John Cramer Dr. jcramer@oglethorpe.edu Follow this and additional works at:

More information

HISTORY OF ASTRONOMY, PART 1. How our understanding of the Universe has changed

HISTORY OF ASTRONOMY, PART 1. How our understanding of the Universe has changed HISTORY OF ASTRONOMY, PART 1 How our understanding of the Universe has changed Focus Question: How and why has our understanding of the universe changed over time? The oldest science? As far back as the

More information

The Spread of Hellenistic Culture

The Spread of Hellenistic Culture 9/29/15 Topic: The Spread of Hellenistic Culture EQ: How has Hellenistic culture affected our lives today? Bellwork: Set up your Cornell notes, then answer the following question: In your opinion, if Alexander

More information

Chapter 3: Ancient Astronomy

Chapter 3: Ancient Astronomy Chapter 3: Ancient Astronomy Mesopotamian Astronomy(as early as 4000 BC) [fig 3-1 ziggeraut] Predictions of seasonal changes for agriculture source of modern zodiac divided circle into 360 degrees, each

More information

ASTRO 6570 Lecture 1

ASTRO 6570 Lecture 1 ASTRO 6570 Lecture 1 Historical Survey EARLY GREEK ASTRONOMY: Earth-centered universe - Some radical suggestions for a sun-centered model Shape of the Earth - Aristotle (4 th century BCE) made the first

More information

Astronomy 110 Lecture Fall, 2005 Astronomy 110 1

Astronomy 110 Lecture Fall, 2005 Astronomy 110 1 Astronomy 110 Lecture 5 + 6 Fall, 2005 Astronomy 110 1 Planets Known in Ancient Times Mercury difficult to see; always close to Sun in sky Venus very bright when visible morning or evening star Mars noticeably

More information

Be able to explain retrograde motion in both the current and Ptolemy s models. You are likely to get an essay question on a quiz concerning these.

Be able to explain retrograde motion in both the current and Ptolemy s models. You are likely to get an essay question on a quiz concerning these. Astronomy 110 Test 2 Review Castle Chapters 6, 7, and possibly 8 NOTE: THIS IS NOT MEANT TO BE EXHAUSTIVE, THIS IS TO HELP THE YOU TRAIN ON THE QUESTION FORMATS AND THE CONCEPTS. Just because an issue

More information

The Copernican Revolution

The Copernican Revolution The Copernican Revolution The Earth moves and Science is no longer common sense 1 Nicholas Copernicus 1473-1543 Studied medicine at University of Crakow Discovered math and astronomy. Continued studies

More information

Reserve your right to think, for even to think wrongly is better than not to think at all. To teach superstitions as truth is a most m terrible

Reserve your right to think, for even to think wrongly is better than not to think at all. To teach superstitions as truth is a most m terrible Reserve your right to think, for even to think wrongly is better than not to think at all. To teach superstitions as truth is a most m terrible thing. - Hypatia Bit of Administration. Reading Bless, Chapters

More information

Astronomical Distances. Astronomical Distances 1/30

Astronomical Distances. Astronomical Distances 1/30 Astronomical Distances Astronomical Distances 1/30 Last Time We ve been discussing methods to measure lengths and objects such as mountains, trees, and rivers. Today we ll look at some more difficult problems.

More information

ASTR 2310: Chapter 2

ASTR 2310: Chapter 2 Emergence of Modern Astronomy Early Greek Astronomy Ptolemaic Astronomy Copernican Astronomy Galileo: The First Modern Scientist Kepler's Laws of Planetary Motion Proof of the Earth's Motion Early Greek

More information

Team A: The Earth is flat

Team A: The Earth is flat Team A: The Earth is flat You are scientists and philosophers in Europe in the Middle Age. Your team will argue in favor of the flat model of Earth. In many ancient cultures (Greece, India, China), the

More information

Plato. Plato. Plato and Socrates. The Reality of Ideas

Plato. Plato. Plato and Socrates. The Reality of Ideas Plato The Reality of Ideas 1 Plato 427(?) - 348 BCE Lived about 200 years after Pythagoras. Plato means the broad possibly his nickname. Son of a wealthy Athens family. Served in the Athens army during

More information

PHY1033C/HIS3931/IDH 3931 : Discovering Physics: The Universe and Humanity s Place in It Fall Prof. Peter Hirschfeld, Physics

PHY1033C/HIS3931/IDH 3931 : Discovering Physics: The Universe and Humanity s Place in It Fall Prof. Peter Hirschfeld, Physics PHY1033C/HIS3931/IDH 3931 : Discovering Physics: The Universe and Humanity s Place in It Fall 2016 Prof. Peter Hirschfeld, Physics Last time Science, History and Progress: Thomas Kuhn Structure of scientific

More information

Directions: Read each slide

Directions: Read each slide Directions: Read each slide and decide what information is needed. Some slides may have red or yellow or orange underlined. This information is a clue for you to read more carefully or copy the information

More information

This Week... Week 3: Chapter 3 The Science of Astronomy. 3.1 The Ancient Roots of Science. How do humans employ scientific thinking?

This Week... Week 3: Chapter 3 The Science of Astronomy. 3.1 The Ancient Roots of Science. How do humans employ scientific thinking? Week 3: Chapter 3 The Science of Astronomy This Week... The Copernican Revolution The Birth of Modern Science Chapter 2 Walkthrough Discovering the solar system Creating a clockwork Universe 3.1 The Ancient

More information

Alien Skies. Todd Timberlake

Alien Skies. Todd Timberlake Alien Skies Todd Timberlake Have you ever wanted to send your students to another planet? What would they see while looking up at the skies from their new home? Would they be able to interpret what they

More information

08/12/2016. Pergamum. Syracuse. Rhodos. Alexandria

08/12/2016. Pergamum. Syracuse. Rhodos. Alexandria 08/12/2016 1 Pergamum Syracuse Rhodos Alexandria 2 3 Euclides Hipparchus Heron Ptolemaeus Eratosthenes Apollonius of Perga Aristarchus Archimedes 4 Various astronomers made significant, even amazing, contributions.

More information

Chapter 3 The Science of Astronomy

Chapter 3 The Science of Astronomy Chapter 3 The Science of Astronomy 3.1 The Ancient Roots of Science Our goals for learning: In what ways do all humans employ scientific thinking? How did astronomical observations benefit ancient societies?

More information

Greece. Chapter 5: Euclid of Alexandria

Greece. Chapter 5: Euclid of Alexandria Greece Chapter 5: Euclid of Alexandria The Library at Alexandria What do we know about it? Well, a little history Alexander the Great In about 352 BC, the Macedonian King Philip II began to unify the numerous

More information

All that is required to measure the diameter of the Earth is a person with stick and a brain.

All that is required to measure the diameter of the Earth is a person with stick and a brain. All that is required to measure the diameter of the Earth is a person with stick and a brain. -adapted from Big Bang, Simon Singh, p.13 1 Announcements: Quiz #2: Monday, September 26 at beginning of class.

More information

Foundations of Astronomy The scientific method-winning or losing?

Foundations of Astronomy The scientific method-winning or losing? Foundations of Astronomy The scientific method-winning or losing? Geodorno Bruno Warned to stop teaching heretical sun-centered solar system of Copernicus. Failed to heed church warnings during inquisition

More information

Size of the Earth and the Distances to the Moon and the Sun

Size of the Earth and the Distances to the Moon and the Sun Size of the Earth and the Distances to the Moon and the Sun Objectives Using observations of the Earth-Moon-Sun system and elementary geometry and trigonometry, we will duplicate the methods of the ancient

More information

Tycho Brahe and Johannes Kepler

Tycho Brahe and Johannes Kepler Tycho Brahe and Johannes Kepler The Music of the Spheres 1 Tycho Brahe 1546-1601 Motivated by astronomy's predictive powers. Saw and reported the Nova of 1572. Considered poor observational data to be

More information

Ptolemy (125 A.D.) Ptolemy s Model. Ptolemy s Equant. Ptolemy s Model. Copernicus Model. Copernicus ( )

Ptolemy (125 A.D.) Ptolemy s Model. Ptolemy s Equant. Ptolemy s Model. Copernicus Model. Copernicus ( ) Ptolemy (125 A.D.) Designed a complete geometrical model of the universe that accurately predicted planetary motions with errors within 5 0 Most of the geometric devices and basic foundations of his model

More information

EUCLID S AXIOMS A-1 A-2 A-3 A-4 A-5 CN-1 CN-2 CN-3 CN-4 CN-5

EUCLID S AXIOMS A-1 A-2 A-3 A-4 A-5 CN-1 CN-2 CN-3 CN-4 CN-5 EUCLID S AXIOMS In addition to the great practical value of Euclidean Geometry, the ancient Greeks also found great aesthetic value in the study of geometry. Much as children assemble a few kinds blocks

More information

Planets & The Origin of Science

Planets & The Origin of Science Planets & The Origin of Science Reading: Chapter 2 Required: Guided Discovery (p.44-47) Required: Astro. Toolbox 2-1 Optional: Astro. Toolbox 2-2, 2-3 Next Homework Due. Sept. 26 Office Hours: Monday,

More information

The History of Astronomy. Theories, People, and Discoveries of the Past

The History of Astronomy. Theories, People, and Discoveries of the Past The History of Astronomy Theories, People, and Discoveries of the Past Early man recorded very little history. Left some clues in the form of petrographs. Stone drawings that show eclipses, comets, supernovae.

More information

Eratosthenes Project

Eratosthenes Project Eratosthenes Project This is an introduction to Teacher's Guide: it first recounts the observations made by Eratosthenes, his hypotheses and conclusions, followed by an overview of the way these can be

More information

History of Astronomy - Part I. Ancient Astronomy. Ancient Greece. Astronomy is a science that has truly taken shape only in the last couple centuries

History of Astronomy - Part I. Ancient Astronomy. Ancient Greece. Astronomy is a science that has truly taken shape only in the last couple centuries History of Astronomy - Part I Astronomy is a science that has truly taken shape only in the last couple centuries Many advances have been made in your lifetime However, astronomical concepts and ideas

More information

The great tragedy of science the slaying of a beautiful hypothesis by an ugly fact. -Thomas Huxley. Monday, October 3, 2011

The great tragedy of science the slaying of a beautiful hypothesis by an ugly fact. -Thomas Huxley. Monday, October 3, 2011 The great tragedy of science the slaying of a beautiful hypothesis by an ugly fact. -Thomas Huxley 1 Chapter 4 The Origin of Modern Astronomy Outline I. The Roots of Astronomy A. Archaeoastronomy B. The

More information

Earth Science, 13e Tarbuck & Lutgens

Earth Science, 13e Tarbuck & Lutgens Earth Science, 13e Tarbuck & Lutgens Origins of Modern Astronomy Earth Science, 13e Chapter 21 Stanley C. Hatfield Southwestern Illinois College Early history of astronomy Ancient Greeks Used philosophical

More information

Chapter 3 The Science of Astronomy. Copyright 2012 Pearson Education, Inc.

Chapter 3 The Science of Astronomy. Copyright 2012 Pearson Education, Inc. Chapter 3 The Science of Astronomy 1 3.1 The Ancient Roots of Science Our goals for learning: In what ways do all humans employ scientific thinking? How did astronomical observations benefit ancient societies?

More information

T h e H u n t i n g t o n Library, Art Collections, and Botanical Gardens. History of Science School Program

T h e H u n t i n g t o n Library, Art Collections, and Botanical Gardens. History of Science School Program T h e H u n t i n g t o n Library, Art Collections, and Botanical Gardens History of Science School Program First Civilizations These civilizations were based on irrigation agriculture All Mesopotamian

More information

Basic Questions About the Universe. What is the shape of the Earth? How far is it from the Earth to the Moon? How far is it from the Earth to the Sun?

Basic Questions About the Universe. What is the shape of the Earth? How far is it from the Earth to the Moon? How far is it from the Earth to the Sun? Basic Questions About the Universe What is the shape of the Earth? What is size of the Earth? How far is it from the Earth to the Moon? How far is it from the Earth to the Sun? What is the speed of light?

More information

Motions of the Planets ASTR 2110 Sarazin

Motions of the Planets ASTR 2110 Sarazin Motions of the Planets ASTR 2110 Sarazin Motion of Planets Retrograde Motion Inferior Planets: Mercury, Venus Always near Sun on Sky Retrograde motion when very close to Sun on sky (Every other time) Superior

More information

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy 2006 Pearson Prentice Hall Lecture Outlines PowerPoint Chapter 21 Earth Science 11e Tarbuck/Lutgens This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

from Euclid to Einstein

from Euclid to Einstein WorkBook 2. Space from Euclid to Einstein Roy McWeeny Professore Emerito di Chimica Teorica, Università di Pisa, Pisa (Italy) A Pari New Learning Publication Book 2 in the Series WorkBooks in Science (Last

More information

Review of previous concepts!! Earth s orbit: Year, seasons, observed constellations, Polaris (North star), day/night lengths, equinoxes

Review of previous concepts!! Earth s orbit: Year, seasons, observed constellations, Polaris (North star), day/night lengths, equinoxes Review of previous concepts!! Earth s orbit: Year, seasons, observed constellations, Polaris (North star), day/night lengths, equinoxes Celestial poles, celestial equator, ecliptic, ecliptic plane (Fig

More information

The Copernican Revolution

The Copernican Revolution The Copernican Revolution The Earth moves and Science is no longer common sense SC/NATS 1730, XII 1 Nicholas Copernicus 1473-1543 Studied medicine at University of Crakow Discovered math and astronomy.

More information

b. Remember, Sun is a second or third generation star the nebular cloud of dust and gases was created by a supernova of a preexisting

b. Remember, Sun is a second or third generation star the nebular cloud of dust and gases was created by a supernova of a preexisting 1. Evolution of the Solar System Nebular hypothesis, p 10 a. Cloud of atoms, mostly hydrogen and helium b. Gravitational collapse contracted it into rotating disc c. Heat of conversion of gravitational

More information

Lecture 1: Axioms and Models

Lecture 1: Axioms and Models Lecture 1: Axioms and Models 1.1 Geometry Although the study of geometry dates back at least to the early Babylonian and Egyptian societies, our modern systematic approach to the subject originates in

More information

The Scientific Method, or How Big is the Sun?

The Scientific Method, or How Big is the Sun? The Scientific Method, or How Big is the Sun? Learning Objectives! What is empiricism? What is objectivity?! What are the main principles of the scientific method? What is Occam s Razor?! Why do the principles

More information

cosmogony geocentric heliocentric How the Greeks modeled the heavens

cosmogony geocentric heliocentric How the Greeks modeled the heavens Cosmogony A cosmogony is theory about ones place in the universe. A geocentric cosmogony is a theory that proposes Earth to be at the center of the universe. A heliocentric cosmogony is a theory that proposes

More information

Introduction to Science

Introduction to Science Introduction to Science Richard Johns Langara College, January 2014 The purpose of this book is to provide a basic understanding of some scientific theories, especially for students who haven t taken much

More information

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 2. The Rise of Astronomy. Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 2 The Rise of Astronomy Copyright (c) The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 2.1: Early Ideas of the Heavens: Classical Astronomy As far as we know, the

More information

Ancient Trigonometry & Astronomy

Ancient Trigonometry & Astronomy Ancient Trigonometry & Astronomy Astronomy was hugely important in ancient culture. For some, this meant measuring the passage of time via calendars based on the seasons or the phases of the moon. For

More information

PHYS 160 Astronomy Test #1 Fall 2017 Version B

PHYS 160 Astronomy Test #1 Fall 2017 Version B PHYS 160 Astronomy Test #1 Fall 2017 Version B 1 I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. An object has the same weight,

More information

Announcements. Topics To Be Covered in this Lecture

Announcements. Topics To Be Covered in this Lecture Announcements! Tonight s observing session is cancelled (due to clouds)! the next one will be one week from now, weather permitting! The 2 nd LearningCurve activity was due earlier today! Assignment 2

More information

Finding the Size of the Earth using GPS

Finding the Size of the Earth using GPS Finding the Size of the Earth using GPS Around 240 BC Eratosthenes found the circumference of the Earth by observing shadow from high noon sun in the cities of Alexandria and Syene. His final value for

More information

Physics 107 Ideas of Modern Physics. Goals of the course. How is this done? What will we cover? Where s the math?

Physics 107 Ideas of Modern Physics. Goals of the course. How is this done? What will we cover? Where s the math? Physics 107 Ideas of Modern Physics (uw.physics.wisc.edu/~rzchowski/phy107) Modern Physics: essentially post-1900 Why 1900? Two radical developments: Relativity & Quantum Mechanics Both changed the way

More information

The astronomical system of Ptolemy of Alexandria (ca. 150 AD)

The astronomical system of Ptolemy of Alexandria (ca. 150 AD) 1 The astronomical system of Ptolemy of Alexandria (ca. 150 AD) Jan P. Hogendijk Dept of Mathematics, Utrecht May 12, 2011 2 The Almagest of Ptolemy (ca. A.D. 150) Basic work of Greek astronomy; much wiped

More information

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009

Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009 Practice Test DeAnza College Astronomy 04 Test 1 Spring Quarter 2009 Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Mark answer on Scantron.

More information

Tonight. {01} The map. Relative space. What does a map do? Types of maps GEOG 201 2/17/2010. Instructor: Pesses 1

Tonight. {01} The map. Relative space. What does a map do? Types of maps GEOG 201 2/17/2010. Instructor: Pesses 1 Tonight {01} The map What makes a map Measuring the Earth Map Interpretation & GPS Spring 2010 M. Pesses What does a map do? Shows where things are Shows spatial (topological) relationships Shows patterns,

More information

The History of Astronomy

The History of Astronomy The History of Astronomy http://www.phys.uu.nl/~vgent/babylon/babybibl_intro.htm http://mason.gmu.edu/~jmartin6/howe/images/pythagoras.jpg http://www.russellcottrell.com/greek/aristarchus.htm http://www.mesopotamia.co.uk/astronomer/homemain.html

More information

Physics 107 Ideas of Modern Physics (uw.physics.wisc.edu/~rzchowski/phy107) Goals of the course. What will we cover? How do we do this?

Physics 107 Ideas of Modern Physics (uw.physics.wisc.edu/~rzchowski/phy107) Goals of the course. What will we cover? How do we do this? Physics 107 Ideas of Modern Physics (uw.physics.wisc.edu/~rzchowski/phy107) Main emphasis is Modern Physics: essentially post-1900 Why 1900? Two radical developments: Relativity & Quantum Mechanics Both

More information

ASTRONOMY. Chapter 2 OBSERVING THE SKY: THE BIRTH OF ASTRONOMY PowerPoint Image Slideshow

ASTRONOMY. Chapter 2 OBSERVING THE SKY: THE BIRTH OF ASTRONOMY PowerPoint Image Slideshow ASTRONOMY Chapter 2 OBSERVING THE SKY: THE BIRTH OF ASTRONOMY PowerPoint Image Slideshow FIGURE 2.1 Night Sky. In this panoramic photograph of the night sky from the Atacama Desert in Chile, we can see

More information

Lecture 17 Ptolemy on the Motion of the Earth

Lecture 17 Ptolemy on the Motion of the Earth Lecture 17 Ptolemy on the Motion of the Earth Patrick Maher Scientific Thought I Fall 2009 The celestial sphere N ecliptic equator E N S horizon W S The zodiac divides the ecliptic into 12 equal parts.

More information

Plato ( BC) All natural motion is circular Reason is more important than observation

Plato ( BC) All natural motion is circular Reason is more important than observation Plato (428-348 BC) All natural motion is circular Reason is more important than observation Aristotle (384-322 BC) Physics elements earth water air fire quintessence Eratosthenes (276-195 BC) He measured

More information