Nucleosynthesis in Supernovae and the Big-Bang II

Size: px
Start display at page:

Download "Nucleosynthesis in Supernovae and the Big-Bang II"

Transcription

1 IV International Summer School 2005 Center for Nuclear Study, University of Tokyo August 18 23, 2005 Nucleosynthesis in Supernovae and the Big-Bang II Taka Kajino National Astronomical Observatory Department of Astronomy, University of Tokyo

2 Solar System Abundance BIG-BANG Constrains Ω B and Cosmological Thoeries of Ω CDM & Ω Λ! STARS R-PROCESS R-process ELEMENTS elements, UNKNOWN SUPERNOVAE SITES?? R S N=50) AGB STARS COSMIC-RAYS R S N=82) R S N=126) ++ + Actinide 232 Th (14.05Gy) P 238 U (4.47 Gy) Supernova-γ Process?

3 OUTLINE Universe is likely flat and accelerating! Ω B + Ω CDM + Ω Λ = 1 Six (eleven) Parameters! Is BARYON, Ω B = 0.04, consistent with Big-Bang Cosmology and Nucleosynthesis (as a CANDLE of dark side of the Universe)? BBN constrains Brane Cosmology! What is the nature of CDM, Ω CDM = 0.26? Disappearing CDM Model in Brane World Cosmology! Ichiki, Garnavich, Kajino, Mathews & Yahiro, PRD 68 (2003) What is DARK ENERGY, Ω Λ = 0.7? Growing CDM Model in Brane World Cosmology! Umezu, Ichiki, Kajino, Mathews Nakamura & Yahiro,(2005) (astro-ph/ ) COSMIC AGE ( Gy), strongly model-dependent? Supernova R-Process & Origin of 232 Th, 235,238 U! --- Model independent! Sasaqui, Kajino & Balantekin, ApJ (2005), in press. (astro-ph/ )

4 The Universe is homogeneous and isotropic in a large enough scale. T = K δt < 18 µk 2dF Quasar (Matter) Distribution: Homogeneous Cobe Sky Maps of CMB; Isotropic

5 Newtonian Equation Birkoff s Theorem: Gravity due to mass interior to an arbitrary sphere. r(t) M m E = 1 2 m r Ý 2 GmM r 1 2 m r Ý 2 = Gm[(4 / 3)πρr 3 ] r x 1/2mr 2 + E M = 4/3πρr 3 r Ý r 2 = 8 3 πgρ + 2 E mr 2

6 General Relativity G µν = R µν 1 2 Rgµν = 8π GT µν +Λg µν R µν = R λ µλν = λ Γ λ λ µν ν Γ µλ + Γ λ ηλ Γ η µν Γ λ η ην Γ µλ Γ λ µν = 1 { 2 gλβ ν g βµ + µ g βν β g } µν 1 g µν = a 2 (t) 1 kr 2 a 2 (t)r 2 a 2 (t)r 2 sin 2 θ T µ ν = ρ p p p

7 Einstein Equation Newtonian Equation Space-space component G 00 = 8π GT 00 + Λg 00 H 2 = (v/r) 2 -k = E/m Friedmann Eq. H 2 = 8 3 πgρ + k + Λ a 2 3 Cosmological Constant r Ý r 2 = 8 3 πgρ + E mr 2 H 2 2 = H 0 Ω γ a 4 + Ω M a 3 + Ω k a 2 +Ω Λ Ω α = ρ α /ρ C ρ C = 3H 02 /8πG a = a(t) = scale factor = r Deceleration parameter q 0 = (d 2 r/dt 2 )/rh 2 = [Ω CDM /2 Ω Λ ] Ω CDM /2 Ω Λ acceleration!

8 Cosmic Expansion History accelerating Ω MCM Ω Λ decelerating critical closed

9 Cosmic Microwave Background Anisotropies WMAP δt T = l C l a lm 2 m a lm Y lm (θ,φ) C l = δt/t(n) δt/t(n+θ)

10 Cosmological Parameter Dependence Larger Ω Λ Larger Ω CDM Larger Ω B Baryon Drag Multipole l Dark Matter potential Ω CDM Baryon Mass Ω B Tγ Photon Pressure

11 Pie Chart of Cosmic Mystery t = 3 x 10 5 yr Ordinary matter makes up a small fraction of mass/energy. Dark matter and dark energy dominate. Ω Λ Ω B Ω CDM

12 The Power of BBN is that the Physics is Accessible Thermodynamic Equilibrium of Particles and Nuclei Cosmic Expansion Nuclear Reactions

13 PRIMARY PROCESSES Big-Bang Nucleosynthesis Supernova R-Process Initially p& n NSE α-process R-process (neutron-rich)

14 Evolution of Abundances p n d 4 He NSE 3 He t 7 Li 7 Be 6 Li Dymanical Nucleosynthesis p 4 He d t 3 He n 7 Li 7 Be 6 Li

15 Big-Bang Nucleosynthesis (BBN) Diagram CMB (WMAP) t = 3 min Big-Bang Nucleosynthesis Constraints BBN- 4 He Cosmic Baryon Density Ω B Ω B s from BBN and CMB are inconsistent!

16 NEW MEASUREMENT OF NEUTRON LIFE Serevlov et al., Phys. Lett. B605 (2005), 72 ULTRA-COLD NEUTRON δτ n /τ n = -1 % STANDARD QUARK MODEL KMS (Kobayashi-Masukawa- Cabbibo) MATRIX N P V ud d u : V ud

17 Effect of Neutro-Life on BBN- 4 He : 2p + 2n 4 He 1st effect: δτ n δt d δ(n/p) δ( 4 He) 2nd effect: δτ n δn δ( 4 He) NET EFFECT: δτ n < 0 δ( 4 He) < 0

18 Big-Bang Nucleosynthesis vs. CMB Mathews, Kajino & Shima, PRD71 (2005) (R) 4 He CMB - WMAP CONSISTENT! 7 Li PROBLEM!?

19 7 Li Abundance in Halo Dwarf Stars Ryan, Kajino, Beers, Suzuki, Romano, Matteucci & Rosolankova 2001, ApJ 549, 55. Is this plateau really Big-Bang origin? [Fe/H] Affected by SN ν-process? SN II Nucleosynthesis contributes!

20 SN1987A SNe II Nucleosynthesis can produce 7 Li and 11 B as the BBN does in the early Universe! Supernova ν - process!

21 Before Explosion Yoshida, Kajino & Hartman, Phys. Rev. Lett. 94 (2005), After Explosion

22 Yoshida, Terasawa, Kajino & Sumiyoshi, Astrophys. J. 600 (2004), 204. Yoshida, Kajino & Hartman, Phys. Rev. Lett. 94 (2005), Calibrate ν-temperature! Constrain ν-oscillation?

23 Primordial 7 Li Abundance, observed? Ryan, Kajino, Beers, Suzuki, Romano, Matteucci & Rosolankova 2001, ApJ 549, 55. SN ν -PROCESS GCR + STARS [Fe/H] Primordial 7 Li is NOT affected by the SN ν -PROCESS! Nuclear Physics can solve 7 Li PROBLEM?

24 BBN Nuclear Uncertainties are Improving Reaction Needed d(p,γ) 3 He 3.2% d(d,n) 3 He 2.0% d(d,p) 3 H 1.6% 3 He(α,γ) 3 He 2.3% Descouvemont, Adahchour, Angulo, Coc, Vangioni-Flam. ApJ, (2004) Nollett & Burles, PRD, 61, (2000)

25 7 Be (d, p) 2α PRPROSAL of Coc et al. (2003) Astrophysical S-factor (kev b) Data from Kavanagh (1960) If cross section were EXTREMELY larger, then, 7 Be would be destroyed! Big-Bang Energy E cm (MeV)

26 Big-Bang Nucleosynthesis Coc, Vangioni-Flam, Descouvemont, Adahchour & Angulo, ApJ 600 (2004) 544. New neutron life! Mathews, Kajino and Shima, PRD71 (2005) (R) Lyman-α! 7 Be If 7 Be would be destroyed, then Ω B s from BBN and WMAP could be consistent! WMAP

27 7 Be (d, p) 2α Angulo et al. (2005) EXPERIMENT Data from Kavanagh (1960) Not very largely enhancement! Primordial 7 Li should be high!! Big-Bang Energy E cm (MeV)

28 PRIMARY PROCESSES Big-Bang Nucleosynthesis Supernova R-Process Initially p& n NSE α-process R-process (neutron-rich)

29 INHOMOGENEOUS BIG-BANG NUCLEOSYNTHESIS Kajino and Boyd, ApJ 359 (1990) 267; Orito, Kajino, Boyd & Mathews, ApJ 488 (1997) Be 7 Li(n,γ) 8 Li (n,γ) 9 Li(e - ν) 9 Be, Inhomogeneous Big-Bang 7 Li(t,n) 9 Be, 7 Li( 3 He,p) 9 Be 7 Li(n,γ) 8 Li(α,n) 11 B Standard Big-Bang 7 Li(α,γ) 11 B

30 OUTLINE Universe is likely flat and accelerating! Ω B + Ω CDM + Ω Λ = 1 Six (eleven) Parameters! Is BARYON, Ω B = 0.04, consistent with Big-Bang Cosmology and Nucleosynthesis (as a CANDLE of dark side of the Universe)? BBN constrains Brane Cosmology! What is the nature of CDM, Ω CDM = 0.26? Disappearing CDM Model in Brane World Cosmology! Ichiki, Garnavich, Kajino, Mathews & Yahiro, PRD 68 (2003) What is DARK ENERGY, Ω Λ = 0.7? Growing CDM Model in Brane World Cosmology! Umezu, Ichiki, Kajino, Mathews Nakamura & Yahiro,(2005) (astro-ph/ ) COSMIC AGE ( Gy), strongly model-dependent? Supernova R-Process & Origin of 232 Th, 235,238 U! --- Model independent! Sasaqui, Kajino & Balantekin, ApJ (2005), in press. (astro-ph/ )

31 Brane World Cosmology SUSY!? 5 th dimension, compactified.

32 Disappearing LSP (Lightest SUSY Particle) CDM Model Is a likely possibility! vs. m B ~ 1 GeV LSPs (CDM) disappear at cosmological time! BARYONS do not!

33 Modified Friedmann Equation E = Dark Radiation or Electric part of the bulk Weyle tensor Ichiki, Garnavich, Kajino, Mathews & Yahiro PRD 68 (2003),

34 Thermal History of the Universe INFLATION: (GW) QCD phase tr ν-dec, e + e - -annihi Observables at different cosmic time! BBN (Big-Bang Nucleosynthesis) Matter-Dom Era CMB Anisotropies Rad-Dom Era Type Ia SNe, CLUSTER M/L sec 3 min 10 5 y 1-10 Gy

35 t = 3 min t = 3x10 5 y BBN CMB Anisotropies Ω Λ PEAK Dark Radiation Dark Radiation / Photon - Energy Type Ia Supernovae t = 1-10 Gy CLUSTER M/L ratio t = 1-10 Gy

36 Constraints on SUSY-Brane Cosmology (Disappearing CDM) Model Ichiki, Garnavich, Kajino, Mathews & Yahiro, PRD 68 (2003) Dark Energy is still needed! Our Model is as good as the standard model.

37 Brane World Cosmology CDM particles can exist in the bulk. Then, they can FLOW IN from the bulk! 5 th dimension, compactified. Dark Enerfy term: q = adjustable parameter We propose Growing-CDM Model for DARK ENERGY! Ω Λ = 0 model!

38 Supernova z vs. m-m Relation t = 1-10 Gy Standard ΛCDM model Ω Λ = 0.71 Our best-fit model Ω Λ = 0

39 CMB Anisotropies t = 3x10 5 y Our best-fit model Ω Λ = 0 Standard ΛCDM model Ω Λ = 0.71 Only OUR MODEL can explain this quenching! Cosmic Variance?

40 Cosmic Microwave Background WMAP shows evidence for suppression of quadrupole and octopole moments. - Aligned in the direction of Virgo: Tegmark et al (2003) - This could suggest a compact cosmology - Use axis to guide search (l,b) ~ (-80,60 )

41 Matter Power Spectrum P(k) t = 1-10 Gy Standard ΛCDM model Ω Λ = 0.71 Our best-fit model Ω Λ = 0

42 Conclusion Big-Bang Nucleosynthsis is one of the Pillars of very precise Particle-Nuclear Theory and Modern Cosmology. Standard Quark Model --- KMC Matrix! Dark Matter --- SUSY Particles in Brane Cosmology Dark Energy --- Flowing in of CDM in Brane Cosmology Acceleration, due to CDM inflow without Ω Λ! Quenching of low multipoles in CMB, due to late ISW effect! Li problem still remains?? Core-Collapse Supernovae are Viable Astrophysical Sites for R-Process. New Role of R-Process Elements 232 Th & 235,238 U --- Cosmochronology for Metal-Deficient Stars, hopeful but needs more precision? --- Sensitivity of Neutrino Cutoff to BH vs. NS Formation!

Nucleosynthesis in Supernovae and the Big-Bang I

Nucleosynthesis in Supernovae and the Big-Bang I IV International Summer School 2005 Center for Nuclear Study, University of Tokyo August 18 23, 2005 Nucleosynthesis in Supernovae and the Big-Bang I Taka Kajino National Astronomical Observatory Department

More information

the astrophysical formation of the elements

the astrophysical formation of the elements the astrophysical formation of the elements Rebecca Surman Union College Second Uio-MSU-ORNL-UT School on Topics in Nuclear Physics 3-7 January 2011 the astrophysical formation of the elements lecture

More information

Today. Last homework Due next time FINAL EXAM: 8:00 AM TUE Dec. 14 Course Evaluations Open. Modern Cosmology. Big Bang Nucleosynthesis.

Today. Last homework Due next time FINAL EXAM: 8:00 AM TUE Dec. 14 Course Evaluations Open. Modern Cosmology. Big Bang Nucleosynthesis. Today Modern Cosmology Big Bang Nucleosynthesis Dark Matter Dark Energy Last homework Due next time FINAL EXAM: 8:00 AM TUE Dec. 14 Course Evaluations Open Elements of Modern Cosmology 1.Expanding Universe

More information

Galaxies 626. Lecture 3: From the CMBR to the first star

Galaxies 626. Lecture 3: From the CMBR to the first star Galaxies 626 Lecture 3: From the CMBR to the first star Galaxies 626 Firstly, some very brief cosmology for background and notation: Summary: Foundations of Cosmology 1. Universe is homogenous and isotropic

More information

Decaying Dark Matter, Bulk Viscosity, and Dark Energy

Decaying Dark Matter, Bulk Viscosity, and Dark Energy Decaying Dark Matter, Bulk Viscosity, and Dark Energy Dallas, SMU; April 5, 2010 Outline Outline Standard Views Dark Matter Standard Views of Dark Energy Alternative Views of Dark Energy/Dark Matter Dark

More information

Brief Introduction to Cosmology

Brief Introduction to Cosmology Brief Introduction to Cosmology Matias Zaldarriaga Harvard University August 2006 Basic Questions in Cosmology: How does the Universe evolve? What is the universe made off? How is matter distributed? How

More information

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The history of modern cosmology 1917 Static via cosmological constant? (Einstein) 1917 Expansion (Slipher) 1952 Big Bang criticism (Hoyle)

More information

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741 Lecture 19 Nuclear Astrophysics Baryons, Dark Matter, Dark Energy Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Haxton, Nuclear Astrophysics - Basdevant, Fundamentals

More information

Neutrinos and Big-Bang Nucleosynthesis

Neutrinos and Big-Bang Nucleosynthesis 1 Neutrinos and Big-Bang Nucleosynthesis T. KAJINO a b c and M. ORITO a a National Astronomical Observatory, Division of Theoretical Astrophysics b The Graduate University for Advanced Studies, Department

More information

Modern Cosmology Final Examination Solutions 60 Pts

Modern Cosmology Final Examination Solutions 60 Pts Modern Cosmology Final Examination Solutions 6 Pts Name:... Matr. Nr.:... February,. Observable Universe [4 Pts] 6 Pt: Complete the plot of Redshift vs Luminosity distance in the range < z < and plot (i)

More information

Cosmology: An Introduction. Eung Jin Chun

Cosmology: An Introduction. Eung Jin Chun Cosmology: An Introduction Eung Jin Chun Cosmology Hot Big Bang + Inflation. Theory of the evolution of the Universe described by General relativity (spacetime) Thermodynamics, Particle/nuclear physics

More information

Cosmology II: The thermal history of the Universe

Cosmology II: The thermal history of the Universe .. Cosmology II: The thermal history of the Universe Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 Ruth Durrer (Université de Genève) Cosmology II August

More information

Cosmology ASTR 2120 Sarazin. Hubble Ultra-Deep Field

Cosmology ASTR 2120 Sarazin. Hubble Ultra-Deep Field Cosmology ASTR 2120 Sarazin Hubble Ultra-Deep Field Cosmology - Da Facts! 1) Big Universe of Galaxies 2) Sky is Dark at Night 3) Isotropy of Universe Cosmological Principle = Universe Homogeneous 4) Hubble

More information

Cosmology. Jörn Wilms Department of Physics University of Warwick.

Cosmology. Jörn Wilms Department of Physics University of Warwick. Cosmology Jörn Wilms Department of Physics University of Warwick http://astro.uni-tuebingen.de/~wilms/teach/cosmo Contents 2 Old Cosmology Space and Time Friedmann Equations World Models Modern Cosmology

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

MIT Exploring Black Holes

MIT Exploring Black Holes THE UNIVERSE and Three Examples Alan Guth, MIT MIT 8.224 Exploring Black Holes EINSTEIN'S CONTRIBUTIONS March, 1916: The Foundation of the General Theory of Relativity Feb, 1917: Cosmological Considerations

More information

Astroparticle physics the History of the Universe

Astroparticle physics the History of the Universe Astroparticle physics the History of the Universe Manfred Jeitler and Wolfgang Waltenberger Institute of High Energy Physics, Vienna TU Vienna, CERN, Geneva Wintersemester 2016 / 2017 1 The History of

More information

Nucleosíntesis primordial

Nucleosíntesis primordial Tema 5 Nucleosíntesis primordial Asignatura de Física Nuclear Curso académico 2009/2010 Universidad de Santiago de Compostela Big Bang cosmology 1.1 The Universe today The present state of the Universe

More information

Introduction. How did the universe evolve to what it is today?

Introduction. How did the universe evolve to what it is today? Cosmology 8 1 Introduction 8 2 Cosmology: science of the universe as a whole How did the universe evolve to what it is today? Based on four basic facts: The universe expands, is isotropic, and is homogeneous.

More information

ASTROPHYSICAL PROPERTIES OF MIRROR DARK MATTER

ASTROPHYSICAL PROPERTIES OF MIRROR DARK MATTER 16 December 2011 ASTROPHYSICAL PROPERTIES OF MIRROR DARK MATTER Paolo Ciarcelluti Motivation of this research We are now in the ERA OF PRECISION COSMOLOGY and... Motivation of this research We are now

More information

The Tools of Cosmology. Andrew Zentner The University of Pittsburgh

The Tools of Cosmology. Andrew Zentner The University of Pittsburgh The Tools of Cosmology Andrew Zentner The University of Pittsburgh 1 Part Two: The Contemporary Universe 2 Contents Review of Part One The Pillars of Modern Cosmology Primordial Synthesis of Light Nuclei

More information

Astr 102: Introduction to Astronomy. Lecture 16: Cosmic Microwave Background and other evidence for the Big Bang

Astr 102: Introduction to Astronomy. Lecture 16: Cosmic Microwave Background and other evidence for the Big Bang Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, Željko Ivezić Lecture 16: Cosmic Microwave Background and other evidence for the Big Bang 1 Outline Observational Cosmology:

More information

6. Cosmology. (same at all points) probably true on a sufficiently large scale. The present. ~ c. ~ h Mpc (6.1)

6. Cosmology. (same at all points) probably true on a sufficiently large scale. The present. ~ c. ~ h Mpc (6.1) 6. 6. Cosmology 6. Cosmological Principle Assume Universe is isotropic (same in all directions) and homogeneous (same at all points) probably true on a sufficiently large scale. The present Universe has

More information

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004

El Universo en Expansion. Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 El Universo en Expansion Juan García-Bellido Inst. Física Teórica UAM Benasque, 12 Julio 2004 5 billion years (you are here) Space is Homogeneous and Isotropic General Relativity An Expanding Universe

More information

Cosmology: Building the Universe.

Cosmology: Building the Universe. Cosmology: Building the Universe. The term has several different meanings. We are interested in physical cosmology - the study of the origin and development of the physical universe, and all the structure

More information

Concordance Cosmology and Particle Physics. Richard Easther (Yale University)

Concordance Cosmology and Particle Physics. Richard Easther (Yale University) Concordance Cosmology and Particle Physics Richard Easther (Yale University) Concordance Cosmology The standard model for cosmology Simplest model that fits the data Smallest number of free parameters

More information

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model)

VU lecture Introduction to Particle Physics. Thomas Gajdosik, FI & VU. Big Bang (model) Big Bang (model) What can be seen / measured? basically only light _ (and a few particles: e ±, p, p, ν x ) in different wave lengths: microwave to γ-rays in different intensities (measured in magnitudes)

More information

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with Notes for Cosmology course, fall 2005 Dark Matter Prelude Cosmologists dedicate a great deal of effort to determine the density of matter in the universe Type Ia supernovae observations are consistent

More information

Galaxy Formation Seminar 2: Cosmological Structure Formation as Initial Conditions for Galaxy Formation. Prof. Eric Gawiser

Galaxy Formation Seminar 2: Cosmological Structure Formation as Initial Conditions for Galaxy Formation. Prof. Eric Gawiser Galaxy Formation Seminar 2: Cosmological Structure Formation as Initial Conditions for Galaxy Formation Prof. Eric Gawiser Cosmic Microwave Background anisotropy and Large-scale structure Cosmic Microwave

More information

Effects of long-lived strongly interacting particles on Big-Bang nucleosynthesis

Effects of long-lived strongly interacting particles on Big-Bang nucleosynthesis Effects of long-lived strongly interacting particles on Big-Bang nucleosynthesis This study is in progress! More precise results will be reported elsewhere. Motohiko Kusakabe Department of Astronomy, School

More information

Gravitino LSP as Dark Matter in the Constrained MSSM

Gravitino LSP as Dark Matter in the Constrained MSSM Gravitino LSP as Dark Matter in the Constrained MSSM Ki Young Choi The Dark Side of the Universe, Madrid, 20-24 June 2006 Astro-Particle Theory and Cosmology Group The University of Sheffield, UK In collaboration

More information

Nuclear Astrophysics - I

Nuclear Astrophysics - I Nuclear Astrophysics - I Carl Brune Ohio University, Athens Ohio Exotic Beam Summer School 2016 July 20, 2016 Astrophysics and Cosmology Observations Underlying Physics Electromagnetic Spectrum: radio,

More information

SLAC Summer Institute, August 2003 Rocky Kolb, Fermilab & The University of Chicago

SLAC Summer Institute, August 2003 Rocky Kolb, Fermilab & The University of Chicago Dark Matter and Dark Energy SLAC Summer Institute, August 2003 Rocky Kolb, Fermilab & The University of Chicago Rocky I: Evidence for dark matter and dark energy Rocky II: Dark matter candidates Rocky

More information

The Expanding Universe

The Expanding Universe Cosmology Expanding Universe History of the Universe Cosmic Background Radiation The Cosmological Principle Cosmology and General Relativity Dark Matter and Dark Energy Primitive Cosmology If the universe

More information

Astro-2: History of the Universe

Astro-2: History of the Universe Astro-2: History of the Universe Lecture 8; May 7 2013 Previously on astro-2 Wherever we look in the sky there is a background of microwaves, the CMB. The CMB is very close to isotropic better than 0.001%

More information

Triple unification of inflation, dark matter and dark energy

Triple unification of inflation, dark matter and dark energy Triple unification of inflation, dark matter and dark energy May 9, 2008 Leonard Susskind, The Anthropic Landscape of String Theory (2003) A. Liddle, A. Ureña-López, Inflation, dark matter and dark energy

More information

The Big Bang and nucleosynthesis

The Big Bang and nucleosynthesis The Big Bang and nucleosynthesis Sean G. Ryan Centre for Astrophysics Research and Department of Physics, Astronomy and Mathematics University of Hertfordshire Aim of this talk To describe the origin of

More information

Cosmology Dark Energy Models ASTR 2120 Sarazin

Cosmology Dark Energy Models ASTR 2120 Sarazin Cosmology Dark Energy Models ASTR 2120 Sarazin Late Homeworks Last day Wednesday, May 1 My mail box in ASTR 204 Maximum credit 50% unless excused (but, better than nothing) Final Exam Thursday, May 2,

More information

Dark Matter in Particle Physics

Dark Matter in Particle Physics High Energy Theory Group, Northwestern University July, 2006 Outline Framework - General Relativity and Particle Physics Observed Universe and Inference Dark Energy, (DM) DM DM Direct Detection DM at Colliders

More information

Updating Standard Big-Bang Nucleosynthesis after Planck

Updating Standard Big-Bang Nucleosynthesis after Planck Updating Standard Big-Bang Nucleosynthesis after Planck Institut d Astrophysique de Paris, CNRS, Université Pierre et Marie Curie, 98 bis Bd Arago, 75014 Paris, France E-mail: vangioni@iap.fr Alain Coc

More information

Isotropy and Homogeneity

Isotropy and Homogeneity Cosmic inventory Isotropy and Homogeneity On large scales the Universe is isotropic (looks the same in all directions) and homogeneity (the same average density at all locations. This is determined from

More information

3 Observational Cosmology Evolution from the Big Bang Lecture 2

3 Observational Cosmology Evolution from the Big Bang Lecture 2 3 Observational Cosmology Evolution from the Big Bang Lecture 2 http://www.sr.bham.ac.uk/~smcgee/obscosmo/ Sean McGee smcgee@star.sr.bham.ac.uk http://www.star.sr.bham.ac.uk/~smcgee/obscosmo Nucleosynthesis

More information

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site.

Announcements. Homework. Set 8now open. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site. Homework. Set 8now. due late at night Friday, Dec 10 (3AM Saturday Nov. 11) Set 7 answers on course web site. Review for Final. In class on Thursday. Course Evaluation. https://rateyourclass.msu.edu /

More information

Cosmological & Supernova n s and Nucleosynthesis

Cosmological & Supernova n s and Nucleosynthesis Texas Symposium on Relativistic Astrophysics Dallas Texas, Dec. 8 14, 2013 Cosmological & Supernova n s and Nucleosynthesis Taka KAJINO National Astronomical Observatory Department of Astronomy, University

More information

Theory of galaxy formation

Theory of galaxy formation Theory of galaxy formation Bibliography: Galaxy Formation and Evolution (Mo, van den Bosch, White 2011) Lectures given by Frank van den Bosch in Yale http://www.astro.yale.edu/vdbosch/teaching.html Theory

More information

Observational constraints of a Dirac-Milne universe

Observational constraints of a Dirac-Milne universe Observational constraints of a Dirac-Milne universe Aurélien Benoit-Lévy - Gabriel Chardin Marcel Grossman 12 Meeting Paris July 09 Concordance Model of Cosmology 75% Dark Energy, 21% Dark Matter, 4 %

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 11 Nov. 13, 2015 Today Cosmic Microwave Background Big Bang Nucleosynthesis Assignments This week: read Hawley and Holcomb,

More information

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli

Constraining Modified Gravity and Coupled Dark Energy with Future Observations Matteo Martinelli Coupled Dark University of Rome La Sapienza Roma, October 28th 2011 Outline 1 2 3 4 5 1 2 3 4 5 Accelerated Expansion Cosmological data agree with an accelerated expansion of the Universe d L [Mpc] 16000

More information

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Possible sources of very energetic neutrinos. Active Galactic Nuclei Possible sources of very energetic neutrinos Active Galactic Nuclei 1 What might we learn from astrophysical neutrinos? Neutrinos not attenuated/absorbed Information about central engines of astrophysical

More information

Model Universe Including Pressure

Model Universe Including Pressure Model Universe Including Pressure The conservation of mass within the expanding shell was described by R 3 ( t ) ρ ( t ) = ρ 0 We now assume an Universe filled with a fluid (dust) of uniform density ρ,

More information

Lecture 7(cont d):our Universe

Lecture 7(cont d):our Universe Lecture 7(cont d):our Universe 1. Traditional Cosmological tests Theta-z Galaxy counts Tolman Surface Brightness test 2. Modern tests HST Key Project (H o ) Nucleosynthesis (Ω b ) BBN+Clusters (Ω M ) SN1a

More information

Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter

Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter Cosmological Constraints on Dark Energy via Bulk Viscosity from Decaying Dark Matter Nguyen Quynh Lan Hanoi National University of Education, Vietnam (University of Notre Dame, USA) Rencontres du Vietnam:

More information

Vasiliki A. Mitsou. IFIC Valencia TAUP International Conference on Topics in Astroparticle and Underground Physics

Vasiliki A. Mitsou. IFIC Valencia TAUP International Conference on Topics in Astroparticle and Underground Physics Vasiliki A. Mitsou IFIC Valencia TAUP 2009 International Conference on Topics in Astroparticle and Underground Physics Rome, Italy, 1-5 July 2009 Dark energy models CDM Super-horizon CDM (SHCDM) [Kolb,

More information

Analyzing the CMB Brightness Fluctuations. Position of first peak measures curvature universe is flat

Analyzing the CMB Brightness Fluctuations. Position of first peak measures curvature universe is flat Analyzing the CMB Brightness Fluctuations (predicted) 1 st rarefaction Power = Average ( / ) 2 of clouds of given size scale 1 st compression 2 nd compression (deg) Fourier analyze WMAP image: Measures

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 7 Oct. 30, 2015 Today Relativistic Cosmology Dark Side of the Universe I: Dark Matter Assignments This week: read Hawley and

More information

MODERN COSMOLOGY LECTURE FYTN08

MODERN COSMOLOGY LECTURE FYTN08 1/43 MODERN COSMOLOGY LECTURE Lund University bijnens@thep.lu.se http://www.thep.lu.se/ bijnens Lecture Updated 2015 2/43 3/43 1 2 Some problems with a simple expanding universe 3 4 5 6 7 8 9 Credit many

More information

Connecting Quarks to the Cosmos

Connecting Quarks to the Cosmos Connecting Quarks to the Cosmos Institute for Nuclear Theory 29 June to 10 July 2009 Inflationary Cosmology II Michael S. Turner Kavli Institute for Cosmological Physics The University of Chicago Michael

More information

Structure in the CMB

Structure in the CMB Cosmic Microwave Background Anisotropies = structure in the CMB Structure in the CMB Boomerang balloon flight. Mapped Cosmic Background Radiation with far higher angular resolution than previously available.

More information

Observational constraints of a matter-antimatter symmetric Milne Universe. Aurélien Benoit-Lévy Rencontres de Moriond March 2008

Observational constraints of a matter-antimatter symmetric Milne Universe. Aurélien Benoit-Lévy Rencontres de Moriond March 2008 Observational constraints of a matter-antimatter symmetric Milne Universe Aurélien Benoit-Lévy Rencontres de Moriond March 2008 Introduction The composition of the Universe according to concordance model

More information

Neutrinos in Cosmology (II)

Neutrinos in Cosmology (II) Neutrinos in Cosmology (II) Sergio Pastor (IFIC Valencia) Cinvestav 8-12 June 2015 Outline Prologue: the physics of (massive) neutrinos IntroducAon: neutrinos and the history of the Universe Basics of

More information

Physics 133: Extragalactic Astronomy ad Cosmology

Physics 133: Extragalactic Astronomy ad Cosmology Physics 133: Extragalactic Astronomy ad Cosmology Lecture 2; January 8 2014 Previously on PHYS133 Units in astrophysics Olbers paradox The night sky is dark. Inconsistent with and eternal, static and infinite

More information

D.V. Fursaev JINR, Dubna. Mysteries of. the Universe. Problems of the Modern Cosmology

D.V. Fursaev JINR, Dubna. Mysteries of. the Universe. Problems of the Modern Cosmology Mysteries of D.V. Fursaev JINR, Dubna the Universe Problems of the Modern Cosmology plan of the lecture facts about our Universe mathematical model, Friedman universe consequences, the Big Bang recent

More information

Physics 661. Particle Physics Phenomenology. October 2, Physics 661, lecture 2

Physics 661. Particle Physics Phenomenology. October 2, Physics 661, lecture 2 Physics 661 Particle Physics Phenomenology October 2, 2003 Evidence for theory: Hot Big Bang Model Present expansion of the Universe Existence of cosmic microwave background radiation Relative abundance

More information

4 The Big Bang, the genesis of the Universe, the origin of the microwave background

4 The Big Bang, the genesis of the Universe, the origin of the microwave background 4 The Big Bang, the genesis of the Universe, the origin of the microwave background a(t) = 0 The origin of the universe: a(t) = 0 Big Bang coined by Fred Hoyle he calculated the ratio of elements created

More information

The Early Universe and the Big Bang

The Early Universe and the Big Bang The Early Universe and the Big Bang Class 24 Prof J. Kenney June 28, 2018 Final Exam: Friday June 29 at 2-5pm in Watson A48 What the Final Exam will emphasize: Classroom lectures 10-24 (starting FRI June

More information

Computational Applications in Nuclear Astrophysics using JAVA

Computational Applications in Nuclear Astrophysics using JAVA Computational Applications in Nuclear Astrophysics using JAVA Lecture: Friday 10:15-11:45 Room NB 7/67 Jim Ritman and Elisabetta Prencipe j.ritman@fz-juelich.de e.prencipe@fz-juelich.de Computer Lab: Friday

More information

6. Cosmology. (same at all points)ñprobably true on a sufficiently large scale. The present. (h ~ 0.7) 2 g cm. -29 h. Scale L Object Mass L/R H

6. Cosmology. (same at all points)ñprobably true on a sufficiently large scale. The present. (h ~ 0.7) 2 g cm. -29 h. Scale L Object Mass L/R H 6. 6. Cosmology 6. Cosmological Principle Assume Universe is isotropic (same in all directions) and homogeneous (same at all points)ñprobably true on a sufficiently large scale. The present Universe has

More information

THE DARK SIDE OF THE COSMOLOGICAL CONSTANT

THE DARK SIDE OF THE COSMOLOGICAL CONSTANT THE DARK SIDE OF THE COSMOLOGICAL CONSTANT CAMILO POSADA AGUIRRE University of South Carolina Department of Physics and Astronomy 09/23/11 Outline 1 Einstein s Greatest Blunder 2 The FLRW Universe 3 A

More information

Advanced Topics on Astrophysics: Lectures on dark matter

Advanced Topics on Astrophysics: Lectures on dark matter Advanced Topics on Astrophysics: Lectures on dark matter Jesús Zavala Franco e-mail: jzavalaf@uwaterloo.ca UW, Department of Physics and Astronomy, office: PHY 208C, ext. 38400 Perimeter Institute for

More information

Big-Bang Nucleosynthesis with updated nuclear data

Big-Bang Nucleosynthesis with updated nuclear data Big-Bang Nucleosynthesis with updated nuclear data Alain Coc Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), CNRS/IN2P3, Université Paris Sud 11, UMR 8609, Bâtiment 104, F 91405

More information

Cosmic Microwave Background Introduction

Cosmic Microwave Background Introduction Cosmic Microwave Background Introduction Matt Chasse chasse@hawaii.edu Department of Physics University of Hawaii at Manoa Honolulu, HI 96816 Matt Chasse, CMB Intro, May 3, 2005 p. 1/2 Outline CMB, what

More information

Challenges of Vacuum Structure in Cosmology

Challenges of Vacuum Structure in Cosmology Challenges of Vacuum Structure in Cosmology Johann RAFELSKI Department of Physics, The University of Arizona & Guest at LS Habs-Physik Department LM Universität Münich Supported by: The U.S. Department

More information

Ta-Pei Cheng PCNY 9/16/2011

Ta-Pei Cheng PCNY 9/16/2011 PCNY 9/16/2011 Ta-Pei Cheng For a more quantitative discussion, see Relativity, Gravitation & Cosmology: A Basic Introduction (Oxford Univ Press) 2 nd ed. (2010) dark matter & dark energy Astronomical

More information

Time Evolution of the Hot Hagedorn Universe

Time Evolution of the Hot Hagedorn Universe Time Evolution of the Results obtained in collaboration with Jeremiah Birrell The University of Arizona 1965: Penzias and Wilson discover Alpher-Gamov CMB 1966-1968: Hot Big-Bang becoming conventional

More information

The Linear Collider and the Preposterous Universe

The Linear Collider and the Preposterous Universe The Linear Collider and the Preposterous Universe Sean Carroll, University of Chicago 5% Ordinary Matter 25% Dark Matter 70% Dark Energy Why do these components dominate our universe? Would an Apollonian

More information

The Growth of Structure Read [CO 30.2] The Simplest Picture of Galaxy Formation and Why It Fails (chapter title from Longair, Galaxy Formation )

The Growth of Structure Read [CO 30.2] The Simplest Picture of Galaxy Formation and Why It Fails (chapter title from Longair, Galaxy Formation ) WMAP Density fluctuations at t = 79,000 yr he Growth of Structure Read [CO 0.2] 1.0000 1.0001 0.0001 10 4 Early U. contained condensations of many different sizes. Current large-scale structure t = t 0

More information

Lecture 19 Big Bang Nucleosynthesis

Lecture 19 Big Bang Nucleosynthesis Lecture 19 Big Bang Nucleosynthesis As with all course material (including homework, exams), these lecture notes are not be reproduced, redistributed, or sold in any form. The CMB as seen by the WMAP satellite.!2

More information

4. Nucleosynthesis. I. Aretxaga

4. Nucleosynthesis. I. Aretxaga 4. Nucleosynthesis I. Aretxaga 2017 Radiation era We have that ρ M R -3 ρ rad R -4 There must be a z at which ρ M = ρ rad Taking into account that nucleosynthesis predicts n ν =0.68 n γ, then Ω rad =4.2

More information

12 Big Bang Nucleosynthesis. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

12 Big Bang Nucleosynthesis. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 12 Big Bang Nucleosynthesis introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 12.1 The Early Universe According to the accepted cosmological theories: The Universe has cooled during its expansion

More information

Cosmology. Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe

Cosmology. Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe Cosmology Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe Assumptions in Cosmology Copernican principle: We do not

More information

Big Bang Nucleosynthesis and Particle Physics

Big Bang Nucleosynthesis and Particle Physics New Generation Quantum Theory -Particle Physics, Cosmology and Chemistry- Kyoto University Mar.7-9 2016 Big Bang Nucleosynthesis and Particle Physics Masahiro Kawasaki (ICRR & Kavli IPMU, University of

More information

Chapter 17 Cosmology

Chapter 17 Cosmology Chapter 17 Cosmology Over one thousand galaxies visible The Universe on the Largest Scales No evidence of structure on a scale larger than 200 Mpc On very large scales, the universe appears to be: Homogenous

More information

Light Element Nucleosynthesis: The Li-Be-B Story

Light Element Nucleosynthesis: The Li-Be-B Story Light Element Nucleosynthesis: The Li-Be-B Story Jake VanderPlas Phys 554 12-6-2007 Mz3: Hubble Heritage Image Presentation Summary The Problem of Light Elements Big Bang Nucleosynthesis Cosmic Ray Nucleosynthesis

More information

Chapter 18. Cosmology in the 21 st Century

Chapter 18. Cosmology in the 21 st Century Chapter 18 Cosmology in the 21 st Century Guidepost This chapter marks a watershed in our study of astronomy. Since Chapter 1, our discussion has focused on learning to understand the universe. Our outward

More information

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic

Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Astr 2320 Thurs. May 7, 2015 Today s Topics Chapter 24: New Cosmology Problems with the Standard Model Cosmic Nucleosynthesis Particle Physics Cosmic Inflation Galaxy Formation 1 Chapter 24: #3 Chapter

More information

Components of Galaxies: Dark Matter

Components of Galaxies: Dark Matter Components of Galaxies: Dark Matter Dark Matter: Any Form of matter whose existence is inferred solely through its gravitational effects. -B&T, pg 590 Nature of Major Component of Universe Galaxy Formation

More information

BASICS OF COSMOLOGY Astro 2299

BASICS OF COSMOLOGY Astro 2299 BASICS OF COSMOLOGY Astro 2299 We live in a ΛCDM universe that began as a hot big bang (BB) and has flat geometry. It will expand forever. Its properties (laws of physics, fundamental constants) allow

More information

12/6/18. Our Schedule. Cosmology topics and issues. Cosmological (Big) Redshifts (from expansion of universe)

12/6/18. Our Schedule. Cosmology topics and issues. Cosmological (Big) Redshifts (from expansion of universe) ASTR 1040: Stars & Galaxies Our Schedule Homework #13 due today Review Set #4 available -- final review on next Wed Dec 12, 5pm-7pm by Ryan Please do course evaluation (FCQ) online for course + recitation

More information

Weighing the universe : baryons, dark matter, and dark energy

Weighing the universe : baryons, dark matter, and dark energy Weighing the universe : baryons, dark matter, and dark energy Department of Physics The University of Tokyo Yasushi Suto The 21 st century COE program of Tohoku University International symposium Exploring

More information

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift =

Cosmology. Clusters of galaxies. Redshift. Late 1920 s: Hubble plots distances versus velocities of galaxies. λ λ. redshift = Cosmology Study of the structure and origin of the universe Observational science The large-scale distribution of galaxies Looking out to extremely large distances The motions of galaxies Clusters of galaxies

More information

Physics 133: Extragalactic Astronomy and Cosmology

Physics 133: Extragalactic Astronomy and Cosmology Physics 133: Extragalactic Astronomy and Cosmology Week 2 Spring 2018 Previously: Empirical foundations of the Big Bang theory. II: Hubble s Law ==> Expanding Universe CMB Radiation ==> Universe was hot

More information

Dark Energy vs. Dark Matter: Towards a unifying scalar field?

Dark Energy vs. Dark Matter: Towards a unifying scalar field? Dark Energy vs. Dark Matter: Towards a unifying scalar field? Alexandre ARBEY Centre de Recherche Astrophysique de Lyon Institut de Physique Nucléaire de Lyon, March 2nd, 2007. Introduction The Dark Stuff

More information

Modern Physics notes Spring 2005 Paul Fendley Lecture 38

Modern Physics notes Spring 2005 Paul Fendley Lecture 38 Modern Physics notes Spring 2005 Paul Fendley fendley@virginia.edu Lecture 38 Dark matter and energy Cosmic Microwave Background Weinberg, chapters II and III cosmological parameters: Tegmark et al, http://arxiv.org/abs/astro-ph/0310723

More information

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW:

Implications of the Hubble Law: - it is not static, unchanging - Universe had a beginning!! - could not have been expanding forever HUBBLE LAW: Cosmology and the Evolution of the Universe Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -greater distance greater redshift Implications of the Hubble Law: - Universe is

More information

What do we really know about Dark Energy?

What do we really know about Dark Energy? What do we really know about Dark Energy? Ruth Durrer Département de Physique Théorique & Center of Astroparticle Physics (CAP) ESTEC, February 3, 2012 Ruth Durrer (Université de Genève ) Dark Energy ESTEC

More information

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging

Cosmology and the Evolution of the Universe. Implications of the Hubble Law: - Universe is changing (getting bigger!) - it is not static, unchanging Cosmology and the Evolution of the Edwin Hubble, 1929: -almost all galaxies have a redshift -moving away from us -exceptions in Local Group -with distance measurements - found a relationship greater distance

More information

The oldest science? One of the most rapidly evolving fields of modern research. Driven by observations and instruments

The oldest science? One of the most rapidly evolving fields of modern research. Driven by observations and instruments The oldest science? One of the most rapidly evolving fields of modern research. Driven by observations and instruments Intersection of physics (fundamental laws) and astronomy (contents of the universe)

More information

Theoretical Astrophysics and Cosmology

Theoretical Astrophysics and Cosmology Theoretical Astrophysics and Cosmology What is COSMOLOGY? -The study of the Universe as a whole, namely as the collection of its matter/energy components and its constituent phenomena, and of its evolution.

More information

Thermodynamics in Cosmology Nucleosynthesis

Thermodynamics in Cosmology Nucleosynthesis Thermodynamics in Cosmology Nucleosynthesis Thermodynamics Expansion Evolution of temperature Freeze out Nucleosynthesis Production of the light elements Potential barrier Primordial synthesis calculations

More information

B. The blue images are a single BACKGROUND galaxy being lensed by the foreground cluster (yellow galaxies)

B. The blue images are a single BACKGROUND galaxy being lensed by the foreground cluster (yellow galaxies) ASTR 1040 Accel Astro: Stars & Galaxies Today s s `Cosmological Events Look at models for our universe,, and what prompted ideas about big-bang bang beginnings Cosmic Microwave Background Simulation: Large-scale

More information