Effects of long-lived strongly interacting particles on Big-Bang nucleosynthesis

Size: px
Start display at page:

Download "Effects of long-lived strongly interacting particles on Big-Bang nucleosynthesis"

Transcription

1 Effects of long-lived strongly interacting particles on Big-Bang nucleosynthesis This study is in progress! More precise results will be reported elsewhere. Motohiko Kusakabe Department of Astronomy, School of Science, University of Tokyo National Astronomical Observatory of Japan Research Fellow of the Japan Society for the Promotion of Science

2 SBBN prediction and observation 3 min. after the Big Bang Standard Big Bang nucleosynthesis: parameter : baryon-to-photon ratio h constraint on h by WMAP h=(6.27±0.17) (Dunkley et al. 2008) Kawano code (1992) Rates Smith et al. (1993) +Descouvemont et al. (2004) +Cyburt & Davids (arxiv: ) t n =881.9s (Mathews et al. 2005) Li problems! Metal-poor stars (Ryan et al. 2000) (Asplund et al. 2006)

3 Y X Ȳ Long-lived Heavy Colored Particles Kang et al. (2008) In the early universe, hypothetical colored particles annihilaterelic abundance n Y /s~10-15 (n Y /n b ~10-5 ) Temperature decreases When T<T c ~180MeV, heavy partons would get confined in hadrons X p Xs form bound statesdecay into lower energy state annilatefinal abundance n n Y b 2 3/ R TB m 1 GeV 180MeV TeV Goal Calculate the Big-bang nucleosynthesis with heavy exotic strongly interacting particles Derive a constraint on their abundance and lifetime Check if this case explain primordial elemental abundance 1/ 2

4 Model 1. Binding energies of nuclides and X system [Assumption] X is of spin 0, charge 0, mass m X >>1 GeV Nuclear potential 1)nucleon+X : well type reproducing binding energy of n+p system V 25.5MeV(for r 2.5fm) ( r N ) 0 (for 2.5fm r) 2)other nuclides: Woods-Saxon type (V 0 =50MeV, a=0.6fm, R=<r m2 > 1/2 ) We obtained binding energies from Schrödinger equation V N 2 2 V0 ( r) 1 exp ( r 2 V N ( r) R) / E ( r) (Gaussian expansion method, f. e. Hiyama et al. 2003) 0 a Only electric charge 0 case r X nuclide A Binding energies are of ~O(10MeV) X particles capture nuclides early

5 Binding energy nuclide r m RMS (fm) Reference E Bind (MeV) 1 n & 1 H --- NONE H ± [1] Martorell et al. (1995) H ± [2] Amroun et al. (1994) r RMS p He ± [2] r RMS p He 1.59 ± 0.04 [3] Tanihata et al. (1988) He 2.52 ± He radius [3] He 2.52 ± 0.03 [3] Li 2.35 ± Li radius [3] Li 2.35 ± 0.03 [3] Li 2.35 ± 0.03 [3] Li 2.38 ± 0.02 [3] Be 2.33 ± Be radius [3] Be 2.33 ± 0.02 [3] Be 2.33 ± Be radius [3] Be 2.38 ± 0.01 [3]

6 2. Nuclear reaction of X-bound nuclides-1 (only non-resonant reactions) We calculate reaction Q-values taking account of binding energies. Radiative X capture: (X,g) reaction A(n,g)B rate is adopted for A(X,g)A X rate p(x,g)p X and p X (p,g)pp X rates are calculated with a code RADCAP by Bertulani (2003) Radiative neutron capture: (n,g) reaction E1 hindered s n v~const.~<s n v> 10-3 times the rate for A(n,g)B is used for A X (n,g)b X rate n(x,g)n X reaction is neglected When the corresponding normal reaction rates are not available, rates for other reactions A (n,g)b are used b decay of A X : Standard b - decay rates for nuclides A are adopted and corrected for Q-values. As for 6 Be X (,e + n e ) 6 Li X rate, rate for b - decay of 6 He is used and corrected for the Q-value. Decay reactions are neglected when their Q-values are small.

7 2. Nuclear reaction of X-bound nuclides-2 (only non-resonant reactions) Reactions of charged particles: Rate sv t 3 t e S( E0' )cm s Az z E 0 =0.12(z 12 z 22 A) 1/3 T 9 2/3 MeV E 0 =E 0 +5T/6 t=3e 0 /T Nuclear chages (z 1, z 2 ), reduced mass (A A 1 A 2 /[A 1 +A 2 ]) are corrected. S-factor: S(E)=s(E)E exp(2pz 1 z 2 a/v) of standard reactions are used When the corresponding normal reaction rates are not available, rates for other reactions are used Reactions which comes to be of negative Q-values when X particles are attached: In order to use the purely nuclear component of standard nuclear reacion, only coulomb penetraion factors of input and exit channels are corrected.

8 2. Nuclear reaction of X-bound nuclides-3 (only non-resonant reactions) A X (n,p)b X reaction A(n,p)B rate is adopted for A X (n,p)b X rate When the corresponding normal reaction rates are not available, rates for other reactions A (n,p)b are used X-transfer: p X (n,p)n X 7 Be(n,p) 7 Li rate is substituted. n p n p X:massive & strong interaction X-transfer: p X (a,p) 4 He X 8 B(a,p) 11 C rate is substituted. a p a p X:massive & strong interaction

9 Nuclear reaction network 14 O X 15 O X 16 O X Up to X-bould O isotopes 12 N X 13 N X 14 N X 15 N X 10 C X 11 C X 12 C X 13 C X 14 C X 8 B X 9 B X 10 B X 11 B X 12 B X 6 Be X 7 Be X 8 Be X 9 Be X 10 Be X 5 Li X 6 Li X 7 Li X 8 Li X 3 He X 4 He X 5 He X 6 He X 1 H X 2 H X 3 H X Nuclear reactions b-decay 1 n X

10 Abundance Result Nuclear flow m x >>1GeV, n x =10-8 n b, t x = X-capture Temperature T 9 =T/(10 9 K)

11 Abundance Comparison only Negatively charged case Nuclear flow m x >>1GeV, n x =0.1n b, t x = dynamical calculation (Kusakabe et al. 2008) with precise rates (Kamimura et al. 2008) Strongly interacting particles have larger binding energies and larger cross sections for nucleon capturen bound states form earlier than in the case of only electromagnetically interacting particles. 5 Li X and 5 He X are stable against particle decays and heavier nuclides could be produced through those nuclides. Existence of exotic strongly interacting particle has large effect on nucleosynthesis Temperature T 9 =T/(10 9 K)

12 Parameter search Contours of observational constraints on primordial abundances Abundance Y X =n X /n b h= Li is produced more than observed in Metal Poor Stars lifetime t X

13 Summary I assume the existence of long-lived strongly interacting particle X 0 and calculated Big-bang nucleosynthesis including X 0 effects. X 0 particles get bound to normal nuclei at high temperature of K and X-bound nuclei are produced through 5 Li X and 5 He X. Long-lived strongly interacting particle X 0 has a larger effect on nucleosynthesis than only electrically interacting particle X -. (~10 5 times larger efficiency of 6 Li production) Considering X 0 decay, a constraint on abundance and lifetime is derived. (decay-triggered nucleosynthesis is not considered in this study) A parameter region exists where 6 Li abundance are consistent with the possible plateau level of MPHSs.

14 References J. Dunkley et al. [WMAP Collaboration], arxiv: S. G. Ryan, T. C. Beers, K. A. Olive, B. D. Fields and J. E. Norris, Astrophys. J. 530, L57 (2000) M. Asplund, D. L. Lambert, P. E. Nissen, F. Primas and V. V. Smith, Astrophys. J. 644, 229 (2006) L. Kawano, NASA STI/Recon Technical Report N, 92, (1992) M. S. Smith, L. H. Kawano and R. A. Malaney, Astrophys. J. Suppl. 85, 219 (1993) P. Descouvemont, A. Adahchour, C. Angulo, A. Coc and E. Vangioni-Flam, At. Data. Nucl. Data Tables 88, 203 (2004) R. H. Cyburt and B. Davids, arxiv: G. J. Mathews, T. Kajino and T. Shima, Phys. Rev. D 71, (2005) J. Kang, M. A. Luty and S. Nasri, JHEP 0809, 086 (2008) E. Hiyama, Y. Kino and M. Kamimura, Prog. Part. Nucl. Phys. 51, 223 (2003) J. Martorell, D. W. L. Sprung and D. C. Zheng, Phys. Rev. C 51, 1127 (1995) A. Amroun et al. Nucl. Phys. A 579, 596 (1994) I. Tanihata et al. Phys. Lett. B 206, 592 (1988) C. A. Bertulani, Comput. Phys. Commun.156, 123 (2003) M. Kusakabe, T. Kajino, R. N. Boyd, T. Yoshida and G. J. Mathews, Astrophys. J. 680, 846 (2008) M. Kamimura, Y. Kino and E. Hiyama, arxiv:

New routes of reactions by a long-lived negatively charged massive particle during big bang nucleosynthesis

New routes of reactions by a long-lived negatively charged massive particle during big bang nucleosynthesis New routes of reactions by a long-lived negatively charged massive particle during big bang nucleosynthesis Motohiko Kusakabe 1,2 collaborators K. S. Kim 1, Myung-Ki Cheoun 2, Toshitaka Kajino 3,4 Yasushi

More information

the astrophysical formation of the elements

the astrophysical formation of the elements the astrophysical formation of the elements Rebecca Surman Union College Second Uio-MSU-ORNL-UT School on Topics in Nuclear Physics 3-7 January 2011 the astrophysical formation of the elements lecture

More information

Particle and Nuclear Physics Aspects of the Big Bang Nucleosynthesis

Particle and Nuclear Physics Aspects of the Big Bang Nucleosynthesis Particle and Nuclear Physics Aspects of the Big Bang Nucleosynthesis National Astronomical Observatory of Japan, Osawa 2-21-1, Mitaka, Tokyo 181-8588, Japan Department of Astronomy, The University of Tokyo,

More information

Nucleosynthesis in Supernovae and the Big-Bang II

Nucleosynthesis in Supernovae and the Big-Bang II IV International Summer School 2005 Center for Nuclear Study, University of Tokyo August 18 23, 2005 Nucleosynthesis in Supernovae and the Big-Bang II Taka Kajino National Astronomical Observatory Department

More information

Quantum three-body calculation of the nonresonant triple-α reaction rate at low temperatures

Quantum three-body calculation of the nonresonant triple-α reaction rate at low temperatures Quantum three-body calculation of the nonresonant triple- reaction rate at low temperatures Kazuyuki Ogata (in collaboration with M. Kan and M. Kamimura) Department of Physics, Kyushu University Kyushu

More information

Big-Bang Nucleosynthesis with updated nuclear data

Big-Bang Nucleosynthesis with updated nuclear data Big-Bang Nucleosynthesis with updated nuclear data Alain Coc Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse (CSNSM), CNRS/IN2P3, Université Paris Sud 11, UMR 8609, Bâtiment 104, F 91405

More information

Primordial (Big Bang) Nucleosynthesis

Primordial (Big Bang) Nucleosynthesis Primordial (Big Bang) Nucleosynthesis H Li Be Which elements? He METALS - 1942: Gamow suggests a Big Bang origin of the elements. - 1948: Alpher, Bethe & Gamow: all elements are synthesized minutes after

More information

arxiv: v3 [astro-ph.co] 29 Jul 2011

arxiv: v3 [astro-ph.co] 29 Jul 2011 Time Dependent Quark Masses and Big Bang Nucleosynthesis Revisited arxiv:1104.5547v3 [astro-ph.co] 29 Jul 2011 Myung-Ki Cheoun, 1 Toshitaka Kajino, 2,3,4 Motohiko Kusakabe 5 and Grant J. Mathews 6 1 Department

More information

12 Big Bang Nucleosynthesis. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

12 Big Bang Nucleosynthesis. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 12 Big Bang Nucleosynthesis introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 12.1 The Early Universe According to the accepted cosmological theories: The Universe has cooled during its expansion

More information

arxiv: v2 [astro-ph.co] 25 Jun 2009

arxiv: v2 [astro-ph.co] 25 Jun 2009 Big Bang Nucleosynthesis: The Strong Nuclear Force meets the Weak Anthropic Principle J. MacDonald and D.J. Mullan Department of Physics and Astronomy, University of Delaware, DE 19716 (Dated: June 25,

More information

The astrophysical reaction 8 Li(n,γ) 9 Li from measurements by reverse kinematics

The astrophysical reaction 8 Li(n,γ) 9 Li from measurements by reverse kinematics J. Phys. G: Nucl. Part. Phys. 25 (1999) 1959 1963. Printed in the UK PII: S0954-3899(99)00382-5 The astrophysical reaction 8 Li(n,γ) 9 Li from measurements by reverse kinematics Carlos A Bertulani Instituto

More information

Non-extensive Statistics Solution to the Cosmological Lithium Problem

Non-extensive Statistics Solution to the Cosmological Lithium Problem Non-extensive Statistics Solution to the Cosmological Lithium Problem S.Q. Hou 1, J.J. He 1,2, A. Parikh 3,4, D. Kahl 5,6 C.A. Bertulani 7, T. Kajino 8,9,10, G.J. Mathews 9,11, G. Zhao 2 1 Key Laboratory

More information

Updating Standard Big-Bang Nucleosynthesis after Planck

Updating Standard Big-Bang Nucleosynthesis after Planck Updating Standard Big-Bang Nucleosynthesis after Planck Institut d Astrophysique de Paris, CNRS, Université Pierre et Marie Curie, 98 bis Bd Arago, 75014 Paris, France E-mail: vangioni@iap.fr Alain Coc

More information

arxiv: v3 [astro-ph.co] 13 Sep 2017

arxiv: v3 [astro-ph.co] 13 Sep 2017 Big Bang Nucleosynthesis with Stable 8 Be and the Primordial Lithium Problem Richard T. Scherrer Department of Astronomy, University of Illinois, Urbana, IL 61801 and and Department of Computer Science,

More information

Neutrinos and Big-Bang Nucleosynthesis

Neutrinos and Big-Bang Nucleosynthesis 1 Neutrinos and Big-Bang Nucleosynthesis T. KAJINO a b c and M. ORITO a a National Astronomical Observatory, Division of Theoretical Astrophysics b The Graduate University for Advanced Studies, Department

More information

Neutron-to-proton ratio

Neutron-to-proton ratio Neutron-to-proton ratio After one second, the Universe had cooled to 10 13 K. The Universe was filled with protons, neutrons, electrons, and neutrinos. The temperature was high enough that they interconverted

More information

arxiv: v2 [nucl-th] 14 Dec 2017

arxiv: v2 [nucl-th] 14 Dec 2017 Primordial lithium abundance problem of BBN and baryonic density in the universe arxiv:1708.05567v2 [nucl-th] 14 Dec 2017 Vinay Singh 1,,, Joydev Lahiri 2,, Debasis Bhowmick 3, and D. N. Basu 4,, Variable

More information

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University! Overview! Introduction! Basic ideas of EFT! Basic Examples of EFT! Algorithm of EFT! Review NN scattering! NN scattering

More information

Lecture 3: Big Bang Nucleosynthesis

Lecture 3: Big Bang Nucleosynthesis Lecture 3: Big Bang Nucleosynthesis Last time: particle anti-particle soup --> quark soup --> neutron-proton soup. Today: Form 2 D and 4 He Form heavier nuclei? Discuss primordial abundances X p, Y p,

More information

The Cosmic Lithium Problems and Supersymmetric Dark Matter

The Cosmic Lithium Problems and Supersymmetric Dark Matter The Cosmic Lithium Problems and Supersymmetric Dark Matter Karsten JEDAMZIK LPTA, Montpellier Karsten Jedamzik, Chicago, a cold December day in 05 p.1/21 The Li Problem 7e-10 6e-10 "observed" "predicted"

More information

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542)

Physics of Finite and Infinite Nuclear Systems Phys. 477 (542) Physics of Finite and Infinite Nuclear Systems Phys. 477 (542) Class: Tu & Th from 11:30 am to 1:00 pm (Compton 241 mostly) Extra hour: Mo 4 pm make-up hour for planned trips to Tokyo, San Francisco, and

More information

Nuclear Astrophysics - I

Nuclear Astrophysics - I Nuclear Astrophysics - I Carl Brune Ohio University, Athens Ohio Exotic Beam Summer School 2016 July 20, 2016 Astrophysics and Cosmology Observations Underlying Physics Electromagnetic Spectrum: radio,

More information

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability

Basic Nuclear Theory. Lecture 1 The Atom and Nuclear Stability Basic Nuclear Theory Lecture 1 The Atom and Nuclear Stability Introduction Nuclear power is made possible by energy emitted from either nuclear fission or nuclear fusion. Current nuclear power plants utilize

More information

Among the successes of the standard big-bang model is the agreement between the

Among the successes of the standard big-bang model is the agreement between the 16. Big-bang nucleosynthesis 1 16. BIG-BANG NUCLEOSYNTESIS Written July 1995 by K.A. Olive and D.N. Schramm. Among the successes of the standard big-bang model is the agreement between the predictions

More information

How to best reconcile Big Bang Nucleosynthesis with Li abundance determinations? Exotic BBN

How to best reconcile Big Bang Nucleosynthesis with Li abundance determinations? Exotic BBN How to best reconcile Big Bang Nucleosynthesis with Li abundance determinations? Exotic BBN Ryan et al. Possible sources for the discrepancy Nuclear Rates - Restricted by solar neutrino flux Discussed

More information

Big-Bang Nucleosynthesis Reaction Rate Change Sensitivity Analysis

Big-Bang Nucleosynthesis Reaction Rate Change Sensitivity Analysis International Journal of Theoretical and Mathematical Physics 2019, 9(1): 1-8 DOI: 10.5923/j.ijtmp.20190901.01 Big-Bang Nucleosynthesis Reaction Rate Change Sensitivity Analysis Niranjan Bhatia Monta Vista

More information

arxiv:hep-ph/ v2 7 Nov 1995

arxiv:hep-ph/ v2 7 Nov 1995 Big Bang Nucleosynthesis in Crisis? N. Hata, R. J. Scherrer, G. Steigman, D. Thomas, and T. P. Walker Department of Physics, The Ohio State University, Columbus, Ohio 43210 arxiv:hep-ph/9505319v2 7 Nov

More information

arxiv: v1 [astro-ph.he] 28 Dec 2010

arxiv: v1 [astro-ph.he] 28 Dec 2010 Published in Phys. Rev. C 82, 058801(R)(2010) Re-analysis of the (J = 5) state at 592keV in 180 Ta and its role in the ν-process nucleosynthesis of 180 Ta in supernovae T. Hayakawa Quantum Beam Science

More information

Nuclear electric dipole moment in the Gaussian expansion method

Nuclear electric dipole moment in the Gaussian expansion method Nuclear electric dipole moment in the Gaussian expansion method Nodoka Yamanaka (ithes Group, RIKEN) In collaboration with E. Hiyama (RIKEN), T. Yamada (Kanto-Gakuin Univ.), Y. Funaki (RIKEN) 2015/10/12

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

astro-ph/ Dec 1994

astro-ph/ Dec 1994 TU-474 ICRR-Report-333-94-8 astro-phxxxx Electromagnetic Cascade in the Early Universe and its Application to the Big-Bang Nucleosynthesis M. Kawasaki 1 and T. Moroi y 1 Institute for Cosmic Ray Research,

More information

New measurement of the cross section of the Big Bang nucleosynthesis reaction D(α,γ) 6 Li and its astrophysical impact

New measurement of the cross section of the Big Bang nucleosynthesis reaction D(α,γ) 6 Li and its astrophysical impact New measurement of the cross section of the Big Bang nucleosynthesis reaction D(α,γ) 6 Li and its astrophysical impact F. Hammache 1,2, D. Galaviz 3, K. Sümmerer 2, S.Typel 2, F. Uhlig 2, A. Coc 4, F.

More information

Lecture 4: Nuclear Energy Generation

Lecture 4: Nuclear Energy Generation Lecture 4: Nuclear Energy Generation Literature: Prialnik chapter 4.1 & 4.2!" 1 a) Some properties of atomic nuclei Let: Z = atomic number = # of protons in nucleus A = atomic mass number = # of nucleons

More information

Lecture 2: The First Second origin of neutrons and protons

Lecture 2: The First Second origin of neutrons and protons Lecture 2: The First Second origin of neutrons and protons Hot Big Bang Expanding and cooling Soup of free particles + anti-particles Symmetry breaking Soup of free quarks Quarks confined into neutrons

More information

The Big Bang and nucleosynthesis

The Big Bang and nucleosynthesis The Big Bang and nucleosynthesis Sean G. Ryan Centre for Astrophysics Research and Department of Physics, Astronomy and Mathematics University of Hertfordshire Aim of this talk To describe the origin of

More information

New observational limits on dark radiation in brane-world cosmology

New observational limits on dark radiation in brane-world cosmology New observational limits on dark radiation in brane-world cosmology Nishanth Sasankan, Mayukh Raj Gangopadhyay, Grant J Mathews, and Motohiko Kusakabe Center for Astrophysics, Department of Physics, University

More information

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741

Lecture 19 Nuclear Astrophysics. Baryons, Dark Matter, Dark Energy. Experimental Nuclear Physics PHYS 741 Lecture 19 Nuclear Astrophysics Baryons, Dark Matter, Dark Energy Experimental Nuclear Physics PHYS 741 heeger@wisc.edu References and Figures from: - Haxton, Nuclear Astrophysics - Basdevant, Fundamentals

More information

Theoretical Nuclear Physics

Theoretical Nuclear Physics Theoretical Nuclear Physics (SH2011, Second cycle, 6.0cr) Comments and corrections are welcome! Chong Qi, chongq@kth.se The course contains 12 sections 1-4 Introduction Basic Quantum Mechanics concepts

More information

Structure of Atomic Nuclei. Anthony W. Thomas

Structure of Atomic Nuclei. Anthony W. Thomas Structure of Atomic Nuclei Anthony W. Thomas JLab Users Meeting Jefferson Lab : June 2 nd 2015 The Issues What lies at the heart of nuclear structure? Start from a QCD-inspired model of hadron structure

More information

Stau-catalyzed 6 Li production in big-bang nucleosynthesis

Stau-catalyzed 6 Li production in big-bang nucleosynthesis Physics Letters B 650 (2007) 268 274 www.elsevier.com/locate/physletb Stau-catalyzed 6 Li production in big-bang nucleosynthesis K. Hamaguchi a,, T. Hatsuda a,m.kamimura b,y.kino c, T.T. Yanagida a a Department

More information

Origin of the main r-process elements

Origin of the main r-process elements Origin of the main r-process elements K. Otsuki Λ, J. Truran Λ, M. Wiescher, J. Gorres, G. Mathews,D. Frekers ΛΛ, A. Mengoni, A. Bartlett and J. Tostevin Λ Department of Astronomy and Astrophysics, University

More information

Overview. Practice Problems. Making Elements

Overview. Practice Problems. Making Elements 1 / 31 2 / 31 Overview Practice Problems Making Elements 3 / 31 Practice Problem # 1 1. What is the amount (mol) of K atoms present in 19.5 g of potassium? 2. How many formula units are present in 5.32

More information

Lecture 3: Big Bang Nucleosynthesis The First Three Minutes Last time:

Lecture 3: Big Bang Nucleosynthesis The First Three Minutes Last time: Lecture 3: Big Bang Nucleosynthesis The First Three Minutes Last time: particle anti-particle soup --> quark soup --> neutron-proton soup p / n ratio at onset of 2 D formation Today: Form 2 D and 4 He

More information

Lecture 3: Big Bang Nucleosynthesis The First Three Minutes

Lecture 3: Big Bang Nucleosynthesis The First Three Minutes Lecture 3: Big Bang Nucleosynthesis The First Three Minutes Last time: particle anti-particle soup --> quark soup --> neutron-proton soup p / n ratio at onset of 2 D formation Today: Form 2 D and 4 He

More information

Physics Spring Week 3 BIG BANG NUCLEOSYNTHESIS

Physics Spring Week 3 BIG BANG NUCLEOSYNTHESIS Physics 224 - Spring 2010 Week 3 BIG BANG NUCLEOSYNTHESIS Joel Primack University of California, Santa Cruz Neutrino Decoupling and Big Bang Nucleosynthesis, Photon Decoupling, and WIMP Annihilation These

More information

Prediction of Astrophysical Reaction Rates: Methods, Data Needs, and Consequences for Nucleosynthesis Studies

Prediction of Astrophysical Reaction Rates: Methods, Data Needs, and Consequences for Nucleosynthesis Studies Prediction of Astrophysical Reaction Rates: Methods, Data Needs, and Consequences for Nucleosynthesis Studies arxiv:astro-ph/0007453v1 28 Jul 2000 Thomas Rauscher 1, Robert D. Hoffman 2, Stanford E. Woosley

More information

arxiv: v3 [hep-ph] 3 Dec 2018

arxiv: v3 [hep-ph] 3 Dec 2018 IPMU17-0117 UT-17-29 September, 2017 arxiv:1709.01211v3 [hep-ph] 3 Dec 2018 Revisiting Big-Bang Nucleosynthesis Constraints on Long-Lived Decaying Particles Masahiro Kawasaki (a,b), Kazunori Kohri (c,d),

More information

The origin of the light elements in the early Universe

The origin of the light elements in the early Universe 1 HUBERT REEVES* The origin of the light elements in the early Universe Shortly after World War II, George Gamov and his collaborators (Alpher et al. 148) considered the possibility that all chemical elements

More information

Subir Sarkar

Subir Sarkar Trinity 2016 Oxford ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles

More information

Radiative-capture reactions

Radiative-capture reactions Radiative-capture reactions P. Descouvemont Physique Nucléaire Théorique et Physique Mathématique, CP229, Université Libre de Bruxelles, B1050 Bruxelles - Belgium 1. Introduction, definitions 2. Electromagnetic

More information

Light Element Nucleosynthesis: The Li-Be-B Story

Light Element Nucleosynthesis: The Li-Be-B Story Light Element Nucleosynthesis: The Li-Be-B Story Jake VanderPlas Phys 554 12-6-2007 Mz3: Hubble Heritage Image Presentation Summary The Problem of Light Elements Big Bang Nucleosynthesis Cosmic Ray Nucleosynthesis

More information

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540 Central density Consider nuclear charge density Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) Central density (A/Z* charge density) about the same for nuclei heavier than 16 O, corresponding

More information

Big Bang Nucleosynthesis and Particle Physics

Big Bang Nucleosynthesis and Particle Physics New Generation Quantum Theory -Particle Physics, Cosmology and Chemistry- Kyoto University Mar.7-9 2016 Big Bang Nucleosynthesis and Particle Physics Masahiro Kawasaki (ICRR & Kavli IPMU, University of

More information

Measurements of the 7 Be+n Big-Bang nucleosynthesis reactions at CRIB by the Trojan Horse method

Measurements of the 7 Be+n Big-Bang nucleosynthesis reactions at CRIB by the Trojan Horse method Measurements of the Be+n Big-Bang nucleosynthesis reactions at CRIB by the Trojan Horse method S. Hayakawa 1, K. Abe 1, O. Beliuskina 1, S. M. Cha 2, K. Y. Chae 2, S. Cherubini 3,4, P. Figuera 3,4, Z.

More information

PoS(NIC XIII)022. Primordial Nucleosynthesis

PoS(NIC XIII)022. Primordial Nucleosynthesis Centre de Sciences Nucléaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Université Paris Sud 11, UMR 8609, Bâtiment 104, F 91405 Orsay Campus (France) E-mail: coc@csnsm.in2p3.fr Elisabeth Vangioni

More information

arxiv: v1 [hep-ph] 5 Sep 2017

arxiv: v1 [hep-ph] 5 Sep 2017 IPMU17-0117 UT-17-29 September, 2017 arxiv:1709.01211v1 [hep-ph] 5 Sep 2017 Revisiting Big-Bang Nucleosynthesis Constraints on Long-Lived Decaying Particles Masahiro Kawasaki (a,b), Kazunori Kohri (c,d,e),

More information

The Physics of Particles and Forces David Wilson

The Physics of Particles and Forces David Wilson The Physics of Particles and Forces David Wilson Particle Physics Masterclass 21st March 2018 Overview David Wilson (TCD) Particles & Forces 2/30 Overview of Hadron Spectrum Collaboration (HadSpec) scattering

More information

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model

Lisheng Geng. Ground state properties of finite nuclei in the relativistic mean field model Ground state properties of finite nuclei in the relativistic mean field model Lisheng Geng Research Center for Nuclear Physics, Osaka University School of Physics, Beijing University Long-time collaborators

More information

Nuclear equation of state with realistic nuclear forces

Nuclear equation of state with realistic nuclear forces Nuclear equation of state with realistic nuclear forces Hajime Togashi (RIKEN) Collaborators: M. Takano, K. Nakazato, Y. Takehara, S. Yamamuro, K. Sumiyoshi, H. Suzuki, E. Hiyama 1:Introduction Outline

More information

lepton era BBN high T neutrinos in equilibrium reaction proceeds if GF=Fermi constant LHS falls with T more rapidly than RHS!

lepton era BBN high T neutrinos in equilibrium reaction proceeds if GF=Fermi constant LHS falls with T more rapidly than RHS! lepton era BBN high T neutrinos in equilibrium GF=Fermi constant reaction proceeds if LHS falls with T more rapidly than RHS! PAIR ANNIHILATION t=10 s t=0.2 s neutrinos decouple We cannot measure the

More information

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup Dominic Rossi for the LAND collaboration GSI Helmholtzzentrum für Schwerionenforschung GmbH D 64291 Darmstadt, Germany

More information

Electromagnetic and Nuclear Breakup in Coulomb Dissociation Experiments

Electromagnetic and Nuclear Breakup in Coulomb Dissociation Experiments Electromagnetic and Nuclear Breakup in Coulomb Dissociation Experiments Excellence Cluster Universe, Technische Universität, München GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt S246 Collaboration

More information

Ion traps, atomic masses and astrophysics. Outline. Positive ray parabolas. British beginnings

Ion traps, atomic masses and astrophysics. Outline. Positive ray parabolas. British beginnings Ion traps, atomic masses and astrophysics Kumar S. Department of Physics and Astronomy University of Manitoba Outline Some history Atomic masses Ion traps rp-process nucleosysnthesis Physics Day Slide

More information

Introduction to Modern Physics Problems from previous Exams 3

Introduction to Modern Physics Problems from previous Exams 3 Introduction to Modern Physics Problems from previous Exams 3 2007 An electron of mass 9 10 31 kg moves along the x axis at a velocity.9c. a. Calculate the rest energy of the electron. b. Calculate its

More information

Nucleosíntesis primordial

Nucleosíntesis primordial Tema 5 Nucleosíntesis primordial Asignatura de Física Nuclear Curso académico 2009/2010 Universidad de Santiago de Compostela Big Bang cosmology 1.1 The Universe today The present state of the Universe

More information

Isospin-symmetry breaking in nuclei around the N=Z line

Isospin-symmetry breaking in nuclei around the N=Z line Isospin-symmetry breaking in nuclei around the N=Z line Yang Sun Shanghai Jiao Tong University University of Hong Kong, July. 6-9, 2015 The concept of isospin Isospin of a nucleon: Projection of isospin:

More information

L. David Roper

L. David Roper The Heavy Proton L. David Roper mailto:roperld@vt.edu Introduction The proton is the nucleus of the hydrogen atom, which has one orbiting electron. The proton is the least massive of the baryons. Its mass

More information

Coupling of giant resonances to soft E1 and E2 modes in 8 B

Coupling of giant resonances to soft E1 and E2 modes in 8 B Physics Letters B 547 (2002) 205 209 www.elsevier.com/locate/npe Coupling of giant resonances to soft E1 and E2 modes in 8 B C.A. Bertulani National Superconducting Cyclotron Laboratory, Michigan State

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

CHEM 312: Lecture 9 Part 1 Nuclear Reactions

CHEM 312: Lecture 9 Part 1 Nuclear Reactions CHEM 312: Lecture 9 Part 1 Nuclear Reactions Readings: Modern Nuclear Chemistry, Chapter 10; Nuclear and Radiochemistry, Chapter 4 Notation Energetics of Nuclear Reactions Reaction Types and Mechanisms

More information

Shell Eects in Atomic Nuclei

Shell Eects in Atomic Nuclei L. Gaudefroy, A. Obertelli Shell Eects in Atomic Nuclei 1/37 Shell Eects in Atomic Nuclei Laurent Gaudefroy 1 Alexandre Obertelli 2 1 CEA, DAM, DIF - France 2 CEA, Irfu - France Shell Eects in Finite Quantum

More information

Hot Big Bang model: early Universe and history of matter

Hot Big Bang model: early Universe and history of matter Hot Big Bang model: early Universe and history of matter nitial soup with elementary particles and radiation in thermal equilibrium. adiation dominated era (recall energy density grows faster than matter

More information

Quantum Theory of Many-Particle Systems, Phys. 540

Quantum Theory of Many-Particle Systems, Phys. 540 Quantum Theory of Many-Particle Systems, Phys. 540 Questions about organization Second quantization Questions about last class? Comments? Similar strategy N-particles Consider Two-body operators in Fock

More information

20. BIG-BANG NUCLEOSYNTHESIS

20. BIG-BANG NUCLEOSYNTHESIS 20. Big-Bang nucleosynthesis 1 20. BIG-BANG NUCLEOSYNTHESIS Revised August 2009 by B.D. Fields (Univ. of Illinois) and S. Sarkar (Univ. of Oxford). Big-Bang nucleosynthesis (BBN) offers the deepest reliable

More information

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars

PoS(NIC XII)250. A new equation of state with abundances of all nuclei in core collapse simulations of massive stars A new equation of state with abundances of all nuclei in core collapse simulations of massive stars 1, Kohsuke Sumiyoshi 2, Shoichi Yamada 1,3, Hideyuki Suzuki 4 1 Department of Science and Engineering,

More information

RFSS: Lecture 2 Nuclear Properties

RFSS: Lecture 2 Nuclear Properties RFSS: Lecture 2 Nuclear Properties Readings: Modern Nuclear Chemistry: Chapter 2 Nuclear Properties Nuclear and Radiochemistry: Chapter 1 Introduction, Chapter 2 Atomic Nuclei Nuclear properties Masses

More information

High Energy Frontier Recent Results from the LHC: Heavy Ions I

High Energy Frontier Recent Results from the LHC: Heavy Ions I High Energy Frontier Recent Results from the LHC: Heavy Ions I Ralf Averbeck ExtreMe Matter Institute EMMI and Research Division GSI Helmholtzzentrum für Schwerionenforschung Darmstadt, Germany Winter

More information

Nuclear Structure Study of Two-Proton Halo-Nucleus 17 Ne

Nuclear Structure Study of Two-Proton Halo-Nucleus 17 Ne Nuclear Structure Study of Two-Proton Halo-Nucleus Ne Leave one blank line F. H. M. Salih 1, Y. M. I. Perama 1, S. Radiman 1, K. K. Siong 1* Leave one blank line 1 School of Applied Physics, Faculty of

More information

Introduction to Nuclear Physics

Introduction to Nuclear Physics 1/3 S.PÉRU The nucleus a complex system? What is the heaviest nucleus? How many nuclei do exist? What about the shapes of the nuclei? I) Some features about the nucleus discovery radius, shape binding

More information

Nucleosynthesis in the Early Universe. Bengt Gustafsson PhD course in Cosmolgy grad U 2005

Nucleosynthesis in the Early Universe. Bengt Gustafsson PhD course in Cosmolgy grad U 2005 Nucleosynthesis in the Early Universe Bengt Gustafsson PhD course in Cosmolgy grad U 2005 Outline Historical remarks Basic physics Predictions from theory Observations Remaining problems Out of dark age

More information

3 Observational Cosmology Evolution from the Big Bang Lecture 2

3 Observational Cosmology Evolution from the Big Bang Lecture 2 3 Observational Cosmology Evolution from the Big Bang Lecture 2 http://www.sr.bham.ac.uk/~smcgee/obscosmo/ Sean McGee smcgee@star.sr.bham.ac.uk http://www.star.sr.bham.ac.uk/~smcgee/obscosmo Nucleosynthesis

More information

Effect of Λ(1405) on structure of multi-antikaonic nuclei

Effect of Λ(1405) on structure of multi-antikaonic nuclei 12th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon, (May 31-June 4, 2010, College of William and Mary, Williamsburg, Virginia) Session 2B Effect of Λ(1405) on structure

More information

IB Test. Astrophysics HL. Name_solution / a) Describe what is meant by a nebula [1]

IB Test. Astrophysics HL. Name_solution / a) Describe what is meant by a nebula [1] IB Test Astrophysics HL Name_solution / 47 1. a) Describe what is meant by a nebula [1] an intergalactic cloud of gas and dust where all stars begin to form b) Explain how the Jeans criterion applies to

More information

R-matrix Analysis (I)

R-matrix Analysis (I) R-matrix Analysis (I) GANIL TALENT SchoolTALENT Course 6 Theory for exploring nuclear reaction experiments GANIL 1 st -19 th July Ed Simpson University of Surrey e.simpson@surrey.ac.uk Introduction Why

More information

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 13 Synthesis of heavier elements introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The triple α Reaction When hydrogen fusion ends, the core of a star collapses and the temperature can reach

More information

Cluster-orbital shell model approach for unstable nuclei and the developments

Cluster-orbital shell model approach for unstable nuclei and the developments CANHP2015 (week 6), 25-30 Oct. 2015, Kyoto, Japan Cluster-orbital shell model approach for unstable nuclei and the developments Hiroshi MASUI Kitami Institute of Technology Outline of my talk 1. Cluster-orbital

More information

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh).

Nuclear Fission. ~200 MeV. Nuclear Reactor Theory, BAU, Second Semester, (Saed Dababneh). Surface effect Coulomb effect ~200 MeV 1 B.E. per nucleon for 238 U (BE U ) and 119 Pd (BE Pd )? 2x119xBE Pd 238xBE U =?? K.E. of the fragments 10 11 J/g Burning coal 10 5 J/g Why not spontaneous? Two

More information

Interactions. Laws. Evolution

Interactions. Laws. Evolution Lecture Origin of the Elements MODEL: Origin of the Elements or Nucleosynthesis Fundamental Particles quarks, gluons, leptons, photons, neutrinos + Basic Forces gravity, electromagnetic, nuclear Interactions

More information

2 Lithium Problems. Lithium Update

2 Lithium Problems. Lithium Update Lithium Update 2 Lithium Problems Lithium Update Lithium Update 2 Lithium Problems - BBN overproduction of 7 Li Lithium Update 2 Lithium Problems - BBN overproduction of 7 Li - GCRN underproduction of

More information

The effect of the enhanced. primordial abundance of 7Li. Chapter 2. 8Li (a, n) 11 B reaction rate on

The effect of the enhanced. primordial abundance of 7Li. Chapter 2. 8Li (a, n) 11 B reaction rate on Chapter 2 The effect of the enhanced 8Li (a, n) 11 B reaction rate on primordial abundance of 7Li One of the essential inputs of the primordial nucleosynthesis calculation is the reaction rates of the

More information

Constraints on primordial abundances and neutron life-time from CMB

Constraints on primordial abundances and neutron life-time from CMB Constraints on primordial abundances and neutron life-time from CMB PhD Astronomy, Astrophysics and Space Science University of Sapienza and Tor Vergata Advisor: Alessandro Melchiorri Introduction Comparison

More information

Core evolution for high mass stars after helium-core burning.

Core evolution for high mass stars after helium-core burning. The Carbon Flash Because of the strong electrostatic repulsion of carbon and oxygen, and because of the plasma cooling processes that take place in a degenerate carbon-oxygen core, it is extremely difficult

More information

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B

Reactions of neutron-rich Sn isotopes investigated at relativistic energies at R 3 B investigated at relativistic energies at R 3 B for the R 3 B collaboration Technische Universität Darmstadt E-mail: fa.schindler@gsi.de Reactions of neutron-rich Sn isotopes have been measured in inverse

More information

Last Time... We discussed energy sources to a shell of stellar material:

Last Time... We discussed energy sources to a shell of stellar material: Energy Sources We are straying a bit from HKT Ch 6 initially, but it is still a good read, and we'll use it for the summary of rates at the end. Clayton is a great source Last Time... We discussed energy

More information

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape

Elliptic flow. p y. Non-central collision of spherical nuclei or central collision of deformed nuclei. Overlapping zone is of almond shape Outline: Non-central collision of spherical nuclei or central collision of deformed nuclei Overlapping zone is of almond shape Co ordinate space anisotropy is converted into momentum space anisotropy via

More information

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group)

Hadronic Resonances in a Hadronic Picture. Daisuke Jido (Nuclear physics group) Daisuke Jido (Nuclear physics group) Hadrons (particles interacting with strong interactions) are composite objects of quarks and gluons. It has been recently suggested that the structures of some hadrons

More information

Chiral dynamics and baryon resonances

Chiral dynamics and baryon resonances Chiral dynamics and baryon resonances Tetsuo Hyodo a Tokyo Institute of Technology a supported by Global Center of Excellence Program Nanoscience and Quantum Physics 2009, June 5th 1 Contents Contents

More information

arxiv:nucl-th/ v1 14 Nov 2005

arxiv:nucl-th/ v1 14 Nov 2005 Nuclear isomers: structures and applications Yang Sun, Michael Wiescher, Ani Aprahamian and Jacob Fisker Department of Physics and Joint Institute for Nuclear Astrophysics, University of Notre Dame, Notre

More information

Chapter 10 - Nuclear Physics

Chapter 10 - Nuclear Physics The release of atomic energy has not created a new problem. It has merely made more urgent the necessity of solving an existing one. -Albert Einstein David J. Starling Penn State Hazleton PHYS 214 Ernest

More information

8 Nuclei. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

8 Nuclei. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 8 Nuclei introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 8.1 - The nucleus The atomic nucleus consists of protons and neutrons. Protons and neutrons are called nucleons. A nucleus is characterized

More information