A derivation of the Etherington s distance-duality equation

Size: px
Start display at page:

Download "A derivation of the Etherington s distance-duality equation"

Transcription

1 A derivation of the Etherington s distane-duality equation Yuri Heymann 1 Abstrat The Etherington s distane-duality equation is the relationship between the luminosity distane of standard andles and the angular-diameter distane. This relationship has been validated from astronomial observations based on the X-ray surfae brightness and the Sunyaev-Zel dovih effet of galaxy lusters. In the present study, we propose a derivation of the Etherington s reiproity relation in the dihotomous osmology. Keywords Etherington; distane duality; dihotomous osmology 1 Introdution The Etherington s distane-duality equation was introdued in 1933 (Etherington 1933). Etherington mentioned this equation was proposed by Tolman as a way to test a osmologial model. Ellis proposed a proof of this equation in the ontext of Riemannian geometry (Ellis 1971, 2007). A quote from Ellis (Ellis 2007): The ore of the reiproity theorem is the fat that many geometri properties are invariant when the roles of the soure and observer in astronomial observations are transposed. This statement is fundamental in the reiproity theorem as shown here in the derivation of the theorem in the dihotomous osmology. While the proof of the Etherington s distane duality in the ontext of Riemannian geometry is tedious, the derivation in the dihotomous osmology is straightforward. As a reminder, the dihotomous osmology (Heymann 2014a,b) onsists of a stati matter universe with an expanding luminous world. One needs to imagine a ube Yuri Heymann 3 rue Chandieu, 1202 Geneva, Switzerland of light expanding, in a spae where galaxies do not reede from eah other. Fortunately, the Etherington s distane-duality equation, whih is a ruial relationship in osmology, an be verified from astronomial observations. While the luminosity distane is measured from supernova observations, the angular-diameter distane is determined from the X-ray surfae brightness and the Sunyaev- Zel dovih effet (Sunyaev & Zel dovih 1972) of galaxy lusters (Silk & White 1978). In (Bernardis et al. 2006), the authors found that the ratio between the two distanes D L for the luminosity distane and D A for the D L D A (1+z) 2 angular-diameter distane, defined as η = is bound to be η = 1.01 ± 0.07 at 68%.l. Similar results were obtained in (Uzan et al. 2004; Nair et al. 2012), where no signifiant violation of the distane-duality relationship was found. In (Gonçalves et al. 2012), the authors tested the osmi distane duality for different galaxy luster samples. The study (Lima et al. 2011) is foused on analytial expressions for the deformation of the distane duality in terms of the osmi absorption parameter. The reiproity theorem is onsidered to be true when photon number is onserved, gravity is desribed by a metri theory with photons traveling on unique null geodesis (Bassett & Kunz 2004). Any violation of the distane duality would be attributed to exoti physis. Following the introdution in setion 1, the distane measurements are derived in setion 2. To derive the Etherington s reiproity theorem in the dihotomous osmology, we first need the distane measurements, whih may be derived from the tired-light paradigm (setion 2.1) or from expanding metris (setion 2.2). Both derivations lead to the same equations. In setion 2.3, we derive the Etherington s distane duality using our distane measurements. In setion 3, we provide a brief explanation of the method used to estimate the angular-diameter distane from X-ray surfae bright-

2 2 ness measurements and the Sunyaev-Zel dovih effet. In setion 4, we present the line of thought of the dihotomous osmology. Finally, we offer our onlusion in setion 5. 2 Derivation of the distane measurements 2.1 Derivation from tired-light paradigm When a photon loses energy during its travel in spae, the wavelength of light is strethed, and beause the number of yles of the light wave is onserved, an expansion of the luminous world is produed. As a onsequene of this strething of light, the veloity of the light wavefront inreases during its travel (Fig. 1). Aording to speial relativity, the speed of light is invariable. Hene, in order to maintain the light wavefront at the speed of light, the model introdues a time ontration between the emission point and the observer. The study (Heymann 2014a) mentions a time dilation; in order to retify this, the model is based on a time ontration in the arrow of time. where is the Hubble onstant. Therefore E(t) = E 0 exp( t), (3) and E(T ) = E 0 exp( T ), (4) where t is the time whih is equal to zero at the time of observation, and T the light travel time of the soure from the observer. A set of two transformations is onsidered: first a time-variable light wavefront to aommodate the expansion of the luminous world, and seond a time ontration to maintain the light wavefront at the speed of light Light wavefront with respet to the soure The light wavefront veloity before time ontration is expressed as follows: v(t) = E emit E(t). (5) where E emit is the photon energy when emitted, and E(t) the photon energy at time t. To maintain the light wavefront at the speed of light, the following time ontration is applied: δt δt = E emit E(t). (6) Fig. 1 Where (a) is the light wavefront without strething, and (b) with strething. We an see that in (b) the light wavefront is going faster than in (a). Considering that photons lose energy as light gets strethed, the following equation is obtained: 1 + z = E(z) E 0, (1) where E(z) is the photon energy when emitted, E 0 is the photon energy at time of observation, and z is the redshift. A simple deay law of the photon energy is onsidered: Ė E =, (2) Hene, the light travel time with respet to the soure is: T = 0 δt 0 δt dt = E emit dt. (7) E(t) Introduing (3) in the previous equation and integrating, we get: T = E ( emit 1 1 E ) 0. (8) E 0 E emit Introduing (1) in the previous equation, we get: T = z, (9) whih is the light travel time measurement for the luminosity distane.

3 Light wavefront with respet to the observer The light wavefront veloity before time ontration is expressed as follows: v(t) = E 0 E(t). (10) To maintain the light wavefront at the speed of light, the following time ontration is applied: δt 0 δt = E 0 E(t). (11) Hene, the light travel time with respet to the observer is: T 0 = 0 δt 0 0 δt dt = E 0 dt. (12) E(t) Introduing (3) in the previous equation and integrating, we get: T 0 = 1 (1 exp( T )). (13) Introduing (4) in the previous equation, we get: T 0 = 1 ( 1 E ) 0. (14) E emit Introduing (1) in the previous equation, we get: T 0 = 1 z (1 + z), (15) whih is the light travel time measurement for the atual distane. 2.2 Derivation from expanding metris In the dihotomous osmology, the luminous world is expanding; therefore, we an derive the distane measurements using expanding metris Luminosity distane The luminosity distane is the distane measured from the luminosity of standard andles. Supernovae Ia are onsidered stanard andles, meaning they all have the same absolute brightness when they explode. From their apparent brightness, we an dedue the luminosity distane, beause the brightness diminishes proportionally to the inverse of the distane squared. The formula used to measure the luminosity distane is the distane modulus equation. For onsidering a photon travelling away from the enter of a supernova, the luminosity distane is alulated as follows: dr L dt = + r L, (16) where r L is the luminosity distane, the Hubble onstant, and the speed of light. By integrating this equation between 0 and T, we get: r L = (exp( T ) 1). (17) Beause da dt = a, we get dt = da a, where a is the sale fator. In addition, the relationship between the sale fator and the redshift is given by the osmologial redshift equation (1 + z) = 1 a, where the sale fator is equal to one at present time. Hene, the light travel time versus redshift is as follows: T = r L = 1 1/(1+z) da a = 1 ln(1 + z). (18) Equations (17) and (18) yield: z. (19) whih is idential to (9) with r L = T Eulidean distane A measurement of the distane is obtained by alulating the orresponding distane if there were no expansion, whih we all the Eulidean distane. Let us introdue y to this distane measurement. By onsidering a photon moving towards the observer, we get: dy dt = + y. (20) By setting time zero at a referene T b in the past, we get: t = T b T ; therefore, dt = dt (where T is the light travel time when looking at a soure into the past). Hene:

4 4 dy dt = y, (21) with boundary ondition y(t = 0) = 0. Integrating this equation between 0 and T, we get: y = y = (1 exp( T )). (22) By substitution of (18) into (22), we get: z (1 + z), (23) whih is idential to (15) with y = T Etherington s distane duality From (19) and (23), we get: r L = (1 + z)y. (24) The angular-diameter distane d A of an objet is defined in terms of x, the objet s atual size, and θ, the angular size of the objet as viewed from earth. The equation is as follows: d A = x θ. (25) Beause of the expansion of the luminous world, the apparent size of elestial objets is strethed by a fator (1+z), and the apparent angular size is inreased by the same fator. Hene, the relationship between the atual distane y and the angular-diameter distane is as follows: y = (1 + z)d A. (26) Equations (24) and (26) yield: r L = (1 + z) 2 d A, (27) whih is the Etherington s distane-duality relationship. We have just derived the Etherington s reiproity theorem. 3 Method It is worthwhile to provide a brief explanation of the method used to validate the Etherington s distaneduality equation based on astronomial observations. The luminosity distane is measured from supernova observations using the distane modulus and is related to the redshift. The hallenge is to measure the angulardiameter distane beause we dont know the atual size of astronomial objets. This has been done for galaxy lusters using X-ray surfae brightness measurements and the Sunyaev-Zel dovih effet. Galaxy lusters ontain large quantities of hot and ionized gas at temperatures between 10 to 100 megakelvins. This hot gas radiates in the X-ray domain through bremsstrahlung, or radiation produed by the deeleration of a harged partile when defleted by another harged partile. This intra-luster gas distorts the osmi mirowave bakground radiation (CMBR) through the so-alled Sunyaev-Zel dovih effet: inverse Compton interation of photons whih reeive an energy boost when olliding with high energy free eletrons. This dereases the CMBR brightness at low frequenies but inreases it at high frequenies. The drop in temperature or brightness of the CMBR spetrum in the Rayleigh-Jeans region due to the Sunyaev-Zeldovih effet is a funtion of eletron temperature and density. The X-ray surfae brightness is a funtion of the volume of the luster and eletron temperature and density. Using both measures, we an therefore eliminate the eletron density term and estimate the size of the luster. Finally, we ompute the angular-diameter distane using the size of the luster and angular size as shown in (25). The details of the method and quantitative aspets are desribed in (Birkinshaw et al. 1991; Inagaki et al. 1995). 4 Interpretation The dihotomous osmology is in line with the shool of thought of the Greek philosopher Demoritus. Born around 460 B.C., Demoritus was a materialist philosopher disiple of Leuippus. Both held that everything is omposed of atoms, the smallest partile of a substane, whih interat with eah other and lie in empty spae. In the dihotomous osmology there is no need for dark energy or other exoti substanes, and the universe onsists of atoms and vauum. The dihotomous osmology is in ontradition with the big bang theory. In the big bang theory the universe is expanding, whereas in the dihotomous osmology the universe is stati. The three pillars of the big bang are respetively, the expansion of the universe aording to Hubbles law, the disovery of the mirowave

5 5 bakground radiation, and the relative abundanes of light elements. The dihotomous osmology hallenges the first pillar of the big bang. A onsequene of our theory is that the age of the universe is indefinite. In the big bang theory, the age of the universe, is defined by the moment when all the universe was onfined in one point - the big bang singularity, whih is estimated to have ourred around 13.7 billion years ago. In the dihotomous osmology, we annot define a beginning of time. Hubble time, whih is the inverse of the Hubble onstant, beomes the maximum distane that light an travel in the universe. 5 Conlusion The Etherington s distane-duality equation, whih relates the luminosity distane of standard andles to the angular-diameter distane, is a ruial relationship in osmology. Although the Etherington s reiproity theorem is onsidered to be peuliar to osmologial models based on Riemannian geometry, in the present study we propose a new derivation of this relationship in the dihotomous osmology. This derivation is straightforward and follows naturally from the dihotomous osmology. Today, the Etherington s reiproity theorem is onsidered established and has been verified using astronomial observations based on X-ray surfae brightness and the Sunyaev-Zel dovih effet of galaxy lusters.

6 6 Referenes Bassett, B. A., & Kunz, M., 2004, Physial Review D, 69, Bernardis, F., Giusarma, E., & Melhiorri, A. 2006, International Journal of Modern Physis D, 15, Birkinshaw, M., Hughes, J. P., & Arnaud, K. A., 1991, The astrophysial Journal, 379, Ellis, G. F. R. 1971, Proeedings of the 47th International Shool of Physis Enrio Fermi, edited by R. K. Sahs (Aademi Press, New York and London), 15, Ellis, G. F. R. 2007, Gen. Relativ. Gravit., 39, Etherington, I. M. H. 1933, Philos. Mag., 15, Gonçalves, R. S., Holanda, R. F. L., & Alaniz, J. S. 2012, Monthly Notie Letters of the Royal Astronomial Soiety, 420, L43-L47 Heymann, Y. 2014(a), Progress in Physis, 10(3), Heymann, Y. 2014(b), Progress in Physis, 10(4), Inagaki, Y., Suginohara, T., & Suto, Y., 1995, Publiations of the Astronomial Soiety of Japan, 47, Lima, J. A. S., Cunha, J. V., & Zanhin, V. T. 2011, The Astrophysial Journal Letters, 742, L26 Nair, R., Jhingan, S., & Jain, D. 2012, preprint, arxiv: astro-ph/ Silk, J., & White, S. D. M. 1978, The Astrophysial Journal Letters, 226, L103 Sunyaev, R. A., & Zel dovih, Ya. B. 1972, Comm. Astrophys. Spae Phys., 4, Uzan, J.-P., Aghanim, N., & Mellier, Y., 2004, Physial Review D, 70, This manusript was prepared with the AAS LATEX maros v5.2.

A Derivation of the Etherington s Distance-Duality Equation

A Derivation of the Etherington s Distance-Duality Equation International Journal of Astrophysis and Spae Siene 215; 3(4): 65-69 Published online July 9, 215 (http://www.sienepublishinggroup.om/j/ijass) doi: 1.11648/j.ijass.21534.13 ISSN: 2376-714 (Print); ISSN:

More information

Simple Considerations on the Cosmological Redshift

Simple Considerations on the Cosmological Redshift Apeiron, Vol. 5, No. 3, July 8 35 Simple Considerations on the Cosmologial Redshift José Franiso Garía Juliá C/ Dr. Maro Mereniano, 65, 5. 465 Valenia (Spain) E-mail: jose.garia@dival.es Generally, the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 21, 2013 Prof. Alan Guth QUIZ 3 SOLUTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 21, 2013 Prof. Alan Guth QUIZ 3 SOLUTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.286: The Early Universe Deember 2, 203 Prof. Alan Guth QUIZ 3 SOLUTIONS Quiz Date: Deember 5, 203 PROBLEM : DID YOU DO THE READING? (35

More information

arxiv:gr-qc/ v2 6 Feb 2004

arxiv:gr-qc/ v2 6 Feb 2004 Hubble Red Shift and the Anomalous Aeleration of Pioneer 0 and arxiv:gr-q/0402024v2 6 Feb 2004 Kostadin Trenčevski Faulty of Natural Sienes and Mathematis, P.O.Box 62, 000 Skopje, Maedonia Abstrat It this

More information

Zero-energy space cancels the need for dark energy. Mathematics, Physics and Philosophy in the Interpretations of Relativity Theory

Zero-energy space cancels the need for dark energy. Mathematics, Physics and Philosophy in the Interpretations of Relativity Theory Zero-energy spae anels the need for dark energy Tuomo Suntola, www.si.fi/~suntola/, Finland Mathematis, Physis and Philosophy in the Interpretations of Relativity Theory 1 Latest PhysisWeb Summaries 20.7.2007:

More information

19 Lecture 19: Cosmic Microwave Background Radiation

19 Lecture 19: Cosmic Microwave Background Radiation PHYS 652: Astrophysis 97 19 Leture 19: Cosmi Mirowave Bakground Radiation Observe the void its emptiness emits a pure light. Chuang-tzu The Big Piture: Today we are disussing the osmi mirowave bakground

More information

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue.

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue. Towards an Absolute Cosmi Distane Gauge by using Redshift Spetra from Light Fatigue. Desribed by using the Maxwell Analogy for Gravitation. T. De Mees - thierrydemees @ pandora.be Abstrat Light is an eletromagneti

More information

Fractal universe and the speed of light: Revision of the universal constants. Antonio Alfonso-Faus

Fractal universe and the speed of light: Revision of the universal constants. Antonio Alfonso-Faus Fratal universe and the speed of light: Revision of the universal onstants Antonio Alfonso-Faus E.U.I.T. AeronÄutia Plaza Cardenal Cisneros 40, 8040 Madrid, Spain E-ail: aalfonsofaus@yahoo.es Abstrat.

More information

Lecture Notes 4 MORE DYNAMICS OF NEWTONIAN COSMOLOGY

Lecture Notes 4 MORE DYNAMICS OF NEWTONIAN COSMOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.286: The Early Universe Otober 1, 218 Prof. Alan Guth Leture Notes 4 MORE DYNAMICS OF NEWTONIAN COSMOLOGY THE AGE OF A FLAT UNIVERSE: We

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

INTRO VIDEOS. LESSON 9.5: The Doppler Effect

INTRO VIDEOS. LESSON 9.5: The Doppler Effect DEVIL PHYSICS BADDEST CLASS ON CAMPUS IB PHYSICS INTRO VIDEOS Big Bang Theory of the Doppler Effet Doppler Effet LESSON 9.5: The Doppler Effet 1. Essential Idea: The Doppler Effet desribes the phenomenon

More information

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory

Particle-wave symmetry in Quantum Mechanics And Special Relativity Theory Partile-wave symmetry in Quantum Mehanis And Speial Relativity Theory Author one: XiaoLin Li,Chongqing,China,hidebrain@hotmail.om Corresponding author: XiaoLin Li, Chongqing,China,hidebrain@hotmail.om

More information

The electromagnetic wave evolution on very long distance

The electromagnetic wave evolution on very long distance The eletromagneti wave evolution on very long distane Pierre Réal Gosselin 2014-11-22 Abstrat We explain the radiation s redshift Z from far away Galaxies using only Maxwell s lassial equations and the

More information

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE?

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? The stars are spheres of hot gas. Most of them shine beause they are fusing hydrogen into helium in their entral parts. In this problem we use onepts of

More information

Parameters of the Selfvariating Universe (SVU)

Parameters of the Selfvariating Universe (SVU) Parameters of the Selfvariating Universe (SVU) Kyriaos Kefalas () (2) () Department of Physis, Astrophysis Laboratory, National and Kapodistrian University of Athens, Panepistimioupolis, GR 5 783 Zographos,

More information

Special and General Relativity

Special and General Relativity 9/16/009 Speial and General Relativity Inertial referene frame: a referene frame in whih an aeleration is the result of a fore. Examples of Inertial Referene Frames 1. This room. Experiment: Drop a ball.

More information

Investigation of the de Broglie-Einstein velocity equation s. universality in the context of the Davisson-Germer experiment. Yusuf Z.

Investigation of the de Broglie-Einstein velocity equation s. universality in the context of the Davisson-Germer experiment. Yusuf Z. Investigation of the de Broglie-instein veloity equation s universality in the ontext of the Davisson-Germer experiment Yusuf Z. UMUL Canaya University, letroni and Communiation Dept., Öğretmenler Cad.,

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

Origin of the Expansive Homogeneous and Isotropic Relativistic-Quantum-Mechanical Universe

Origin of the Expansive Homogeneous and Isotropic Relativistic-Quantum-Mechanical Universe Adv. Studies Theor. hys., Vol. 5, 011, no. 16, 783-790 Origin of the Expansive Homogeneous and Isotropi Relativisti-Quantum-Mehanial Universe Vladimír Skalský Faulty of Material Sienes and Tehnology of

More information

PHYSICS 432/532: Cosmology Midterm Exam Solution Key (2018) 1. [40 points] Short answer (8 points each)

PHYSICS 432/532: Cosmology Midterm Exam Solution Key (2018) 1. [40 points] Short answer (8 points each) PHYSICS 432/532: Cosmology Midterm Exam Solution Key (2018) 1. [40 points] Short answer (8 points eah) (a) A galaxy is observed with a redshift of 0.02. How far away is the galaxy, and what is its lookbak

More information

The Possibility of FTL Space Travel by using the Quantum Tunneling Effect through the Light Barrier

The Possibility of FTL Space Travel by using the Quantum Tunneling Effect through the Light Barrier ISSN: 19-98 The Possibility of FTL Spae Travel by using the Quantum Tunneling Effet through the Light Barrier Musha T Advaned Si-Teh Researh Organization, -11-7-61, Namiki, Kanazawa-Ku, Yokohama 65, Japan

More information

Lecture 3 - Lorentz Transformations

Lecture 3 - Lorentz Transformations Leture - Lorentz Transformations A Puzzle... Example A ruler is positioned perpendiular to a wall. A stik of length L flies by at speed v. It travels in front of the ruler, so that it obsures part of the

More information

The Janus Cosmological Model and the fluctuations of the CMB

The Janus Cosmological Model and the fluctuations of the CMB The anus Cosmologial Model and the flutuations of the CMB.P. PETIT E-mail: p.petit@mailaps.org It is shown than, in the framework of the anus Cosmologial Model the gravitational instability whih ours in

More information

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν INTRODUCTION So far, the only information we have been able to get about the universe beyond the solar system is from the eletromagneti radiation that reahes us (and a few osmi rays). So doing Astrophysis

More information

The Exact Solution of the Pioneer Anomaly and Flyby Anomaly and the Interpretation of Inertia from an asymmetric Casimir effect

The Exact Solution of the Pioneer Anomaly and Flyby Anomaly and the Interpretation of Inertia from an asymmetric Casimir effect The Exat Solution of the Pioneer Anomaly and Flyby Anomaly and the Interpretation of Inertia from an asymmetri Casimir effet Abstrat Azzam Almosallami Zurih, Switzerland a.almosallami71@gmail.om In this

More information

Results presented below, show the standardized distance modulus, linked to experimental parameters through the relation :

Results presented below, show the standardized distance modulus, linked to experimental parameters through the relation : Results presented below, show the standardied distane modulus, linked to experimental parameters through the relation : µ = m B M B + αx 1 βc (7) where m B is the observed peak magnitude in rest frame

More information

Espen Gaarder Haug Norwegian University of Life Sciences April 4, 2017

Espen Gaarder Haug Norwegian University of Life Sciences April 4, 2017 The Mass Gap, Kg, the Plank Constant and the Gravity Gap The Plank Constant Is a Composite Constant One kg Is 85465435748 0 36 Collisions per Seond The Mass Gap Is.734 0 5 kg and also m p The Possibility

More information

Chapter 26 Lecture Notes

Chapter 26 Lecture Notes Chapter 26 Leture Notes Physis 2424 - Strauss Formulas: t = t0 1 v L = L0 1 v m = m0 1 v E = m 0 2 + KE = m 2 KE = m 2 -m 0 2 mv 0 p= mv = 1 v E 2 = p 2 2 + m 2 0 4 v + u u = 2 1 + vu There were two revolutions

More information

Derivation of Non-Einsteinian Relativistic Equations from Momentum Conservation Law

Derivation of Non-Einsteinian Relativistic Equations from Momentum Conservation Law Asian Journal of Applied Siene and Engineering, Volue, No 1/13 ISSN 35-915X(p); 37-9584(e) Derivation of Non-Einsteinian Relativisti Equations fro Moentu Conservation Law M.O.G. Talukder Varendra University,

More information

Astrophysics and Space Science, Volume 330, Number 2 / December 2010, pp DOI: /s

Astrophysics and Space Science, Volume 330, Number 2 / December 2010, pp DOI: /s Astrophysis and Spae Siene, Volume 0, Number / Deember 010, pp. 7-98 DOI: 10.1007/s10509-010-0409-8 The model of a flat (Eulidean) expansive homogeneous and isotropi relativisti universe in the light of

More information

Gravity from the Uncertainty Principle.

Gravity from the Uncertainty Principle. Gravity from the Unertainty Priniple. M.E. MCulloh Otober 29, 2013 Abstrat It is shown here that Newton's gravity law an be derived from the unertainty priniple. The idea is that as the distane between

More information

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge The Conept of Mass as Interfering Photons, and the Originating Mehanism of Gravitation D.T. Froedge V04 Formerly Auburn University Phys-dtfroedge@glasgow-ky.om Abstrat For most purposes in physis the onept

More information

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009 Radiation proesses and mehanisms in astrophysis R Subrahmanyan Notes on ATA letures at UWA, Perth May 009 Synhrotron radiation - 1 Synhrotron radiation emerges from eletrons moving with relativisti speeds

More information

Supplementary information for: All-optical signal processing using dynamic Brillouin gratings

Supplementary information for: All-optical signal processing using dynamic Brillouin gratings Supplementary information for: All-optial signal proessing using dynami Brillouin gratings Maro Santagiustina, Sanghoon Chin 2, Niolay Primerov 2, Leonora Ursini, Lu Thévena 2 Department of Information

More information

Relativistic Addition of Velocities *

Relativistic Addition of Velocities * OpenStax-CNX module: m42540 1 Relativisti Addition of Veloities * OpenStax This work is produed by OpenStax-CNX and liensed under the Creative Commons Attribution Liense 3.0 Abstrat Calulate relativisti

More information

Role of Constant Deceleration Parameter in Cosmological Model Filled with Dark Energy

Role of Constant Deceleration Parameter in Cosmological Model Filled with Dark Energy Bulg. J. Phys. 43 (2016) 148 155 Role of Constant Deeleration Parameter in Cosmologial Model Filled with Dark Energy in f(r, T ) Theory D.D. Pawar, P.K. Agrawal Shool of Mathematial Sienes, Swami Ramanand

More information

On the Geometrical Conditions to Determine the Flat Behaviour of the Rotational Curves in Galaxies

On the Geometrical Conditions to Determine the Flat Behaviour of the Rotational Curves in Galaxies On the Geometrial Conditions to Determine the Flat Behaviour of the Rotational Curves in Galaxies Departamento de Físia, Universidade Estadual de Londrina, Londrina, PR, Brazil E-mail: andrenaves@gmail.om

More information

TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER

TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER (No general ausality without superluminal veloities) by Dr. Tamas Lajtner Correspondene via web site: www.lajtnemahine.om ABSTRACT...2 1. SPACETIME

More information

TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER

TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER TWO WAYS TO DISTINGUISH ONE INERTIAL FRAME FROM ANOTHER (WHY IS THE SPEED OF LIGHT CONSTANT?) Dr. Tamas Lajtner Correspondene via web site: www.lajtnemahine.om. ABSTRACT... 2 2. SPACETIME CONTINUUM BY

More information

CHAPTER 26 The Special Theory of Relativity

CHAPTER 26 The Special Theory of Relativity CHAPTER 6 The Speial Theory of Relativity Units Galilean-Newtonian Relativity Postulates of the Speial Theory of Relativity Simultaneity Time Dilation and the Twin Paradox Length Contration Four-Dimensional

More information

Module 5: Red Recedes, Blue Approaches. UNC-TFA H.S. Astronomy Collaboration, Copyright 2012

Module 5: Red Recedes, Blue Approaches. UNC-TFA H.S. Astronomy Collaboration, Copyright 2012 Objetives/Key Points Module 5: Red Reedes, Blue Approahes UNC-TFA H.S. Astronomy Collaboration, Copyright 2012 Students will be able to: 1. math the diretion of motion of a soure (approahing or reeding)

More information

Chapter 35. Special Theory of Relativity (1905)

Chapter 35. Special Theory of Relativity (1905) Chapter 35 Speial Theory of Relatiity (1905) 1. Postulates of the Speial Theory of Relatiity: A. The laws of physis are the same in all oordinate systems either at rest or moing at onstant eloity with

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysisAndMathsTutor.om. (a (i beam splitter [or semi-silvered mirror] (ii a ompensator [or a glass blok] allows for the thikness of the (semi-silvered mirror to obtain equal optial path lengths in the

More information

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013 Ultrafast Pulses and GVD John O Hara Created: De. 6, 3 Introdution This doument overs the basi onepts of group veloity dispersion (GVD) and ultrafast pulse propagation in an optial fiber. Neessarily, it

More information

Wave Propagation through Random Media

Wave Propagation through Random Media Chapter 3. Wave Propagation through Random Media 3. Charateristis of Wave Behavior Sound propagation through random media is the entral part of this investigation. This hapter presents a frame of referene

More information

The Reason of Photons Angular Distribution at Electron-Positron Annihilation in a Positron-Emission Tomograph

The Reason of Photons Angular Distribution at Electron-Positron Annihilation in a Positron-Emission Tomograph Advanes in Natural Siene ol 7, No,, pp -5 DOI: 3968/66 ISSN 75-786 [PRINT] ISSN 75-787 [ONLINE] wwwsanadanet wwwsanadaorg The Reason of Photons Angular Distribution at Eletron-Positron Annihilation in

More information

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

The Unified Geometrical Theory of Fields and Particles

The Unified Geometrical Theory of Fields and Particles Applied Mathematis, 014, 5, 347-351 Published Online February 014 (http://www.sirp.org/journal/am) http://dx.doi.org/10.436/am.014.53036 The Unified Geometrial Theory of Fields and Partiles Amagh Nduka

More information

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution.

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution. arxiv:physis/99536v1 [physis.lass-ph] 15 May 1999 Eletromagneti radiation of the travelling spin wave propagating in an antiferromagneti plate. Exat solution. A.A.Zhmudsky November 19, 16 Abstrat The exat

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non-relativisti ase January 2019 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and 44): 1 2 A 2 2 2 A = µ 0

More information

arxiv:astro-ph/ v4 13 Jan 2005

arxiv:astro-ph/ v4 13 Jan 2005 Brillouin sattering and the CMB arxiv:astro-ph/010533v4 13 Jan 005 A. Sandoval-Villalbazo a and R. Maartens b a Departmento de Físia y Matemátias, Universidad Iberoameriana Lomas de Santa Fe 0110 Méxio

More information

New Potential of the. Positron-Emission Tomography

New Potential of the. Positron-Emission Tomography International Journal of Modern Physis and Appliation 6; 3(: 39- http://www.aasit.org/journal/ijmpa ISSN: 375-387 New Potential of the Positron-Emission Tomography Andrey N. olobuev, Eugene S. Petrov,

More information

arxiv:physics/ v1 [physics.class-ph] 8 Aug 2003

arxiv:physics/ v1 [physics.class-ph] 8 Aug 2003 arxiv:physis/0308036v1 [physis.lass-ph] 8 Aug 003 On the meaning of Lorentz ovariane Lszl E. Szab Theoretial Physis Researh Group of the Hungarian Aademy of Sienes Department of History and Philosophy

More information

The Lorenz Transform

The Lorenz Transform The Lorenz Transform Flameno Chuk Keyser Part I The Einstein/Bergmann deriation of the Lorentz Transform I follow the deriation of the Lorentz Transform, following Peter S Bergmann in Introdution to the

More information

Aharonov-Bohm effect. Dan Solomon.

Aharonov-Bohm effect. Dan Solomon. Aharonov-Bohm effet. Dan Solomon. In the figure the magneti field is onfined to a solenoid of radius r 0 and is direted in the z- diretion, out of the paper. The solenoid is surrounded by a barrier that

More information

Einstein s Three Mistakes in Special Relativity Revealed. Copyright Joseph A. Rybczyk

Einstein s Three Mistakes in Special Relativity Revealed. Copyright Joseph A. Rybczyk Einstein s Three Mistakes in Speial Relativity Revealed Copyright Joseph A. Rybzyk Abstrat When the evidene supported priniples of eletromagneti propagation are properly applied, the derived theory is

More information

arxiv:gr-qc/ v7 14 Dec 2003

arxiv:gr-qc/ v7 14 Dec 2003 Propagation of light in non-inertial referene frames Vesselin Petkov Siene College, Conordia University 1455 De Maisonneuve Boulevard West Montreal, Quebe, Canada H3G 1M8 vpetkov@alor.onordia.a arxiv:gr-q/9909081v7

More information

The Concept of the Effective Mass Tensor in GR. The Gravitational Waves

The Concept of the Effective Mass Tensor in GR. The Gravitational Waves The Conept of the Effetive Mass Tensor in GR The Gravitational Waves Mirosław J. Kubiak Zespół Szkół Tehniznyh, Grudziądz, Poland Abstrat: In the paper [] we presented the onept of the effetive mass tensor

More information

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field Four-dimensional equation of motion for visous ompressible substane with regard to the aeleration field, pressure field and dissipation field Sergey G. Fedosin PO box 6488, Sviazeva str. -79, Perm, Russia

More information

The Special Theory of Relativity

The Special Theory of Relativity The Speial Theory of Relatiity Galilean Newtonian Relatiity Galileo Galilei Isaa Newton Definition of an inertial referene frame: One in whih Newton s first law is alid. onstant if F0 Earth is rotating

More information

Metric of Universe The Causes of Red Shift.

Metric of Universe The Causes of Red Shift. Metri of Universe The Causes of Red Shift. ELKIN IGOR. ielkin@yande.ru Annotation Poinare and Einstein supposed that it is pratially impossible to determine one-way speed of light, that s why speed of

More information

Special Relativity. Relativity

Special Relativity. Relativity 10/17/01 Speial Relativity Leture 17 Relativity There is no absolute motion. Everything is relative. Suppose two people are alone in spae and traveling towards one another As measured by the Doppler shift!

More information

THE TWIN PARADOX A RELATIVISTIC DOMAIN RESOLUTION

THE TWIN PARADOX A RELATIVISTIC DOMAIN RESOLUTION THE TWIN PARADOX A RELATIVISTIC DOMAIN RESOLUTION Peter G.Bass P.G.Bass www.relativitydomains.om January 0 ABSTRACT This short paper shows that the so alled "Twin Paradox" of Speial Relativity, is in fat

More information

Cherenkov Radiation. Bradley J. Wogsland August 30, 2006

Cherenkov Radiation. Bradley J. Wogsland August 30, 2006 Cherenkov Radiation Bradley J. Wogsland August 3, 26 Contents 1 Cherenkov Radiation 1 1.1 Cherenkov History Introdution................... 1 1.2 Frank-Tamm Theory......................... 2 1.3 Dispertion...............................

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become Relativity and quantum mehanis: Jorgensen 1 revisited 1. Introdution Bernhard Rothenstein, Politehnia University of Timisoara, Physis Department, Timisoara, Romania. brothenstein@gmail.om Abstrat. We first

More information

The Electromagnetic Radiation and Gravity

The Electromagnetic Radiation and Gravity International Journal of Theoretial and Mathematial Physis 016, 6(3): 93-98 DOI: 10.593/j.ijtmp.0160603.01 The Eletromagneti Radiation and Gravity Bratianu Daniel Str. Teiului Nr. 16, Ploiesti, Romania

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

Theory of Dynamic Gravitational. Electromagnetism

Theory of Dynamic Gravitational. Electromagnetism Adv. Studies Theor. Phys., Vol. 6, 0, no. 7, 339-354 Theory of Dynami Gravitational Eletromagnetism Shubhen Biswas G.P.S.H.Shool, P.O.Alaipur, Pin.-7445(W.B), India shubhen3@gmail.om Abstrat The hange

More information

Gravitomagnetic Effects in the Kerr-Newman Spacetime

Gravitomagnetic Effects in the Kerr-Newman Spacetime Advaned Studies in Theoretial Physis Vol. 10, 2016, no. 2, 81-87 HIKARI Ltd, www.m-hikari.om http://dx.doi.org/10.12988/astp.2016.512114 Gravitomagneti Effets in the Kerr-Newman Spaetime A. Barros Centro

More information

Physical Laws, Absolutes, Relative Absolutes and Relativistic Time Phenomena

Physical Laws, Absolutes, Relative Absolutes and Relativistic Time Phenomena Page 1 of 10 Physial Laws, Absolutes, Relative Absolutes and Relativisti Time Phenomena Antonio Ruggeri modexp@iafria.om Sine in the field of knowledge we deal with absolutes, there are absolute laws that

More information

Finding the Planck Length Independent of Newton s Gravitational Constant and the Planck Constant The Compton Clock Model of Matter

Finding the Planck Length Independent of Newton s Gravitational Constant and the Planck Constant The Compton Clock Model of Matter Finding the Plank Length Independent of Newton s Gravitational Constant and the Plank Constant The Compton Clok Model of Matter Espen Gaarder Haug Norwegian University of Life Sienes September 9, 08 In

More information

Casimir self-energy of a free electron

Casimir self-energy of a free electron Casimir self-energy of a free eletron Allan Rosenwaig* Arist Instruments, In. Fremont, CA 94538 Abstrat We derive the eletromagneti self-energy and the radiative orretion to the gyromagneti ratio of a

More information

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon Albuquerque, NM 0 POCEEDINGS of the NPA 457 The Gravitational Potential for a Moving Observer, Merury s Perihelion, Photon Defletion and Time Delay of a Solar Grazing Photon Curtis E. enshaw Tele-Consultants,

More information

A Modified Newtonian Quantum Gravity Theory Derived from Heisenberg s Uncertainty Principle that Predicts the Same Bending of Light as GR

A Modified Newtonian Quantum Gravity Theory Derived from Heisenberg s Uncertainty Principle that Predicts the Same Bending of Light as GR A Modified Newtonian Quantum Gravity Theory Derived from Heisenberg s Unertainty Priniple that Predits the Same Bending of Light as GR Espen Gaarder Haug Norwegian University of Life Sienes Marh 6, 208

More information

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms NSTTUTE OF PHYSCS PUBLSHNG JOURNAL OF PHYSCS B: ATOMC, MOLECULAR AND OPTCAL PHYSCS J. Phys. B: At. Mol. Opt. Phys. 39 ) 7 85 doi:.88/953-75/39/8/ Non-Markovian study of the relativisti magneti-dipole spontaneous

More information

Advanced Computational Fluid Dynamics AA215A Lecture 4

Advanced Computational Fluid Dynamics AA215A Lecture 4 Advaned Computational Fluid Dynamis AA5A Leture 4 Antony Jameson Winter Quarter,, Stanford, CA Abstrat Leture 4 overs analysis of the equations of gas dynamis Contents Analysis of the equations of gas

More information

Residual annual and diurnal periodicities of the Pioneer 10 acceleration term resolved in absolute CMB space

Residual annual and diurnal periodicities of the Pioneer 10 acceleration term resolved in absolute CMB space Residual annual and diurnal periodiities of the Pioneer 10 aeleration term resolved in absolute CMB spae Roland Pabish e-mail: roland.pabish@liwest.at Puhenau/Linz, Austria Released 2018, January 18 Key

More information

Critical Reflections on the Hafele and Keating Experiment

Critical Reflections on the Hafele and Keating Experiment Critial Refletions on the Hafele and Keating Experiment W.Nawrot In 1971 Hafele and Keating performed their famous experiment whih onfirmed the time dilation predited by SRT by use of marosopi loks. As

More information

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES.

ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. ELECTROMAGNETIC NORMAL MODES AND DISPERSION FORCES. All systems with interation of some type have normal modes. One may desribe them as solutions in absene of soures; they are exitations of the system

More information

Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College

Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College 3-14-06 1 Propagation of waves through a medium As you ll reall from last semester, when the speed of sound is measured

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

Classical Diamagnetism and the Satellite Paradox

Classical Diamagnetism and the Satellite Paradox Classial Diamagnetism and the Satellite Paradox 1 Problem Kirk T. MDonald Joseph Henry Laboratories, Prineton University, Prineton, NJ 08544 (November 1, 008) In typial models of lassial diamagnetism (see,

More information

The Relic Neutrino Contribution to the Universe Energy Density

The Relic Neutrino Contribution to the Universe Energy Density International Journal of Physis and Appliations. ISSN 097-10 Volume 2, Number (2010), pp. 117--122 International Researh Publiation House http://www.irphouse.om The Reli Neutrino Contribution to the Universe

More information

THE REFRACTION OF LIGHT IN STATIONARY AND MOVING REFRACTIVE MEDIA

THE REFRACTION OF LIGHT IN STATIONARY AND MOVING REFRACTIVE MEDIA HDRONIC JOURNL 24, 113-129 (2001) THE REFRCTION OF LIGHT IN STTIONRY ND MOVING REFRCTIVE MEDI C. K. Thornhill 39 Crofton Road Orpington, Kent, BR6 8E United Kingdom Reeived Deember 10, 2000 Revised: Marh

More information

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis

ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW. P. М. Меdnis ELECTROMAGNETIC WAVES WITH NONLINEAR DISPERSION LAW P. М. Меdnis Novosibirs State Pedagogial University, Chair of the General and Theoretial Physis, Russia, 636, Novosibirs,Viljujsy, 8 e-mail: pmednis@inbox.ru

More information

The Corpuscular Structure of Matter, the Interaction of Material Particles, and Quantum Phenomena as a Consequence of Selfvariations.

The Corpuscular Structure of Matter, the Interaction of Material Particles, and Quantum Phenomena as a Consequence of Selfvariations. The Corpusular Struture of Matter, the Interation of Material Partiles, and Quantum Phenomena as a Consequene of Selfvariations. Emmanuil Manousos APM Institute for the Advanement of Physis and Mathematis,

More information

A EUCLIDEAN ALTERNATIVE TO MINKOWSKI SPACETIME DIAGRAM.

A EUCLIDEAN ALTERNATIVE TO MINKOWSKI SPACETIME DIAGRAM. A EUCLIDEAN ALTERNATIVE TO MINKOWSKI SPACETIME DIAGRAM. S. Kanagaraj Eulidean Relativity s.kana.raj@gmail.om (1 August 009) Abstrat By re-interpreting the speial relativity (SR) postulates based on Eulidean

More information

Gravitational lensing by spherically symmetric lenses with angular momentum

Gravitational lensing by spherically symmetric lenses with angular momentum Astronomy & Astrophysis manusript no. will be inserted by hand later) Gravitational lensing by spherially symmetri lenses with angular momentum M. Sereno,, V.F. Cardone,3 Dipartimento di Sienze Fisihe,

More information

Class Test 1 ( ) Subject Code :Applied Physics (17202/17207/17210) Total Marks :25. Model Answer. 3. Photon travels with the speed of light

Class Test 1 ( ) Subject Code :Applied Physics (17202/17207/17210) Total Marks :25. Model Answer. 3. Photon travels with the speed of light Class Test (0-) Sujet Code :Applied Physis (70/707/70) Total Marks :5 Sem. :Seond Model Answer Q Attempt any FOUR of the following 8 a State the properties of photon Ans:.Photon is eletrially neutral.

More information

PHY 108: Optical Physics. Solution to Midterm Test

PHY 108: Optical Physics. Solution to Midterm Test PHY 108: Optial Physis Solution to Midterm Test TA: Xun Jia 1 May 14, 2008 1 Email: jiaxun@physis.ula.edu Spring 2008 Physis 108 Xun Jia (May 14, 2008) Problem #1 For a two mirror resonant avity, the resonane

More information

Determination of the reaction order

Determination of the reaction order 5/7/07 A quote of the wee (or amel of the wee): Apply yourself. Get all the eduation you an, but then... do something. Don't just stand there, mae it happen. Lee Iaoa Physial Chemistry GTM/5 reation order

More information

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B =

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B = L Physis MC nswers Year:1989 Question Number: 3,0,,4,6,9,30,31,36,40,4 1989MC (3) If eloity of relatie to ground = and eloity of relatie to ground =, then the eloity of relatie to = X X Y Y Suppose that

More information

Processi di Radiazione e MHD

Processi di Radiazione e MHD Proessi di Radiazione e MHD 0. Overview of elestial bodies and sky at various frequenies 1. Definition of main astrophysial observables. Radiative transfer 3. Blak body radiation 4. basi theory of radiation

More information

Line Radiative Transfer

Line Radiative Transfer http://www.v.nrao.edu/ourse/astr534/ineradxfer.html ine Radiative Transfer Einstein Coeffiients We used armor's equation to estimate the spontaneous emission oeffiients A U for À reombination lines. A

More information

Blackbody radiation and Plank s law

Blackbody radiation and Plank s law lakbody radiation and Plank s law blakbody problem: alulating the intensity o radiation at a given wavelength emitted by a body at a speii temperature Max Plank, 900 quantization o energy o radiation-emitting

More information

Recapitulate. Prof. Shiva Prasad, Department of Physics, IIT Bombay

Recapitulate. Prof. Shiva Prasad, Department of Physics, IIT Bombay 18 1 Reapitulate We disussed how light an be thought of onsisting of partiles known as photons. Compton Effet demonstrated that they an be treated as a partile with zero rest mass having nonzero energy

More information

the following action R of T on T n+1 : for each θ T, R θ : T n+1 T n+1 is defined by stated, we assume that all the curves in this paper are defined

the following action R of T on T n+1 : for each θ T, R θ : T n+1 T n+1 is defined by stated, we assume that all the curves in this paper are defined How should a snake turn on ie: A ase study of the asymptoti isoholonomi problem Jianghai Hu, Slobodan N. Simić, and Shankar Sastry Department of Eletrial Engineering and Computer Sienes University of California

More information

Developing Excel Macros for Solving Heat Diffusion Problems

Developing Excel Macros for Solving Heat Diffusion Problems Session 50 Developing Exel Maros for Solving Heat Diffusion Problems N. N. Sarker and M. A. Ketkar Department of Engineering Tehnology Prairie View A&M University Prairie View, TX 77446 Abstrat This paper

More information

RADIATION POWER SPECTRAL DISTRIBUTION OF CHARGED PARTICLES MOVING IN A SPIRAL IN MAGNETIC FIELDS

RADIATION POWER SPECTRAL DISTRIBUTION OF CHARGED PARTICLES MOVING IN A SPIRAL IN MAGNETIC FIELDS Journal of Optoeletronis and Advaned Materials Vol. 5, o. 5,, p. 4-4 RADIATIO POWER SPECTRAL DISTRIBUTIO OF CHARGED PARTICLES MOVIG I A SPIRAL I MAGETIC FIELDS A. V. Konstantinovih *, S. V. Melnyhuk, I.

More information