PHYSICS 432/532: Cosmology Midterm Exam Solution Key (2018) 1. [40 points] Short answer (8 points each)

Size: px
Start display at page:

Download "PHYSICS 432/532: Cosmology Midterm Exam Solution Key (2018) 1. [40 points] Short answer (8 points each)"

Transcription

1 PHYSICS 432/532: Cosmology Midterm Exam Solution Key (2018) 1. [40 points] Short answer (8 points eah) (a) A galaxy is observed with a redshift of How far away is the galaxy, and what is its lookbak time? This is meant to simply be a low redshift alulation, so we an ignore whih kind of distane we re talking about here. The lookbak time is simply: where I used the relation 1p=3.26 ly. d = z = (3 105 km/s)(0.02) = 60h 1 Mp 100h km/s/mp t lookbak = d = 195.6h 1 My (b) Consider a galaxy halo with a density of the form ρ r n. i. Compute the oeffiient, s, in the rotation urve v r s for suh a galaxy. Note that: M R = 4πr 2 ρ(r)dr R n+3 and so v 2 = GM R R s = n Rn+2 ii. (Required for Grad, +2 EC for Undergrad) Now suppose the galaxy has a onstant density out to some fixed radius, R, and has zero density outside. Sketh the rotation urve. Inside R, n = 0, so, s = 1 (linear inrease). Outside, we have a Keplerian potential, so v r 1/2. And, of ourse, the two urves must onnet. Thus: () Beause I don t want you to spend too muh time on unit onversion, I ll let you know that the Einstein radius for a galaxy of mass h 1 M at a redshift of z = 0.1 is about 5.2. Knowing that, what is the approximate Einstein radius (to within a fator of 3) of a massive galaxy luster at a redshift of z = 0.3? Note: To answer this, you need to have some reasonable idea of what the mass of a luster is.

2 First note that the Einstein radius is proportional to: M θ E A very massive galaxy luster might be a few h 1 M. So, taking 3=few (whih should inlude all possible reasonable answers on your part), and noting that the distane inreases by a fator of 10 (roughly) ompared to an individual galaxy, we find that: 300 θ E,luster = 3 θ E,gal = 52. You should find something in the range of a few tens of ar seonds to a few minutes. (d) Please trae the following blank figure into your blue books. D d Please mark the following: i. Draw a large dot,, to indiate the onordane model. ii. Draw a dashed line to indiate all flat universes. On either side, indiate whether the universes are open or losed. iii. Draw a solid line separating those universes whih are aelerating from those whih are deelerating. iv. (Required for Grad, +1 EC for undergrad) I remind you that the age of the onordane model is (to within a few perent) 1/. Knowing that, draw a line representing (approximately) all of the models with age t 0 = 1. Indiate whih side of the line orrespond to older universe, and whih orrespond to the younger ones. Hint: You may need to think of a universe whih also has an age equal to a Hubble time.

3 Flat models have Ω M + Ω Λ = 1. The line separating aelerating from deelerating universes is given by: Ω Λ = 2Ω M The onordane model orresponds to Ω M 0.3, Ω Λ 0.7, and onneting that and the empty universe t 0 = 1 gives the lous of onstant ages. To the left, we have older universes, and to the right, with have younger. E.g. the desitter Universe (Ω Λ = 1) is infinite, while E-dS is 2/3. (e) To within a fator of 2, please give the urrent estimates of Ω B and desribe (in a sentene or two) why observationally at least some of the matter in the universe needs to be non-baryoni. Any of the following are aeptable: Ω B 0.03 The rotation urves of galaxies ontain matter well beyond the luminous part. Cluster X-ray measurements suggest that the gas mass (from luminosity) is insuffiient to aount for the high temperature (whih probes the potential). Cluster dynamis suggest missing mass (via the virial theorem). Lensing systems like the bullet luster indiate that total mass doesn t follow the gas. 2. [30 points] Consider a strange universe filled with Pressureonium, a substane with an equation of state of w P = 1, suh that Ω P = 1 (and with nothing else). The Hubble onstant may be simply expressed as. (a) If the universe doubles in sale fator, by what fator will the density of Pressureonium inrease or derease? For w = 1, ρ a 3(1+w) = a 6 = 1 64 (b) In units of the Hubble time, how old is this universe?

4 We ve done this many times: dt = 1 da a () How does the expansion fator sale with time? Following the previous derivation, t a 3 or = 1 da a = 1 a 2 da Ω X a n 1 a 6 t = 1 1 a 2 da = a t 1/3 (d) What is the horizon sale of this universe? We an do almost the exat same thing but with an extra fator of a downstairs: da χ = = = a 2 2 χ hor = 2 a 2 Ω X a n 3. [30 points] Consider an extremely overdense universe omposed entirely of matter with Ω M = 5. (a) What is the shape and (if not flat) the radius of urvature of this universe? (Express your answer in terms of the Hubble sale.) First, note that: Ω K = 4 a da Thus, the universe is losed. So the radius of urvature is: R 0 = ΩK = 2 (b) At what expansion fator will it ollapse? If never, please justify. The Friedman equation inludes: ( ΩM a 3 + Ω ) K a 2

5 so we reah a turnaround point when: a max = Ω M Ω K = 1.25 () Now onsider an observation of a galaxy with a radius of R = 1h 1 Mp at a redshift of 1. What is the angular size of the galaxy? To assist you, I will note that the omoving distane is First, note that: so D A = S k(χ) 1 + z = R 0 sin(χ/r 0 ) (1 + z) = θ = R D A = rad = 368 (d) What is the ratio of surfae brightness (flux/angular area) of the galaxy as seen at z = 1, ompared to how it would look loally? Hint: I promise you that this is a 1-line alulation. You may get the right answer another way, but you re making life diffiult for yourself. We re looking for: b = f θ 2 D2 A D 2 L The surfae brightness dereases by a fator of 16. = (1 + z) 4 = 1 16

Simple Considerations on the Cosmological Redshift

Simple Considerations on the Cosmological Redshift Apeiron, Vol. 5, No. 3, July 8 35 Simple Considerations on the Cosmologial Redshift José Franiso Garía Juliá C/ Dr. Maro Mereniano, 65, 5. 465 Valenia (Spain) E-mail: jose.garia@dival.es Generally, the

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 21, 2013 Prof. Alan Guth QUIZ 3 SOLUTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 21, 2013 Prof. Alan Guth QUIZ 3 SOLUTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.286: The Early Universe Deember 2, 203 Prof. Alan Guth QUIZ 3 SOLUTIONS Quiz Date: Deember 5, 203 PROBLEM : DID YOU DO THE READING? (35

More information

ECE-320 Linear Control Systems. Winter 2013, Exam 1. No calculators or computers allowed, you may leave your answers as fractions.

ECE-320 Linear Control Systems. Winter 2013, Exam 1. No calculators or computers allowed, you may leave your answers as fractions. ECE-320 Linear Control Systems Winter 2013, Exam 1 No alulators or omputers allowed, you may leave your answers as frations. All problems are worth 3 points unless noted otherwise. Total /100 1 Problems

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

arxiv:gr-qc/ v2 6 Feb 2004

arxiv:gr-qc/ v2 6 Feb 2004 Hubble Red Shift and the Anomalous Aeleration of Pioneer 0 and arxiv:gr-q/0402024v2 6 Feb 2004 Kostadin Trenčevski Faulty of Natural Sienes and Mathematis, P.O.Box 62, 000 Skopje, Maedonia Abstrat It this

More information

Chapter 26 Lecture Notes

Chapter 26 Lecture Notes Chapter 26 Leture Notes Physis 2424 - Strauss Formulas: t = t0 1 v L = L0 1 v m = m0 1 v E = m 0 2 + KE = m 2 KE = m 2 -m 0 2 mv 0 p= mv = 1 v E 2 = p 2 2 + m 2 0 4 v + u u = 2 1 + vu There were two revolutions

More information

General Equilibrium. What happens to cause a reaction to come to equilibrium?

General Equilibrium. What happens to cause a reaction to come to equilibrium? General Equilibrium Chemial Equilibrium Most hemial reations that are enountered are reversible. In other words, they go fairly easily in either the forward or reverse diretions. The thing to remember

More information

Results presented below, show the standardized distance modulus, linked to experimental parameters through the relation :

Results presented below, show the standardized distance modulus, linked to experimental parameters through the relation : Results presented below, show the standardied distane modulus, linked to experimental parameters through the relation : µ = m B M B + αx 1 βc (7) where m B is the observed peak magnitude in rest frame

More information

Astronomy 102: Stars and Galaxies Review Exam 3

Astronomy 102: Stars and Galaxies Review Exam 3 October 31, 2004 Name: Astronomy 102: Stars and Galaxies Review Exam 3 Instructions: Write your answers in the space provided; indicate clearly if you continue on the back of a page. No books, notes, or

More information

A derivation of the Etherington s distance-duality equation

A derivation of the Etherington s distance-duality equation A derivation of the Etherington s distane-duality equation Yuri Heymann 1 Abstrat The Etherington s distane-duality equation is the relationship between the luminosity distane of standard andles and the

More information

Metric of Universe The Causes of Red Shift.

Metric of Universe The Causes of Red Shift. Metri of Universe The Causes of Red Shift. ELKIN IGOR. ielkin@yande.ru Annotation Poinare and Einstein supposed that it is pratially impossible to determine one-way speed of light, that s why speed of

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non-relativisti ase January 2019 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and 44): 1 2 A 2 2 2 A = µ 0

More information

Ph1c Analytic Quiz 2 Solution

Ph1c Analytic Quiz 2 Solution Ph1 Analyti Quiz 2 olution Chefung Chan, pring 2007 Problem 1 (6 points total) A small loop of width w and height h falls with veloity v, under the influene of gravity, into a uniform magneti field B between

More information

10.2 The Occurrence of Critical Flow; Controls

10.2 The Occurrence of Critical Flow; Controls 10. The Ourrene of Critial Flow; Controls In addition to the type of problem in whih both q and E are initially presribed; there is a problem whih is of pratial interest: Given a value of q, what fators

More information

Dr G. I. Ogilvie Lent Term 2005

Dr G. I. Ogilvie Lent Term 2005 Aretion Diss Mathematial Tripos, Part III Dr G. I. Ogilvie Lent Term 2005 1.4. Visous evolution of an aretion dis 1.4.1. Introdution The evolution of an aretion dis is regulated by two onservation laws:

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Friday 8 June 2001 1.30 to 4.30 PAPER 41 PHYSICAL COSMOLOGY Answer any THREE questions. The questions carry equal weight. You may not start to read the questions printed on

More information

Generalized Dimensional Analysis

Generalized Dimensional Analysis #HUTP-92/A036 7/92 Generalized Dimensional Analysis arxiv:hep-ph/9207278v1 31 Jul 1992 Howard Georgi Lyman Laboratory of Physis Harvard University Cambridge, MA 02138 Abstrat I desribe a version of so-alled

More information

Special and General Relativity

Special and General Relativity 9/16/009 Speial and General Relativity Inertial referene frame: a referene frame in whih an aeleration is the result of a fore. Examples of Inertial Referene Frames 1. This room. Experiment: Drop a ball.

More information

Experiment 03: Work and Energy

Experiment 03: Work and Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.01 Purpose of the Experiment: Experiment 03: Work and Energy In this experiment you allow a art to roll down an inlined ramp and run into

More information

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % (

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % ( 16.50 Leture 0 Subjet: Introdution to Component Mathing and Off-Design Operation At this point it is well to reflet on whih of the many parameters we have introdued (like M, τ, τ t, ϑ t, f, et.) are free

More information

Examining Applied Rational Functions

Examining Applied Rational Functions HiMAP Pull-Out Setion: Summer 1990 Eamining Applied Rational Funtions Flod Vest Referenes Environmental Protetion Agen. Gas Mileage Guide. (Copies an usuall e otained from a loal new ar dealer.) Information

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysisAndMathsTutor.om. (a (i beam splitter [or semi-silvered mirror] (ii a ompensator [or a glass blok] allows for the thikness of the (semi-silvered mirror to obtain equal optial path lengths in the

More information

Critical Reflections on the Hafele and Keating Experiment

Critical Reflections on the Hafele and Keating Experiment Critial Refletions on the Hafele and Keating Experiment W.Nawrot In 1971 Hafele and Keating performed their famous experiment whih onfirmed the time dilation predited by SRT by use of marosopi loks. As

More information

AU/Mpc km/au s 1 (2) = s 1 (3) n(t 0 ) = ɛ(t 0) mc 2 (7) m(h) = m p = kg (8)

AU/Mpc km/au s 1 (2) = s 1 (3) n(t 0 ) = ɛ(t 0) mc 2 (7) m(h) = m p = kg (8) Cosmology Solutions Useful constants: 1AU = 1.50 10 11 m 1pc = 206, 265AU G = 6.67 10 11 kg 1 m 3 s 2 M sun = 1.99 10 30 kg m proton = 1.67 10 27 kg 1. Cosmic density (a) Calculate the energy density of

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light Final Review A Puzzle... Diretion of the Fore A point harge q is loated a fixed height h above an infinite horizontal onduting plane. Another point harge q is loated a height z (with z > h) above the plane.

More information

Today: Start Ch. 18: Cosmology. Homework # 5 due next Wed. (HW #6 is online)

Today: Start Ch. 18: Cosmology. Homework # 5 due next Wed. (HW #6 is online) Today: Start Ch. 18: Cosmology Homework # 5 due next Wed. (HW #6 is online) Dark Matter! A rotation curve is a graph of how fast a something is rotating, as a function of distance from the center.! We

More information

F = F x x + F y. y + F z

F = F x x + F y. y + F z ECTION 6: etor Calulus MATH20411 You met vetors in the first year. etor alulus is essentially alulus on vetors. We will need to differentiate vetors and perform integrals involving vetors. In partiular,

More information

Clusters: Context and Background

Clusters: Context and Background Clusters: Context and Background We re about to embark on a subject rather different from what we ve treated before, so it is useful to step back and think again about what we want to accomplish in this

More information

PHYSICS 212 FINAL EXAM 21 March 2003

PHYSICS 212 FINAL EXAM 21 March 2003 PHYSIS INAL EXAM Marh 00 Eam is losed book, losed notes. Use only the provided formula sheet. Write all work and answers in eam booklets. The baks of pages will not be graded unless you so ruest on the

More information

Astr 5465 Mar. 29, 2018 Galactic Dynamics I: Disks

Astr 5465 Mar. 29, 2018 Galactic Dynamics I: Disks Galati Dynamis Overview Astr 5465 Mar. 29, 2018 Subjet is omplex but we will hit the highlights Our goal is to develop an appreiation of the subjet whih we an use to interpret observational data See Binney

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Thursday 3 June, 2004 9 to 12 PAPER 67 PHYSICAL COSMOLOGY Attempt THREE questions. There are four questions in total. The questions carry equal weight. You may not start to

More information

( ) ( ) Volumetric Properties of Pure Fluids, part 4. The generic cubic equation of state:

( ) ( ) Volumetric Properties of Pure Fluids, part 4. The generic cubic equation of state: CE304, Spring 2004 Leture 6 Volumetri roperties of ure Fluids, part 4 The generi ubi equation of state: There are many possible equations of state (and many have been proposed) that have the same general

More information

Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3

Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3 October 28, 2003 Name: Astronomy 102: Stars and Galaxies Sample Review Test for Examination 3 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. No

More information

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field

Four-dimensional equation of motion for viscous compressible substance with regard to the acceleration field, pressure field and dissipation field Four-dimensional equation of motion for visous ompressible substane with regard to the aeleration field, pressure field and dissipation field Sergey G. Fedosin PO box 6488, Sviazeva str. -79, Perm, Russia

More information

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue.

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue. Towards an Absolute Cosmi Distane Gauge by using Redshift Spetra from Light Fatigue. Desribed by using the Maxwell Analogy for Gravitation. T. De Mees - thierrydemees @ pandora.be Abstrat Light is an eletromagneti

More information

Lecture 3 - Lorentz Transformations

Lecture 3 - Lorentz Transformations Leture - Lorentz Transformations A Puzzle... Example A ruler is positioned perpendiular to a wall. A stik of length L flies by at speed v. It travels in front of the ruler, so that it obsures part of the

More information

Cavity flow with surface tension past a flat plate

Cavity flow with surface tension past a flat plate Proeedings of the 7 th International Symposium on Cavitation CAV9 Paper No. ## August 7-, 9, Ann Arbor, Mihigan, USA Cavity flow with surfae tension past a flat plate Yuriy Savhenko Institute of Hydromehanis

More information

Modern Physics notes Spring 2005 Paul Fendley Lecture 37

Modern Physics notes Spring 2005 Paul Fendley Lecture 37 Modern Physics notes Spring 2005 Paul Fendley fendley@virginia.edu Lecture 37 The red shift The Hubble constant Critical density Weinberg, chapters I and II cosmological parameters: Tegmark et al, http://arxiv.org/abs/astro-ph/0310723

More information

A Derivation of the Etherington s Distance-Duality Equation

A Derivation of the Etherington s Distance-Duality Equation International Journal of Astrophysis and Spae Siene 215; 3(4): 65-69 Published online July 9, 215 (http://www.sienepublishinggroup.om/j/ijass) doi: 1.11648/j.ijass.21534.13 ISSN: 2376-714 (Print); ISSN:

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

Cosmology. Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe

Cosmology. Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe Cosmology Assumptions in cosmology Olber s paradox Cosmology à la Newton Cosmology à la Einstein Cosmological constant Evolution of the Universe Assumptions in Cosmology Copernican principle: We do not

More information

physics/ Nov 1999

physics/ Nov 1999 Do Gravitational Fields Have Mass? Or on the Nature of Dark Matter Ernst Karl Kunst As has been shown before (a brief omment will be given in the text) relativisti mass and relativisti time dilation of

More information

Lesson 23: The Defining Equation of a Line

Lesson 23: The Defining Equation of a Line Student Outomes Students know that two equations in the form of ax + y = and a x + y = graph as the same line when a = = and at least one of a or is nonzero. a Students know that the graph of a linear

More information

EINSTEIN FIELD EQUATIONS OBTAINED ONLY WITH GAUSS CURVATURE AND ZOOM UNIVERSE MODEL CHARACTERISTICS

EINSTEIN FIELD EQUATIONS OBTAINED ONLY WITH GAUSS CURVATURE AND ZOOM UNIVERSE MODEL CHARACTERISTICS EINSTEIN FIELD EQUATIONS OBTAINED ONLY WITH GAUSS CURVATURE AND ZOOM UNIVERSE MODEL CHARACTERISTICS Sergio Garia Chimeno Abstrat Demonstration how to obtain the Einstein Field Equations without using the

More information

Why is the Universe Expanding?

Why is the Universe Expanding? Why is the Universe Expanding? In general relativity, mass warps space. Warped space makes matter move, which changes the structure of space. Thus the universe should be dynamic! Gravity tries to collapse

More information

III. SURFACE PROPERTIES III.A. SURFACE TENSION SURFACE PROPERTIES

III. SURFACE PROPERTIES III.A. SURFACE TENSION SURFACE PROPERTIES III. SURFACE PROPERTIES III.A. SURFACE TENSION GOAL: To investigate the influene of the solution onentration and/or the kind of the solute on the surfae tension INTRODUCTION Liquids tend to adopt shapes

More information

22.01 Fall 2015, Problem Set 6 (Normal Version Solutions)

22.01 Fall 2015, Problem Set 6 (Normal Version Solutions) .0 Fall 05, Problem Set 6 (Normal Version Solutions) Due: November, :59PM on Stellar November 4, 05 Complete all the assigned problems, and do make sure to show your intermediate work. Please upload your

More information

(x 2 + ξ 2 ) The integral in (21.02) is analytic, and works out to 2/ξ 2. So. v = 2GM ξc

(x 2 + ξ 2 ) The integral in (21.02) is analytic, and works out to 2/ξ 2. So. v = 2GM ξc Gravitational Lenses [Schneider, Ehlers, & Falco, Gravitational Lenses, Springer-Verlag 199] Consider a photon moving past a point of mass, M, with an starting impact parameter, ξ. From classical Newtonian

More information

Determination of the reaction order

Determination of the reaction order 5/7/07 A quote of the wee (or amel of the wee): Apply yourself. Get all the eduation you an, but then... do something. Don't just stand there, mae it happen. Lee Iaoa Physial Chemistry GTM/5 reation order

More information

Physics 236: Cosmology. FRW Cosmology

Physics 236: Cosmology. FRW Cosmology FRW Cosmology 1.1 Ignoring angular terms, write down the FRW metri. Hene express the omoving distane r M as an funtion of time and redshift. What is the relation between sale fator a(t) and redshift z?

More information

MAC Calculus II Summer All you need to know on partial fractions and more

MAC Calculus II Summer All you need to know on partial fractions and more MC -75-Calulus II Summer 00 ll you need to know on partial frations and more What are partial frations? following forms:.... where, α are onstants. Partial frations are frations of one of the + α, ( +

More information

Natural Convection Experiment Measurements from a Vertical Surface

Natural Convection Experiment Measurements from a Vertical Surface OBJECTIVE Natural Convetion Experiment Measurements from a Vertial Surfae 1. To demonstrate te basi priniples of natural onvetion eat transfer inluding determination of te onvetive eat transfer oeffiient.

More information

Cosmology AS

Cosmology AS Cosmology AS7009 2011 Exercises to be solved in class 1. Olbers paradox: Why is the sky dark at night? Let s assume that the universe is static and of infinite extent. The number density of stars is n,

More information

23.1 Tuning controllers, in the large view Quoting from Section 16.7:

23.1 Tuning controllers, in the large view Quoting from Section 16.7: Lesson 23. Tuning a real ontroller - modeling, proess identifiation, fine tuning 23.0 Context We have learned to view proesses as dynami systems, taking are to identify their input, intermediate, and output

More information

Clusters: Context and Background

Clusters: Context and Background Clusters: Context and Background We reabouttoembarkon asubjectratherdifferentfrom what we vetreatedbefore, soit is useful to step back and think again about what we want to accomplish in this course. We

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 4 Stellar orbits and dark matter 1 Using Kepler s laws for stars orbiting the center of a galaxy We will now use Kepler s laws of gravitation on much larger scales. We will study

More information

Lecture Notes 4 MORE DYNAMICS OF NEWTONIAN COSMOLOGY

Lecture Notes 4 MORE DYNAMICS OF NEWTONIAN COSMOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.286: The Early Universe Otober 1, 218 Prof. Alan Guth Leture Notes 4 MORE DYNAMICS OF NEWTONIAN COSMOLOGY THE AGE OF A FLAT UNIVERSE: We

More information

Newtonian Gravity and Cosmology

Newtonian Gravity and Cosmology Chapter 30 Newtonian Gravity and Cosmology The Universe is mostly empty space, which might suggest that a Newtonian description of gravity (which is valid in the weak gravity limit) is adequate for describing

More information

COMBINED PROBE FOR MACH NUMBER, TEMPERATURE AND INCIDENCE INDICATION

COMBINED PROBE FOR MACH NUMBER, TEMPERATURE AND INCIDENCE INDICATION 4 TH INTERNATIONAL CONGRESS OF THE AERONAUTICAL SCIENCES COMBINED PROBE FOR MACH NUMBER, TEMPERATURE AND INCIDENCE INDICATION Jiri Nozika*, Josef Adame*, Daniel Hanus** *Department of Fluid Dynamis and

More information

HOW TO FACTOR. Next you reason that if it factors, then the factorization will look something like,

HOW TO FACTOR. Next you reason that if it factors, then the factorization will look something like, HOW TO FACTOR ax bx I now want to talk a bit about how to fator ax bx where all the oeffiients a, b, and are integers. The method that most people are taught these days in high shool (assuming you go to

More information

The Hanging Chain. John McCuan. January 19, 2006

The Hanging Chain. John McCuan. January 19, 2006 The Hanging Chain John MCuan January 19, 2006 1 Introdution We onsider a hain of length L attahed to two points (a, u a and (b, u b in the plane. It is assumed that the hain hangs in the plane under a

More information

PHY323:Lecture 7 Dark Matter with Gravitational Lensing

PHY323:Lecture 7 Dark Matter with Gravitational Lensing PHY323:Lecture 7 Dark Matter with Gravitational Lensing Strong Gravitational Lensing Theory of Gravitational Lensing Weak Gravitational Lensing Large Scale Structure Experimental Evidence for Dark Matter

More information

Testing the Big Bang Idea

Testing the Big Bang Idea Reading: Chapter 29, Section 29.2-29.6 Third Exam: Tuesday, May 1 12:00-2:00 COURSE EVALUATIONS - please complete these online (recitation and lecture) Last time: Cosmology I - The Age of the & the Big

More information

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν INTRODUCTION So far, the only information we have been able to get about the universe beyond the solar system is from the eletromagneti radiation that reahes us (and a few osmi rays). So doing Astrophysis

More information

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon Albuquerque, NM 0 POCEEDINGS of the NPA 457 The Gravitational Potential for a Moving Observer, Merury s Perihelion, Photon Defletion and Time Delay of a Solar Grazing Photon Curtis E. enshaw Tele-Consultants,

More information

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms NSTTUTE OF PHYSCS PUBLSHNG JOURNAL OF PHYSCS B: ATOMC, MOLECULAR AND OPTCAL PHYSCS J. Phys. B: At. Mol. Opt. Phys. 39 ) 7 85 doi:.88/953-75/39/8/ Non-Markovian study of the relativisti magneti-dipole spontaneous

More information

Dark Matter and Dark Energy components chapter 7

Dark Matter and Dark Energy components chapter 7 Dark Matter and Dark Energy components chapter 7 Lecture 4 See also Dark Matter awareness week December 2010 http://www.sissa.it/ap/dmg/index.html The early universe chapters 5 to 8 Particle Astrophysics,

More information

The Lorenz Transform

The Lorenz Transform The Lorenz Transform Flameno Chuk Keyser Part I The Einstein/Bergmann deriation of the Lorentz Transform I follow the deriation of the Lorentz Transform, following Peter S Bergmann in Introdution to the

More information

Let s move to Bound States

Let s move to Bound States Let s move to Bound States When we disuss bound states of two objets in entral-fore potential, kineti energy and potential energy are ~the same. How does this ompare to the rest energy of the objets? Hydrogen

More information

FURTHER COSMOLOGY Book page T H E M A K E U P O F T H E U N I V E R S E

FURTHER COSMOLOGY Book page T H E M A K E U P O F T H E U N I V E R S E FURTHER COSMOLOGY Book page 675-683 T H E M A K E U P O F T H E U N I V E R S E COSMOLOGICAL PRINCIPLE Is the Universe isotropic or homogeneous? There is no place in the Universe that would be considered

More information

UNIT 1 OPEN CHANNEL FLOW 2 MARK QUESTIONS AND ANSWERS

UNIT 1 OPEN CHANNEL FLOW 2 MARK QUESTIONS AND ANSWERS DEPARTMENT: CIVIL ENGINEERING SEMESTER: IV- SEMESTER SUBJECT CODE / Name: CE53 / Applied Hydrauli Engineering 1. Define open hannel flow with examples. Examples: UNIT 1 OPEN CHANNEL FLOW MARK QUESTIONS

More information

Maximum Entropy and Exponential Families

Maximum Entropy and Exponential Families Maximum Entropy and Exponential Families April 9, 209 Abstrat The goal of this note is to derive the exponential form of probability distribution from more basi onsiderations, in partiular Entropy. It

More information

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

Theory. Coupled Rooms

Theory. Coupled Rooms Theory of Coupled Rooms For: nternal only Report No.: R/50/TCR Prepared by:. N. taey B.., MO Otober 00 .00 Objet.. The objet of this doument is present the theory alulations to estimate the reverberant

More information

Q2. [40 points] Bishop-Hill Model: Calculation of Taylor Factors for Multiple Slip

Q2. [40 points] Bishop-Hill Model: Calculation of Taylor Factors for Multiple Slip 27-750, A.D. Rollett Due: 20 th Ot., 2011. Homework 5, Volume Frations, Single and Multiple Slip Crystal Plastiity Note the 2 extra redit questions (at the end). Q1. [40 points] Single Slip: Calulating

More information

Lecture 8. Observational Cosmology. Parameters of Our Universe. The Concordance Model

Lecture 8. Observational Cosmology. Parameters of Our Universe. The Concordance Model Lecture 8 Observational Cosmology Parameters of Our Universe The Concordance Model Time and Distance vs Redshift d dt x =1+ z = R 0 R dt = dx x H(x) Friedmann : H(x) = x 3 + Ω Λ + (1 Ω 0 ) x 2 look - back

More information

Energy and Matter in the Universe

Energy and Matter in the Universe Chapter 17 Energy and Matter in the Universe The history and fate of the Universe ultimately turn on how much matter, energy, and pressure it contains: 1. These components of the stress energy tensor all

More information

3.1 Cosmological Parameters

3.1 Cosmological Parameters 3.1 Cosmological Parameters 1 Cosmological Parameters Cosmological models are typically defined through several handy key parameters: Hubble Constant Defines the Scale of the Universe R 0 H 0 = slope at

More information

CRITICAL EXPONENTS TAKING INTO ACCOUNT DYNAMIC SCALING FOR ADSORPTION ON SMALL-SIZE ONE-DIMENSIONAL CLUSTERS

CRITICAL EXPONENTS TAKING INTO ACCOUNT DYNAMIC SCALING FOR ADSORPTION ON SMALL-SIZE ONE-DIMENSIONAL CLUSTERS Russian Physis Journal, Vol. 48, No. 8, 5 CRITICAL EXPONENTS TAKING INTO ACCOUNT DYNAMIC SCALING FOR ADSORPTION ON SMALL-SIZE ONE-DIMENSIONAL CLUSTERS A. N. Taskin, V. N. Udodov, and A. I. Potekaev UDC

More information

Physics 218, Spring February 2004

Physics 218, Spring February 2004 Physis 8 Spring 004 8 February 004 Today in Physis 8: dispersion Motion of bound eletrons in matter and the frequeny dependene of the dieletri onstant Dispersion relations Ordinary and anomalous dispersion

More information

Relativistic Addition of Velocities *

Relativistic Addition of Velocities * OpenStax-CNX module: m42540 1 Relativisti Addition of Veloities * OpenStax This work is produed by OpenStax-CNX and liensed under the Creative Commons Attribution Liense 3.0 Abstrat Calulate relativisti

More information

To investigate the relationship between the work done to accelerate a trolley and the energy stored in the moving trolley.

To investigate the relationship between the work done to accelerate a trolley and the energy stored in the moving trolley. SP2h.1 Aelerating trolleys Your teaher may wath to see if you an follow instrutions safely take areful measurements. Introdution The work done y a fore is a measure of the energy transferred when a fore

More information

Sampler-A. Secondary Mathematics Assessment. Sampler 521-A

Sampler-A. Secondary Mathematics Assessment. Sampler 521-A Sampler-A Seondary Mathematis Assessment Sampler 521-A Instrutions for Students Desription This sample test inludes 14 Seleted Response and 4 Construted Response questions. Eah Seleted Response has a

More information

Practice ? b a (-a) b a b (3a)

Practice ? b a (-a) b a b (3a) Pratie 8- Zero and Negative Exponents Simplify eah expression.. 6 0 2. 4-2 3. 3-3 4. 8-4 5. 6. 4 7. 3 8. 2 2 2 25 4 23 6 2 2 25 9. 3? 8 0 0. 6? 2-2. 2-2. -7-2 3. 6? 4 0 4. 9 0 5. 32 2 6. 9 8 2 2 2 7. 8

More information

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang

General Relativity and Cosmology. The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang General Relativity and Cosmology The End of Absolute Space Cosmological Principle Black Holes CBMR and Big Bang The End of Absolute Space (AS) Special Relativity (SR) abolished AS only for the special

More information

3 Tidal systems modelling: ASMITA model

3 Tidal systems modelling: ASMITA model 3 Tidal systems modelling: ASMITA model 3.1 Introdution For many pratial appliations, simulation and predition of oastal behaviour (morphologial development of shorefae, beahes and dunes) at a ertain level

More information

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution.

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution. arxiv:physis/99536v1 [physis.lass-ph] 15 May 1999 Eletromagneti radiation of the travelling spin wave propagating in an antiferromagneti plate. Exat solution. A.A.Zhmudsky November 19, 16 Abstrat The exat

More information

Relative Maxima and Minima sections 4.3

Relative Maxima and Minima sections 4.3 Relative Maxima and Minima setions 4.3 Definition. By a ritial point of a funtion f we mean a point x 0 in the domain at whih either the derivative is zero or it does not exists. So, geometrially, one

More information

Canimals. borrowed, with thanks, from Malaspina University College/Kwantlen University College

Canimals. borrowed, with thanks, from Malaspina University College/Kwantlen University College Canimals borrowed, with thanks, from Malaspina University College/Kwantlen University College http://ommons.wikimedia.org/wiki/file:ursus_maritimus_steve_amstrup.jpg Purpose Investigate the rate of heat

More information

A NETWORK SIMPLEX ALGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM

A NETWORK SIMPLEX ALGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM NETWORK SIMPLEX LGORITHM FOR THE MINIMUM COST-BENEFIT NETWORK FLOW PROBLEM Cen Çalışan, Utah Valley University, 800 W. University Parway, Orem, UT 84058, 801-863-6487, en.alisan@uvu.edu BSTRCT The minimum

More information

The simulation analysis of the bridge rectifier continuous operation in AC circuit

The simulation analysis of the bridge rectifier continuous operation in AC circuit Computer Appliations in Eletrial Engineering Vol. 4 6 DOI 8/j.8-448.6. The simulation analysis of the bridge retifier ontinuous operation in AC iruit Mirosław Wiślik, Paweł Strząbała Kiele University of

More information

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way.

Chapter 14. The Concept of Equilibrium and the Equilibrium Constant. We have for the most part depicted reactions as going one way. Chapter 14 The Conept of Equilibrium and the Equilibrium Constant In hapter 1 we dealt with Physial Equilibrium Physial Changes HO 2 (l) HO 2 (g) In hapter 14 we will learn about Chemial Equilibrium. We

More information

The Exact Solution of the Pioneer Anomaly and Flyby Anomaly and the Interpretation of Inertia from an asymmetric Casimir effect

The Exact Solution of the Pioneer Anomaly and Flyby Anomaly and the Interpretation of Inertia from an asymmetric Casimir effect The Exat Solution of the Pioneer Anomaly and Flyby Anomaly and the Interpretation of Inertia from an asymmetri Casimir effet Abstrat Azzam Almosallami Zurih, Switzerland a.almosallami71@gmail.om In this

More information

Identify in which area, A, B, C or D, on the Hertzsprung-Russell diagram T Tauri stars are likely to be found.

Identify in which area, A, B, C or D, on the Hertzsprung-Russell diagram T Tauri stars are likely to be found. 1 Standard candles are stars for which we know the brightness. colour when observed from Earth. distance from the observer. luminosity. 2 T Tauri stars are very young low mass stars, still in the process

More information

Chapter 2: Solution of First order ODE

Chapter 2: Solution of First order ODE 0 Chapter : Solution of irst order ODE Se. Separable Equations The differential equation of the form that is is alled separable if f = h g; In order to solve it perform the following steps: Rewrite the

More information

Modern Cosmology Solutions 4: LCDM Universe

Modern Cosmology Solutions 4: LCDM Universe Modern Cosmology Solutions 4: LCDM Universe Max Camenzind October 29, 200. LCDM Models The ansatz solves the Friedmann equation, since ȧ = C cosh() Ωm sinh /3 H 0 () () ȧ 2 = C 2 cosh2 () sinh 2/3 () (

More information

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift

Olbers Paradox. Lecture 14: Cosmology. Resolutions of Olbers paradox. Cosmic redshift Lecture 14: Cosmology Olbers paradox Redshift and the expansion of the Universe The Cosmological Principle Ω and the curvature of space The Big Bang model Primordial nucleosynthesis The Cosmic Microwave

More information

IN-PLANE VIBRATIONS OF CURVED BEAMS WITH VARIABLE CROSS-SECTIONS CARRYING ADDITIONAL MASS

IN-PLANE VIBRATIONS OF CURVED BEAMS WITH VARIABLE CROSS-SECTIONS CARRYING ADDITIONAL MASS 11 th International Conferene on Vibration Problems Z. Dimitrovová et al. (eds.) Lisbon, Portugal, 9-1 September 013 IN-PLANE VIBRATIONS OF CURVED BEAMS WITH VARIABLE CROSS-SECTIONS CARRYING ADDITIONAL

More information

Generation of EM waves

Generation of EM waves Generation of EM waves Susan Lea Spring 015 1 The Green s funtion In Lorentz gauge, we obtained the wave equation: A 4π J 1 The orresponding Green s funtion for the problem satisfies the simpler differential

More information