To investigate the relationship between the work done to accelerate a trolley and the energy stored in the moving trolley.

Size: px
Start display at page:

Download "To investigate the relationship between the work done to accelerate a trolley and the energy stored in the moving trolley."

Transcription

1 SP2h.1 Aelerating trolleys Your teaher may wath to see if you an follow instrutions safely take areful measurements. Introdution The work done y a fore is a measure of the energy transferred when a fore moves through a distane. The energy stored in a moving ojet is alled kineti energy. Aim work done = fore distane moved in the diretion of the fore kineti energy = ½ mass (speed) 2 To investigate the relationship etween the work done to aelerate a trolley and the energy stored in the moving trolley. Method Apparatus trolley ramp loks (to prop up the end of the ramp) string pulley masses stiky tape ard stiky tak or modelling lay alane one light gate datalogger lamps and stand Safety Make sure masses annot fall on your feet. A Set up your apparatus as shown in the diagram elow. Prop up one end of the ramp and plae a trolley on it. Adjust the slope of the ramp until the trolley just starts to move on its own. Gravity pulling the trolley down the slope is now ompensating for frition in the trolley s wheels. B C D E Stik a piee of ard to the top of the trolley using stiky tak or modelling lay. Leave enough spae to stak some masses on top of the trolley. Measure the length of the ard and write it down. Find the mass of the trolley and write it down. Fasten the pulley at the ottom end of the ramp, and arrange the string and masses as shown aove. Set up a light gate near the ottom of the ramp. Adjust its position so that the ard on the top of the trolley passes through the gate as it reahes the end of the ramp. 1

2 F G H I SP2h.1 Aelerating trolleys Draw a line on the ramp (or mark it with stiky tape). This will e the start line for your trolley. Measure how far the ard on the trolley will move from when the trolley is on the start line until the ard passes through the light gate. Write down this distane. Put a mass on the end of the string. Write down the mass that you use. Release the trolley from the top of the ramp and write down the speed of the trolley (from the datalogger) as it passes through the light gate. Repeat step H for other masses on the trolley and other masses on the string. Deide what masses to use, how many different masses you are going to test, and whether you need to repeat any of your tests. Reording your results 1 Draw a tale like this for reording your results. (i) (ii) (iii) (iv) (v) Work done to Mass on Fore on aelerate pulley (kg) string (N) trolley (J) Mass added to trolley (kg) Total mass of trolley, masses on trolley and masses on string (kg) Speed of trolley at end (m/s) Kineti energy stored in moving the trolley at the end of the ramp (J) 2 Calulate the fore on the string for eah run y multiplying the numer in olumn (ii) y 10 N/kg. 3 Calulate the work done to aelerate the trolley y multiplying the distane you measured in step F y the fore in olumn (iv). 4 Calulate the kineti energy of the trolley at the end of eah run using the equation at the top of the first page of this worksheet. You need to use the values in olumns (iii) and (v). You need to inlude the masses on the string, eause they are eing aelerated as well as the trolley. 5 Plot a satter graph to show your results. Put the work done on the horizontal axis and the kineti energy on the vertial axis. Draw a line or urve of est fit through your points. Considering your results/onlusions 6 What relationship etween work done and kineti energy does your graph show? Evaluation 7 a How lose are the points on your graph to the line of est fit? What does this tell you aout the quality of your data? 8 If the work done = kineti energy, your line of est fit should e a straight line through the origin with a gradient of 1. a How does the graph of your results ompare with this desription? Suggest reasons for any points that do not lie on a straight line through the origin. 2

3 SP2h.2 Fators affeting raking distane We an use satter graphs to help us to find out whether there is a relationship etween two variales. If the points form a straight line, then there is a linear relationship etween the two variales. If the straight line goes through the origin, then one variale is diretly proportional to the other. If the two variales are in diret proportion, we know that if one variale doules the other one doules too. The tale shows the raking distanes for ar A at different speeds. The ar has a mass of 1500 kg. 1 Plot a graph to find out if there is a linear or diretly proportional relationship etween the speed of the ar and its raking distane. Plot speed on the horizontal axis and raking distane on the vertial axis. Draw a line or urve of est fit through the points. 2 a Desrie the shape of the line on your graph. Desrie the relationship etween speed and raking distane. The energy stored in a moving vehile is alled kineti energy. The equation on the right shows how to alulate this from the vehile s mass and speed. Braking distane (m) Speed (m/s) ar A kineti energy = ½ mass (speed) 2 3 a Copy the tale aove and add a olumn for kineti energy. Calulate the kineti energy of ar A for the speeds given in the tale aove. Plot a satter graph to investigate the relationship etween kineti energy and raking distane. Put kineti energy on the horizontal axis and raking distane on the vertial axis. Join your points with a line or urve of est fit. Desrie the relationship etween the kineti energy of the ar and its raking distane. H The momentum of a moving ojet is found using the equation on the right. momentum = mass veloity 4 H Plot a satter graph of raking distane against momentum and desrie any relationship that your graph shows. 5 Any relationships you have identified aove are for just one set of data. Use the information in the tale on the right to hek whether or not your onlusions apply to the data given for the other vehiles. Mass of ar B = 1200 kg Mass of ar C = 1500 kg Mass of ar D = 3500 kg Braking distane (m) Speed (m/s) ar B ar C ar D

4 SP2h.3 Braking distane and energy Strengthen Name Class Date 1 a Car rakes apply a fore. What does this fore do to the ar? The rakes transfer energy stored in the moving ar (kineti energy). Where is the energy transferred to? d e f What is the equation for alulating kineti energy? If the speed of the ar doules, what happens to the kineti energy? When the speed doules, how muh more energy must the rakes transfer? How does the raking distane at 30 m/s ompare with the raking distane at 15 m/s? Use your answers to question 1 to write a paragraph to answer question S1. S1 A ar travels at 15 m/s for one part of a journey and at 30 m/s for another part of the journey. The driver rakes to a stop using a raking fore of 9000 N eah time. Explain how the raking distane will e different at the two speeds. 2 Cross out the inorret words to omplete these sentenes. When the mass of a moving ojet inreases, its kineti energy (inreases/dereases). When the mass doules, the kineti energy (halves/doules/is multiplied y 4). When the speed of a moving ojet inreases, its kineti energy (inreases/dereases). When the speed doules, the kineti energy (halves/doules/is multiplied y 4). 3 A ar has a mass of 1200 kg and its rakes an apply a fore of 9000 N. It is travelling at 30 m/s. Calulate its stopping distane. kineti energy = ½ kg ( m/s) 2 = J work done to stop the ar = J distane = = J N = m four times as long four times as muh energy it is multiplied y 4 KE = ½ mass (speed) 2 makes it deelerate thermal energy in the rakes and surroundings 4

5 SP2h.4 Braking distanes and energy Homework 1 Name Class Date 1 Fill in the gaps in these sentenes using words from the ox. You an use eah word one, more than one or not at all. Work is the transferred when a fore ats over a. The unit for work done is the (J). The work done is alulated from the multiplied y the. Kineti energy is the name for energy stored in ojets. The amount of kineti energy stored depends on the of the ojet and on its squared. Kineti energy is alulated using this equation: kineti energy = ½ When a vehile rakes, the kineti energy stored in it is transferred to thermal energy in the and the surroundings. The work done is the kineti energy transferred. We an use this idea to alulate the distane of a vehile if we know its mass, speed and the raking. rakes raking distane energy equal to fore greater than high joule less than mass moving speed speed 2 stopping weight 2 A lorry has a mass of kg. It is travelling at 20 m/s, and its rakes an apply a fore of N. a Calulate the energy stored in the moving lorry. kineti energy = ½ kg ( m/s) 2 kineti energy = ½ mass (speed) 2 work done = fore distane moved in the diretion of the fore = J Write down the equation for alulating the distane from the work done (energy) and the raking fore. distane = Calulate the stopping distane. 3 The same lorry as in question 2 takes on an extra load, so its total mass is now kg. Calulate its stopping distane from a speed of 20 m/s if the same raking fore is applied. stopping distane = m 5

6 SP2h.5 1 A Japanese ullet train has a mass of kg and travels at a top speed of 275 km/h. Its raking distane from this speed is 4 km. Calulate the raking fore. 2 Use your answer to question 1 to alulate the stopping distane if the same train were travelling at 350 km/h when the rakes were applied. 3 An airliner has a mass of kg when it lands at a speed of 75 m/s. The overall raking fore (from the rakes and from drag fores) is N. Calulate how muh runway it needs to ome to a omplete stop. Braking distanes and energy Homework 2 1 km/h = m/s kineti energy = ½ mass (speed) 2 work done = fore distane moved in the diretion of the fore 4 The tale on the right shows details of some different lorries. Calulate the stopping distane for eah lorry. 5 a Using your results from question 4, suggest what the relationship is etween the mass of the lorry and its raking distane. Using your results from question 4, suggest what the relationship is etween the raking fore of the lorry and its raking distane. Lorry Mass (kg) Speed (km/h) Braking fore (kn) A B C D d You annot work out a relationship using only two results. Suggest what further alulations you would need to do to onfirm your answer in part a. How would you deide whether your results do show a diretly proportional relationship? How would you show whether or not the relationship you suggested in part is orret? Extra hallenge 6 A ar has a mass of 1200 kg. It rakes with a fore of 9500 N and travels 25 m while oming to a stop. Calulate the speed at whih it was travelling efore the rakes were applied. 7 Use algera to show how the raking distane is related to lorry mass and to raking fore. 6

7 SP2h Name Class Date Progression questions Progression hek Answer these questions. 1 What is work done and how is it alulated? 2 What is kineti energy and how is it alulated? 3 How are work done and kineti energy related to raking distanes? Now irle the faes in the Start row in the tale showing how onfident you are of your answers. Question Start Assessment Using a different olour, orret or add to your answers aove. You may need to use the ak of this sheet or another piee of paper. Then irle the faes in the Chek row in the tale. Question Chek Feedak What will you do next? Tik one ox. strengthen my learning strengthen then extend extend Note down any speifi areas you need to improve. _ Ation You may now e given another ativity. After this, note down any remaining areas you need to improve and how you will try to improve in these areas. 7

Name... Class... Date...

Name... Class... Date... Energy transfers Speifiation referenes: Maths skills 1a, 1b, 2a, 2h, 3a, 3b, 3, 3d Aims In this worksheet you will learn how to alulate kineti energy, gravitational, and elasti potential energy. You will

More information

Investigating a pendulum

Investigating a pendulum P3 3.6 Student practical sheet Investigating a pendulum The period of a pendulum is the time it takes to complete one swing. Different pendulums have different periods, so what determines the period of

More information

Chapter 26 Lecture Notes

Chapter 26 Lecture Notes Chapter 26 Leture Notes Physis 2424 - Strauss Formulas: t = t0 1 v L = L0 1 v m = m0 1 v E = m 0 2 + KE = m 2 KE = m 2 -m 0 2 mv 0 p= mv = 1 v E 2 = p 2 2 + m 2 0 4 v + u u = 2 1 + vu There were two revolutions

More information

Chapter Outline The Relativity of Time and Time Dilation The Relativistic Addition of Velocities Relativistic Energy and E= mc 2

Chapter Outline The Relativity of Time and Time Dilation The Relativistic Addition of Velocities Relativistic Energy and E= mc 2 Chapter 9 Relativeity Chapter Outline 9-1 The Postulate t of Speial Relativity it 9- The Relativity of Time and Time Dilation 9-3 The Relativity of Length and Length Contration 9-4 The Relativisti Addition

More information

Module 5: Red Recedes, Blue Approaches. UNC-TFA H.S. Astronomy Collaboration, Copyright 2012

Module 5: Red Recedes, Blue Approaches. UNC-TFA H.S. Astronomy Collaboration, Copyright 2012 Objetives/Key Points Module 5: Red Reedes, Blue Approahes UNC-TFA H.S. Astronomy Collaboration, Copyright 2012 Students will be able to: 1. math the diretion of motion of a soure (approahing or reeding)

More information

Core practical 9: Investigate the relationship between the force exerted on an object and its change of momentum

Core practical 9: Investigate the relationship between the force exerted on an object and its change of momentum Core practical 9 Teacher sheet Core practical 9: Objective To determine the momentum change of a trolley when a force acts on it, as a function of time Safety There are trolleys and masses in motion so

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysisAndMathsTutor.om. (a (i beam splitter [or semi-silvered mirror] (ii a ompensator [or a glass blok] allows for the thikness of the (semi-silvered mirror to obtain equal optial path lengths in the

More information

Experiment 03: Work and Energy

Experiment 03: Work and Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.01 Purpose of the Experiment: Experiment 03: Work and Energy In this experiment you allow a art to roll down an inlined ramp and run into

More information

Sampler-A. Secondary Mathematics Assessment. Sampler 521-A

Sampler-A. Secondary Mathematics Assessment. Sampler 521-A Sampler-A Seondary Mathematis Assessment Sampler 521-A Instrutions for Students Desription This sample test inludes 14 Seleted Response and 4 Construted Response questions. Eah Seleted Response has a

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

ALKANES AND ALKENES MODULE 4 WORKSHEET. Syllabus reference 8.5.3

ALKANES AND ALKENES MODULE 4 WORKSHEET. Syllabus reference 8.5.3 MODULE 4 WORKSHEET ALKANES AND ALKENES Syllaus referene 8.5.3 1 The following tale provides a revision of the main harateristis of hydroarons. Chek your understanding y filling in the missing parts. PROPERTY

More information

Examining Applied Rational Functions

Examining Applied Rational Functions HiMAP Pull-Out Setion: Summer 1990 Eamining Applied Rational Funtions Flod Vest Referenes Environmental Protetion Agen. Gas Mileage Guide. (Copies an usuall e otained from a loal new ar dealer.) Information

More information

P3 Revision Questions

P3 Revision Questions P3 Revision Questions Part 1 Question 1 What is a kilometre? Answer 1 1000metres Question 2 What is meant by an average speed? Answer 2 The average distance covered per second Question 3 How do speed cameras

More information

Are You Ready? Ratios

Are You Ready? Ratios Ratios Teahing Skill Objetive Write ratios. Review with students the definition of a ratio. Explain that a ratio an be used to ompare anything that an be assigned a number value. Provide the following

More information

As the dice is fair all the outcomes are equally likely. In theory one in every six throws would be a 6, but this is unlikely to happen in reality.

As the dice is fair all the outcomes are equally likely. In theory one in every six throws would be a 6, but this is unlikely to happen in reality. Camridge Essentials Mathematis Core 8 S. Answers S. Answers a 0 (unless you are answering this on a Saturday!) 2 Pupils own examples 3 a, 2, 3, 4, 5, 6 Yes As the die is fair all the outomes are equally

More information

1 a 4 b 14 c 6 d 18. e 11 f 19 g 29 h a = 5 2 = 3 b 3 7 = = 4. c 0 9 = = 9 d = = 17

1 a 4 b 14 c 6 d 18. e 11 f 19 g 29 h a = 5 2 = 3 b 3 7 = = 4. c 0 9 = = 9 d = = 17 Camridge Essentials Mathematis Extension 8 N. Answers N. Answers a 6 d 8 e f 9 g 9 h a + = = = + = 0 9 = 0 + 9 = 9 d + 6 = + 6 = e + = + = f + 8 = + 8 = 0 a d 0 e f 0 g 8 h i j k l 96 x 8 8 0 6 y 6 9 0

More information

Angel International School - Manipay 1 st Term Examination November, 2015

Angel International School - Manipay 1 st Term Examination November, 2015 Grade 09 Angel International School - Manipay 1 st Term Examination November, 2015 Physics Duration: 3.00 Hours Index No:- Part 1 1) What is the SI unit of mass? a) kg b) mg c) g d) t 2) Which list contains

More information

Routh-Hurwitz Lecture Routh-Hurwitz Stability test

Routh-Hurwitz Lecture Routh-Hurwitz Stability test ECE 35 Routh-Hurwitz Leture Routh-Hurwitz Staility test AStolp /3/6, //9, /6/ Denominator of transfer funtion or signal: s n s n s n 3 s n 3 a s a Usually of the Closed-loop transfer funtion denominator

More information

Canimals. borrowed, with thanks, from Malaspina University College/Kwantlen University College

Canimals. borrowed, with thanks, from Malaspina University College/Kwantlen University College Canimals borrowed, with thanks, from Malaspina University College/Kwantlen University College http://ommons.wikimedia.org/wiki/file:ursus_maritimus_steve_amstrup.jpg Purpose Investigate the rate of heat

More information

Special and General Relativity

Special and General Relativity 9/16/009 Speial and General Relativity Inertial referene frame: a referene frame in whih an aeleration is the result of a fore. Examples of Inertial Referene Frames 1. This room. Experiment: Drop a ball.

More information

Answers to test yourself questions

Answers to test yourself questions Answers to test yoursel questions Topi.1 Osilliations 1 a A n osillation is any motion in whih the displaement o a partile rom a ixed point keeps hanging diretion and there is a periodiity in the motion

More information

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion

Millennium Relativity Acceleration Composition. The Relativistic Relationship between Acceleration and Uniform Motion Millennium Relativity Aeleration Composition he Relativisti Relationship between Aeleration and niform Motion Copyright 003 Joseph A. Rybzyk Abstrat he relativisti priniples developed throughout the six

More information

The Laws of Acceleration

The Laws of Acceleration The Laws of Aeleration The Relationships between Time, Veloity, and Rate of Aeleration Copyright 2001 Joseph A. Rybzyk Abstrat Presented is a theory in fundamental theoretial physis that establishes the

More information

The Complete Energy Translations in the Detailed. Decay Process of Baryonic Sub-Atomic Particles. P.G.Bass.

The Complete Energy Translations in the Detailed. Decay Process of Baryonic Sub-Atomic Particles. P.G.Bass. The Complete Energy Translations in the Detailed Deay Proess of Baryoni Su-Atomi Partiles. [4] P.G.Bass. PGBass P12 Version 1..3 www.relativitydomains.om August 218 Astrat. This is the final paper on the

More information

40 N 40 N. Direction of travel

40 N 40 N. Direction of travel 1 Two ropes are attached to a box. Each rope is pulled with a force of 40 N at an angle of 35 to the direction of travel. 40 N 35 35 40 N irection of travel The work done, in joules, is found using 2 Which

More information

UNCORRECTED PAGE PROOFS

UNCORRECTED PAGE PROOFS 8 Kik off with CAS 8 Introdution to vetors 8 Operations on vetors Vetors 8 Magnitude, diretion and omponents of vetors 85 i, j notation 86 Appliations of vetors 87 Review 8 8 Kik off with CAS Eploring

More information

2 Find the Length of a Leg. Find the unknown side length b 2 Substitute b 2 Multiply.

2 Find the Length of a Leg. Find the unknown side length b 2 Substitute b 2 Multiply. Page of 7. The Pthagorean Theorem and the Distane Formula Goal Use the Pthagorean Theorem and the Distane Formula. The photo shows part of twin sksrapers in Malasia that are onneted a skwalk. The skwalk

More information

Problem 3 : Solution/marking scheme Large Hadron Collider (10 points)

Problem 3 : Solution/marking scheme Large Hadron Collider (10 points) Problem 3 : Solution/marking sheme Large Hadron Collider 10 points) Part A. LHC Aelerator 6 points) A1 0.7 pt) Find the exat expression for the final veloity v of the protons as a funtion of the aelerating

More information

Answer Key Lesson 4: Mass vs. Volume: Proportions and Density

Answer Key Lesson 4: Mass vs. Volume: Proportions and Density Answer Key Lesson : ass vs. olume: Proportions and Density Student Guide ass vs. olume: Proportions and Density r. oreno s lass is experimentin with thins that sink and float. This piee of lay sinks in

More information

Lecture 11 Buckling of Plates and Sections

Lecture 11 Buckling of Plates and Sections Leture Bukling of lates and Setions rolem -: A simpl-supported retangular plate is sujeted to a uniaxial ompressive load N, as shown in the sketh elow. a 6 N N a) Calulate and ompare ukling oeffiients

More information

Answers to Coursebook questions Chapter 2.10

Answers to Coursebook questions Chapter 2.10 Camride Physis for the IB Diploma Answers to Courseook questions Chapter. 1 a y = OP = 1 t = 0.05 m = 0.0 = 00 m s 1 0. The time to fall to the floor is iven y y = 1 t t = y = 1.3 = 0.51 s. The horizontal

More information

Special Relativity. Relativity

Special Relativity. Relativity 10/17/01 Speial Relativity Leture 17 Relativity There is no absolute motion. Everything is relative. Suppose two people are alone in spae and traveling towards one another As measured by the Doppler shift!

More information

Evaluation of effect of blade internal modes on sensitivity of Advanced LIGO

Evaluation of effect of blade internal modes on sensitivity of Advanced LIGO Evaluation of effet of blade internal modes on sensitivity of Advaned LIGO T0074-00-R Norna A Robertson 5 th Otober 00. Introdution The urrent model used to estimate the isolation ahieved by the quadruple

More information

Higher Physics Mechanics and Prop. of Matter - Homework 1

Higher Physics Mechanics and Prop. of Matter - Homework 1 Higher Physics Mechanics and Prop. of Matter - Homework 1 1. (a) Classify these quantities into those that are scalars and those that are vectors: distance speed displacement time velocity acceleration

More information

Answers to Coursebook questions Chapter J2

Answers to Coursebook questions Chapter J2 Answers to Courseook questions Chapter J 1 a Partiles are produed in ollisions one example out of many is: a ollision of an eletron with a positron in a synhrotron. If we produe a pair of a partile and

More information

1. INTRODUCTION. l t t r. h t h w. t f t w. h p h s. d b D F. b b d c. L D s

1. INTRODUCTION. l t t r. h t h w. t f t w. h p h s. d b D F. b b d c. L D s Rapid Assessment of Seismi Safety of Elevated ater Tanks with FRAME Staging 1. NTRODUCTON 1.1 ntrodution ater tanks are lifeline items in the aftermath of earthquakes. The urrent pratie of designing elevated

More information

Edexcel GCSE Maths Foundation Skills Book Ratio, proportion and rates of change 1

Edexcel GCSE Maths Foundation Skills Book Ratio, proportion and rates of change 1 Guidane on the use of odes for this mark sheme ethod mark A C P ao oe ft Auray mark ark awarded independent of method Communiation mark Proof, proess or justifiation mark Corret answer only Or equivalent

More information

Q2. [40 points] Bishop-Hill Model: Calculation of Taylor Factors for Multiple Slip

Q2. [40 points] Bishop-Hill Model: Calculation of Taylor Factors for Multiple Slip 27-750, A.D. Rollett Due: 20 th Ot., 2011. Homework 5, Volume Frations, Single and Multiple Slip Crystal Plastiity Note the 2 extra redit questions (at the end). Q1. [40 points] Single Slip: Calulating

More information

Sampler-B. Secondary Mathematics Assessment. Sampler 521-B

Sampler-B. Secondary Mathematics Assessment. Sampler 521-B Sampler-B Seonary Mathematis Assessment Sampler 51-B Instrutions for Stuents Desription This sample test inlues 15 Selete Response an 5 Construte Response questions. Eah Selete Response has a value of

More information

6.4 Dividing Polynomials: Long Division and Synthetic Division

6.4 Dividing Polynomials: Long Division and Synthetic Division 6 CHAPTER 6 Rational Epressions 6. Whih of the following are equivalent to? y a., b. # y. y, y 6. Whih of the following are equivalent to 5? a a. 5, b. a 5, 5. # a a 6. In your own words, eplain one method

More information

Math 151 Introduction to Eigenvectors

Math 151 Introduction to Eigenvectors Math 151 Introdution to Eigenvetors The motivating example we used to desrie matrixes was landsape hange and vegetation suession. We hose the simple example of Bare Soil (B), eing replaed y Grasses (G)

More information

Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College

Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College Relativity fundamentals explained well (I hope) Walter F. Smith, Haverford College 3-14-06 1 Propagation of waves through a medium As you ll reall from last semester, when the speed of sound is measured

More information

Units of length metres and centimetres

Units of length metres and centimetres Units of length etres and entietres We use etres, en etres and illietres regularly in everyday life. There are 00 en etres in etre. Another way to think about this rela onship is that en etre is one hundredth

More information

CHAPTER 26 The Special Theory of Relativity

CHAPTER 26 The Special Theory of Relativity CHAPTER 6 The Speial Theory of Relativity Units Galilean-Newtonian Relativity Postulates of the Speial Theory of Relativity Simultaneity Time Dilation and the Twin Paradox Length Contration Four-Dimensional

More information

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion

Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Year 11 Physics Tutorial 84C2 Newton s Laws of Motion Module Topic 8.4 Moving About 8.4.C Forces Name Date Set 1 Calculating net force 1 A trolley was moved to the right by a force applied to a cord attached

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

finalsol.nb In my frame, I am at rest. So the time it takes for the missile to reach me is just 8µ106 km

finalsol.nb In my frame, I am at rest. So the time it takes for the missile to reach me is just 8µ106 km finalsol.n Physis D, Winter 005 Final Exam Solutions Top gun a v enemy = 0.4 in my enemy's frame, v' missile = 0.7 0.4 + 0.7 so, in my frame, v missile = Å º 0.859 +H0.4 H0.7 (it must e less than!) In

More information

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think?

Section 2. Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down. What Do You See? What Do You Think? Thrills and Chills Section Gravitational Potential Energy and Kinetic Energy: What Goes Up and What Comes Down Florida Next Generation Sunshine State Standards: Additional Benchmarks met in Section SC.91.N..4

More information

Unit 1 Our Dynamic Universe

Unit 1 Our Dynamic Universe North Berwick High School Higher Physics Department of Physics Unit 1 Our Dynamic Universe Section 1 Equations of Motion Section 1 Equations of Motion Note Making Make a dictionary with the meanings of

More information

Today: Review of SR. Einstein s Postulates of Relativity (Abbreviated versions) Let's start with a few important concepts

Today: Review of SR. Einstein s Postulates of Relativity (Abbreviated versions) Let's start with a few important concepts Today: eiew of Eam: Tomorrow, 7:30-9:00pm, DUANE GB30 You an bring paper (etter format written on both sides with whateer you think might help you during the eam. But you annot bring the tetbook or leture

More information

Chapter 13, Chemical Equilibrium

Chapter 13, Chemical Equilibrium Chapter 13, Chemial Equilibrium You may have gotten the impression that when 2 reatants mix, the ensuing rxn goes to ompletion. In other words, reatants are onverted ompletely to produts. We will now learn

More information

Polynomial Degree and Finite Differences

Polynomial Degree and Finite Differences CONDENSED LESSON 7.1 Polynomial Degree and Finite Differences In this lesson, you Learn the terminology associated with polynomials Use the finite differences method to determine the degree of a polynomial

More information

Transport. Pupil Booklet

Transport. Pupil Booklet Duncanrig Secondary School East Kilbride S3 Physics Elective Transport Pupil Booklet Name: Class: Aspects of the following outcomes in bold are covered by this topic of work. SCN 4-07a I can use appropriate

More information

1 Each symbol stands for a number. Find the value of each symbol. a + b 7 c 48 d. Find a quick way to work out 90 ( ).

1 Each symbol stands for a number. Find the value of each symbol. a + b 7 c 48 d. Find a quick way to work out 90 ( ). Cambridge Essentials Mathematis Etension 7 A1.1 Homework 1 A1.1 Homework 1 1 Eah symbol stands for a number. Find the value of eah symbol. a 8 = 17 b = 64 4 = 24 d + 5 = 6 2 = and = 8. Find the value of

More information

Mechanics & Properties of Matter 5: Energy and Power

Mechanics & Properties of Matter 5: Energy and Power Mechanics & Properties of Matter 5: Energy and Power Energy and Power AIM This unit re-introduces the formulae for calculating work done, potential energy, kinetic energy and power. The principle that

More information

ENERGYand WORK (PART I and II) 9-MAC

ENERGYand WORK (PART I and II) 9-MAC ENERGYand WORK (PART I and II) 9-MAC Purpose: To understand work, potential energy, & kinetic energy. To understand conservation of energy and how energy is converted from one form to the other. Apparatus:

More information

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3.

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3. Solutions to HW 10 Problems and Exerises: 37.. Visualize: At t t t 0 s, the origins of the S, S, and S referene frames oinide. Solve: We have 1 ( v/ ) 1 (0.0) 1.667. (a) Using the Lorentz transformations,

More information

Physics; Watching the Game From the Outside

Physics; Watching the Game From the Outside Physis; Wathing the Game From the Outside Roald C. Maximo Feb It is a good thing to have two ways of looking at a subjet, and also admit that there are two ways of looking at it. James Clerk Maxwell, on

More information

The gravitational phenomena without the curved spacetime

The gravitational phenomena without the curved spacetime The gravitational phenomena without the urved spaetime Mirosław J. Kubiak Abstrat: In this paper was presented a desription of the gravitational phenomena in the new medium, different than the urved spaetime,

More information

Click here to order this book in one of two formats: softcover ISBN: $50.00 ISBN: $50.00

Click here to order this book in one of two formats: softcover ISBN: $50.00 ISBN: $50.00 ere is a sample hapter from Letures on Radiation Dosimetry Physis: A Deeper Look into the Foundations of Clinial Protools his sample hapter is opyrighted and made availale for personal use only No part

More information

Einstein s theory of special relativity

Einstein s theory of special relativity Einstein s theory of speial relatiity Announements: First homework assignment is online. You will need to read about time dilation (1.8) to answer problem #3 and for the definition of γ for problem #4.

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

gains gravitational... energy. (1) Use the correct equation from the Physics Equations Sheet

gains gravitational... energy. (1) Use the correct equation from the Physics Equations Sheet Q1. The diagram shows a climber part way up a cliff. (a) Complete the sentence. When the climber moves up the cliff, the climber gains gravitational... energy. (b) The climber weighs 660 N. (i) Calculate

More information

Linear and Non-linear Relationships

Linear and Non-linear Relationships Maths Revision Yr 9 Part.qd:77_pp99_9.qd //8 6:4 PM Page 6 Answers Page a 4 5 = + Linear and Non-linear Relationships = = + a = Student Book - Series J- = = a = = + 4 = = + = Their point of intersetion

More information

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills

3.3 Acceleration An example of acceleration Definition of acceleration Acceleration Figure 3.16: Steeper hills 3.3 Acceleration Constant speed is easy to understand. However, almost nothing moves with constant speed for long. When the driver steps on the gas pedal, the speed of the car increases. When the driver

More information

Chapter 9. There are 7 out of 50 measurements that are greater than or equal to 5.1; therefore, the fraction of the

Chapter 9. There are 7 out of 50 measurements that are greater than or equal to 5.1; therefore, the fraction of the Pratie questions 6 1 a y i = 6 µ = = 1 i = 1 y i µ i = 1 ( ) = 95 = s n 95 555. x i f i 1 1+ + 5+ n + 5 5 + n µ = = = f 11+ n 11+ n i 7 + n = 5 + n = 6n n = a Time (minutes) 1.6.1.6.1.6.1.6 5.1 5.6 6.1

More information

In which row is the size of the vector equal to the size of the scalar?

In which row is the size of the vector equal to the size of the scalar? 1 Each row contains a vector and a scalar. In which row is the size of the vector equal to the size of the scalar? vector displacement of a car velocity of a car velocity of a car weight of a car scalar

More information

2008 FXA. DISPLACEMENT (s) / metre (m) 1. Candidates should be able to : The distance moved by a body in a specified direction.

2008 FXA. DISPLACEMENT (s) / metre (m) 1. Candidates should be able to : The distance moved by a body in a specified direction. DISPLACEMENT (s) / metre (m) 1 Candidates should be able to : Define displacement, instantaneous speed, average speed, velocity and acceleration. Select and use the relationships : average speed = distance

More information

Supplementary Figures

Supplementary Figures Supplementary Figures a Sample A Sample Sample B mm Sample A a Sample B Supplementary Figure : Laue patterns and piture of the single rystals. (a,) Laue patterns of sample A (a) and sample B (). () Piture

More information

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon

The Gravitational Potential for a Moving Observer, Mercury s Perihelion, Photon Deflection and Time Delay of a Solar Grazing Photon Albuquerque, NM 0 POCEEDINGS of the NPA 457 The Gravitational Potential for a Moving Observer, Merury s Perihelion, Photon Defletion and Time Delay of a Solar Grazing Photon Curtis E. enshaw Tele-Consultants,

More information

Natural Convection Experiment Measurements from a Vertical Surface

Natural Convection Experiment Measurements from a Vertical Surface OBJECTIVE Natural Convetion Experiment Measurements from a Vertial Surfae 1. To demonstrate te basi priniples of natural onvetion eat transfer inluding determination of te onvetive eat transfer oeffiient.

More information

ANSWERS AND MARK SCHEMES. (a) 750 MJ / 750,000,000 J 1 ½ 150, (a) 80 N in the direction of motion / 80 N forward. 1

ANSWERS AND MARK SCHEMES. (a) 750 MJ / 750,000,000 J 1 ½ 150, (a) 80 N in the direction of motion / 80 N forward. 1 QUESTIONSHEET 1 (a) 750 MJ / 750,000,000 J 1 ½ 150,000 100 2 1 (b) engine thrust / jet thrust 1 weight of plane / downward force of plane due to gravity 1 (c) 500,000 d = 750 000 000 1 d = 1500 m 1 + 1

More information

Advanced Subsidiary / Advanced Level

Advanced Subsidiary / Advanced Level GCE Examinations Mechanics Module M1 Advanced Subsidiary / Advanced Level Paper I Time: 1 hour 30 minutes Instructions and Information Candidates may use any calculator except those with a facility for

More information

MTH 65 WS 3 ( ) Radical Expressions

MTH 65 WS 3 ( ) Radical Expressions MTH 65 WS 3 (9.1-9.4) Radical Expressions Name: The next thing we need to develop is some new ways of talking aout the expression 3 2 = 9 or, more generally, 2 = a. We understand that 9 is 3 squared and

More information

AQA Physics P2 Topic 1. Motion

AQA Physics P2 Topic 1. Motion AQA Physics P2 Topic 1 Motion Distance / Time graphs Horizontal lines mean the object is stationary. Straight sloping lines mean the object is travelling at a constant speed. The steeper the slope, the

More information

Ph1c Analytic Quiz 2 Solution

Ph1c Analytic Quiz 2 Solution Ph1 Analyti Quiz 2 olution Chefung Chan, pring 2007 Problem 1 (6 points total) A small loop of width w and height h falls with veloity v, under the influene of gravity, into a uniform magneti field B between

More information

Lecture 3 - Lorentz Transformations

Lecture 3 - Lorentz Transformations Leture - Lorentz Transformations A Puzzle... Example A ruler is positioned perpendiular to a wall. A stik of length L flies by at speed v. It travels in front of the ruler, so that it obsures part of the

More information

Static Surface Forces. Forces on Curved Surfaces: Horizontal Component. Forces on Curved Surfaces. Hydrostatic Forces on Curved Surfaces

Static Surface Forces. Forces on Curved Surfaces: Horizontal Component. Forces on Curved Surfaces. Hydrostatic Forces on Curved Surfaces Hdrostati Fores on Curved Surfaes Stati Surfae Fores Fores on plane areas Fores on urved surfaes Buoant fore Stabilit of floating and submerged bodies Fores on Curved Surfaes Horizontal omponent Vertial

More information

gains gravitational... energy. (1) Use the correct equation from the Physics Equations Sheet

gains gravitational... energy. (1) Use the correct equation from the Physics Equations Sheet Q1. The diagram shows a climber part way up a cliff. (a) Complete the sentence. When the climber moves up the cliff, the climber gains gravitational... energy. (b) The climber weighs 660 N. (i) Calculate

More information

QUANTITATIVE APTITUDE

QUANTITATIVE APTITUDE QUANTITATIVE APTITUDE Questions asked in MIB Examination. If a b 0, then (a b ) ab is equal to: (D) 9. If x y 0, then x y is equal to: y x xy 7 (D). If ab b a 0, then the value of a b b a ab is equal to:

More information

2.1. Linear motion is a study of moving object in a line. We need a to describe and of objects.

2.1. Linear motion is a study of moving object in a line. We need a to describe and of objects. 2.1 Linear motion is a study of moving object in a line. We need a to describe and of objects. 34 Example of reference frames Note: Reference frame is presented by the coordinate system. We frequently

More information

Fig. 8.1 shows the paths of the metal ball and the block. The ball collides with the block. Air resistance is negligible. ball and block collide here

Fig. 8.1 shows the paths of the metal ball and the block. The ball collides with the block. Air resistance is negligible. ball and block collide here 1 A small block of wood is held at a horizontal distance of 1.2 m from a metal ball. The metal ball is fired horizontally towards the block at a speed of 8.0 m s 1. At the same instant the ball is fired,

More information

UTC. Engineering 329. Proportional Controller Design. Speed System. John Beverly. Green Team. John Beverly Keith Skiles John Barker.

UTC. Engineering 329. Proportional Controller Design. Speed System. John Beverly. Green Team. John Beverly Keith Skiles John Barker. UTC Engineering 329 Proportional Controller Design for Speed System By John Beverly Green Team John Beverly Keith Skiles John Barker 24 Mar 2006 Introdution This experiment is intended test the variable

More information

Hot Wheels of Glory (An Acceleration Lab)

Hot Wheels of Glory (An Acceleration Lab) Hot Wheels of Glory (An Acceleration Lab) Background: In this lab you are going to investigate the relationship between time and how far an accelerating object travels? For example, will an accelerating

More information

Summer holiday homework. Physics Year 9/10

Summer holiday homework. Physics Year 9/10 Summer holiday homework Physics Year 9/10 1 (a) The figure below shows two students investigating reaction time. Student A lets the ruler go. Student B closes her hand the moment she sees the ruler fall.

More information

Practice Problems from Chapters 11-13, for Midterm 2. Physics 11a Fall 2010

Practice Problems from Chapters 11-13, for Midterm 2. Physics 11a Fall 2010 Practice Problems from Chapters 11-13, for Midterm 2. Physics 11a Fall 2010 Chapter 11 1. The Ferris wheel shown below is turning at constant speed. Draw and label free-body diagrams showing the forces

More information

Final Exam Review Answers

Final Exam Review Answers Weight (Pounds) Final Exam Review Answers Questions 1-8 are based on the following information: A student sets out to lose some weight. He made a graph of his weight loss over a ten week period. 180 Weight

More information

UNIT 1 OPEN CHANNEL FLOW 2 MARK QUESTIONS AND ANSWERS

UNIT 1 OPEN CHANNEL FLOW 2 MARK QUESTIONS AND ANSWERS DEPARTMENT: CIVIL ENGINEERING SEMESTER: IV- SEMESTER SUBJECT CODE / Name: CE53 / Applied Hydrauli Engineering 1. Define open hannel flow with examples. Examples: UNIT 1 OPEN CHANNEL FLOW MARK QUESTIONS

More information

Motion in Two Dimensions: Centripetal Acceleration

Motion in Two Dimensions: Centripetal Acceleration Motion in Two Dimensions: Centripetal Acceleration Name: Group Members: Date: TA s Name: Apparatus: Rotating platform, long string, liquid accelerometer, meter stick, masking tape, stopwatch Objectives:

More information

1.0 The distance taken for a car to stop after an emergency depends on two things:

1.0 The distance taken for a car to stop after an emergency depends on two things: 4-5 Forces Physics.0 The distance taken for a car to stop after an emergency depends on two things: The thinking distance: how far the car travels while the driver processes the information. The braking

More information

PHYSICS 432/532: Cosmology Midterm Exam Solution Key (2018) 1. [40 points] Short answer (8 points each)

PHYSICS 432/532: Cosmology Midterm Exam Solution Key (2018) 1. [40 points] Short answer (8 points each) PHYSICS 432/532: Cosmology Midterm Exam Solution Key (2018) 1. [40 points] Short answer (8 points eah) (a) A galaxy is observed with a redshift of 0.02. How far away is the galaxy, and what is its lookbak

More information

Velocity Time graphs. v = final velocity. u = initial velocity. a = acceleration. s= displacement. t = time

Velocity Time graphs. v = final velocity. u = initial velocity. a = acceleration. s= displacement. t = time ExamLearn.ie Acceleration Acceleration Acceleration is the rate of change of velocity with respect to time*. The unit of acceleration is the metre per second squared (m/s 2 ) Acceleration =change in velocity

More information

1. The diagram below shows the variation with time t of the velocity v of an object.

1. The diagram below shows the variation with time t of the velocity v of an object. 1. The diagram below shows the variation with time t of the velocity v of an object. The area between the line of the graph and the time-axis represents A. the average velocity of the object. B. the displacement

More information

Physics Year 11 Term 1 Week 7

Physics Year 11 Term 1 Week 7 Physics Year 11 Term 1 Week 7 Energy According to Einstein, a counterpart to mass An enormously important but abstract concept Energy can be stored (coal, oil, a watch spring) Energy is something moving

More information

Conveyor trajectory discharge angles

Conveyor trajectory discharge angles University of Wollongong Researh Online Faulty of Engineering - Papers (Arhive) Faulty of Engineering and Information Sienes 007 Conveyor trajetory disharge angles David B. Hastie University of Wollongong,

More information

General Equilibrium. What happens to cause a reaction to come to equilibrium?

General Equilibrium. What happens to cause a reaction to come to equilibrium? General Equilibrium Chemial Equilibrium Most hemial reations that are enountered are reversible. In other words, they go fairly easily in either the forward or reverse diretions. The thing to remember

More information

ECE-320 Linear Control Systems. Winter 2013, Exam 1. No calculators or computers allowed, you may leave your answers as fractions.

ECE-320 Linear Control Systems. Winter 2013, Exam 1. No calculators or computers allowed, you may leave your answers as fractions. ECE-320 Linear Control Systems Winter 2013, Exam 1 No alulators or omputers allowed, you may leave your answers as frations. All problems are worth 3 points unless noted otherwise. Total /100 1 Problems

More information

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Newton s Laws &Weight Question Paper 1 Level Edexcel Subject Physics Exam Board GCSE(9-1) Topic Motions and Forces Sub Topic Newton s Laws & Weight Booklet Question Paper 1 Time Allowed: Score: Percentage:

More information

<This Sheet Intentionally Left Blank For Double-Sided Printing>

<This Sheet Intentionally Left Blank For Double-Sided Printing> 21 22 Transformation Of Mechanical Energy Introduction and Theory One of the most powerful laws in physics is the Law of Conservation of

More information

Everybody remains in a state of rest or continues to move in a uniform motion, in a straight line, unless acting on by an external force.

Everybody remains in a state of rest or continues to move in a uniform motion, in a straight line, unless acting on by an external force. NEWTON S LAWS OF MOTION Newton s First Law Everybody remains in a state of rest or continues to move in a uniform motion, in a straight line, unless acting on by an external force. Inertia (Newton s 1

More information