finalsol.nb In my frame, I am at rest. So the time it takes for the missile to reach me is just 8µ106 km

Size: px
Start display at page:

Download "finalsol.nb In my frame, I am at rest. So the time it takes for the missile to reach me is just 8µ106 km"

Transcription

1 finalsol.n Physis D, Winter 005 Final Exam Solutions Top gun a v enemy = 0.4 in my enemy's frame, v' missile = so, in my frame, v missile = Å º H0.4 H0.7 (it must e less than!) In my frame, I am at rest. So the time it takes for the missile to reah me is just 8µ06 km Å º.0 seonds Sustainale Fusion Will Solve Energy Crisis a The perentage of Deuterium whih eomes energy is Å H Å Å º 0.68 % H.06 The mass of the kg of Deuterium whih will eome energy then is kg. This means an energy of E = H kg º 5.74 µ 0 4 Joules will e released. We an get 0 9 Joules from 0 9 Å Å º 7, 400 kg of Deuterium 5.74µ0 4 Estimating The Plank Constant a We have two "experiments" here in whih energy is transfered from inoming photons, with wavelengths l = 00 nm and l = 405 nm, to eletrons in a lok of sodium, whih give up some of the energy in freeing themselves from the solid, and have the rest of their energy sapped while trying to go against the stopping potential. The equations for this proess is just a slightly ompliated form of energy onservation Putting together E g = f + K i, E g = h f = Å h, K i - K f = DU =» e V stop», and finally K f = 0 gives h Å l = f + e V stop, or e V stop = h f - f l Now, given two wavelengths, we get two suh equations and we an find the the slope h and the interept f for this linear relationship. H H -e V stop The slope, h, is given y e V stop Å ÅÅÅ = 9 ev nm ê º.97 µ 0-5 ev se º 6.6 µ 0-4 Joule se f - f The interept is found then as f = Å h H 9 ev nm l - e V stop = Å ÅÅÅ -.85 ev =. ev 00 nm 9 ev nm or y (as a hek) f = Å ÅÅÅ ev =. ev 405 nm Finally, the utoff wavelength is the one for whih ÅÅÅ h l ut = f, so we get 9 ev nm l ut = Å = 56 nm. ev

2 finalsol.n 4 Tiger Hunting in a Quantum Jungle a Dx = 4 meters. Dx Dp h ê 4 p. The minimum unertainty in momentum is Dp min = h ÅÅ 4 p Dx 50 Joule se = Å ÅÅÅ 4 p H4 m º kg meters ê se kg metersêse So the minimum unertainty in speed is Dv min = Å 00 Å kg ÅÅÅ = meters ê se Initially, the position unertainty is 4 meters. For eah of the 0 seonds with Dv min º 0.0 meters ê se, the unertainty in position inreases y 0.0 meters. Thus the final unertainty in position is 4. meters. 5 Triggering a Transition Between Quantum States a Normalization means Ÿ y y dx =, so we have = C Ÿ Hy + y Hy + y dx = C HŸ y y dx + Ÿ y y dx + Ÿ y y dx + Ÿ y y dx = C H The last line is so eause y and y are normalized and orthogonal. Hene we have C = ë è!!!. If we are measuring our ox's length in nm, C must have units of nm -ê, so with units, C = ÅÅÅ è!!! nm-ê To make this a funtion of time, we multiply eah part y its time-energy evolution exponential. YHx, t = Hx e - i E tê + y Hx e -i tê D where E n = ÅÅ to save time, I will refer to E n Å as w n. ÅÅ n p m Reall that the energy operator Y = i Y. My favorite way to hek whether a state is stationary is t to see if it is an eigenfuntion (a.k.a. eigenstate) of the energy operator. It must e for it to solve Shrodinger's Y = i t Y = i C H y Hx H-i w e -i w t + y Hx H-i w e -i w t = C H w y Hx e -i w t + w y Hx e -i w t This is not proportional to the wavefuntion Y eause w w, and so this state is not an energy eigenstate, nor is it a stationary state. Now for the average energy. Reall that all of the wavefuntions for the infinite square well are real, so y = y; however, the omplex onjugation will hange the sign of the exponents, i w n t. The average value of energy is < E >= C Ÿ Iy e +i ÅÅÅ E t + y e +i ÅÅÅ t M@i = C Ÿ Iy e +i ÅÅÅ E D Iy t e -i ÅÅÅ E t + y e -i ÅÅÅ t M dx t + y e +i ÅÅÅ t M I E y e -i ÅÅÅ E t + y e -i ÅÅÅ t M dx = C AE Ÿ y e +i E ÅÅÅ t y e -i E ÅÅÅ t dx + Ÿ y e +i ÅÅÅ t y e -i ÅÅÅ t dxe = H + H D = E +E ÅÅÅÅ

3 finalsol.n d The average position at time t is < x > = C Ÿ Iy e +i ÅÅÅ E t + y e +i ÅÅÅ t M x Iy e -i ÅÅÅ E t + y e -i ÅÅÅ t M dx = = Å nm A Ÿ y x y dx + Ÿ y x y dx + Ÿ y x y Ie i ÅÅÅ E t-i ÅÅÅ t + e -i ÅÅÅ t+i ÅÅÅ t M dxe Å E -E Ÿ y x y dx + Ÿ y x y dx + Ÿ y x y H osh t dxd Now, just use the given definitions < x > = x 0 + A osh E -E ÅÅÅÅ t = x 0 + A oshw t e x 0 will e the middle of the well of ourse. The amplitude will e, if we take our ox to have its left wall at the origin and its right wall at x = nm, A = Ÿ x sinhk x sinhk x dx where k n = n p ê Now use the formula given, sinhq sinhq = oshq - q - oshq + q D. Notie that k - k = k and k + k = k. Then A = Ÿ x oshk x - oshk x D dx ÿ H nm - Now we have to i..p. (integrate y parts). It is quiker to do it like this: Hene, Ÿ 0 x oshkn x dx = x k n sinhk n x 0 -Ÿ 0 k n sinhk n x dx = Å k oshk n x n 0 = H ÅÅ n p HosHn p - A = nm A H ÅÅÅÅ p Hos p - - H ÅÅ p HosH p - E = Å nm A = - Å 8 Å = - ÅÅÅ 8 nm º nm 9 nm p 9 p - ÅÅÅÅ p 9 H-D = + ÅÅÅÅ p A negative amplitude! That is a surprise! But it does make sense if you graph the funtion that you are integrating. There is learly more area under the x axis than aove. See the figure elow, in units where =. This just means that the eletron starts out traveling to the left instead of to the right at t = 0. 9 D

4 finalsol.n 4 f (for finally) The angular frequeny is W = -E = ÅÅÅÅ ÅÅ So the period is = ÅÅ m h p ÅÅ p m e Å p I4 Å - p Å M T = ÅÅ p W = ÅÅÅÅ H p me p Å ÅÅ h ÿ H nm = ÅÅÅÅ ev ÅÅ Å Å H 40 ev nm ÿ µ0 7 nmêse nm º.66 µ 0-5 seonds 6 Rapping Aout a -D Harmoni Osillator a TISE: - ÅÅ m ÅÅÅ yhx + ÅÅÅÅ x m Hw x + w y yhx = E yhx with w < w We must separate variales like so, y = y x Hx ÿ y y Hy. Then we must use the fat that the first exited state will have an exitation in the diretion with the smaller exitation energy, w. I.e., sine w < w, y Hx, y ~ y x, Hx ÿ y y,0 Hy and you are given that y x, Hx ~ "######### m w Å x e - m w ÅÅÅ ÅÅÅ x Å y y,0 Hy ~ e - m w ÅÅÅ ÅÅÅ y so you should get that y Hx, y = A "######### m w Å x e - m w x ÅÅÅ ÅÅÅ Å e - m w ÅÅÅ ÅÅÅ y Sine "######### m w Å is a onstant, it is also okay to work with y Hx, y = A x e - ÅÅÅ m w ÅÅÅ x Å - ÅÅÅ m w ÅÅÅ y Å Å = A "######### m w Å x e - m w x ÅÅÅ ÅÅÅ Å - m w ÅÅÅ ÅÅÅ y Å Normalization: = A x e - ÅÅÅ m w ÅÅÅ x Å dx = A A- ÅÅ w ÅÅ m e - ÅÅÅ m w ÅÅÅ y Å dy e - ÅÅÅ m w ÅÅÅ x dxe A "######### p Å E p m w = A A- ÅÅ w ÅÅ "######### Å m m w E A "######### p Å m w E = A A- ÅÅ "####### p w ÅÅ w H- ÅÅÅÅ m-ê E "######### p Å m w = A A ÅÅÅÅ Å p w ê w ê E m A = "################ w ê ######### w ê m ÅÅ p

5 finalsol.n 5 d This is a stationary state. In the x diretion there is ÅÅÅÅ w worth of energy, and in the y diretion, there is ÅÅÅÅ w worth of energy. The total energy is E = ÅÅÅÅ w + ÅÅÅÅ w e This is not a degenerate state, sine w w. The two losest states are n = n = 0 and n =, n = 0. Both have energies different from this one. f The average potential energy of this state turns out to e ÅÅÅÅ of the total energy, ÅÅÅÅ w 4 + ÅÅÅÅ w 4. 7 An Exited Hydrogen Atom a This is H, so Z =. The s state orresponds to R,0. The proaility as a funtion of r alone is PHr = Hr R,0, so we have R,0 Hr ~ I - PHr ~I r - r Å M e -rê r M e -rê Now, we an find maxima in PHr y finding extreme points for its square root, whih is easier in most ases. r Hr R,0 ~ I r - r M H- ê + H - r ê = -r ê + r ê a r ê = - r ê + r ê a 0 Of ourse, we have extrema for r Hr R,0 = 0, i.e., r ê = è!!! 5, just like in homework. You an see from plotting or from evaluating PHr at the two points that r ê = + è!!! 5 º 5.4. This is a it more than the seond Bohr radius r Bohr = 4 The p state orresponds to R, R, Hr ~ r e-rê a0 è!!!!!!!! PHr ~r e -rê r Hr e -rê a0 ~ r - r ê r ê = 4 This is preisely the seond Bohr radius. Three heers for Bohr!

Tutorial 8: Solutions

Tutorial 8: Solutions Tutorial 8: Solutions 1. * (a) Light from the Sun arrives at the Earth, an average of 1.5 10 11 m away, at the rate 1.4 10 3 Watts/m of area perpendiular to the diretion of the light. Assume that sunlight

More information

Department of Physics University of California San Diego

Department of Physics University of California San Diego Page 1 of 8 Department of Physics University of California San Diego Modern Physics (2D) Prof. V. Sharma Final Exam (Dec 10 2003) Page 2 of 8 Page 3 of 8 Page 4 of 8 Page 5 of 8 The Hitchhiker s guide

More information

Lesson 23: The Defining Equation of a Line

Lesson 23: The Defining Equation of a Line Student Outomes Students know that two equations in the form of ax + y = and a x + y = graph as the same line when a = = and at least one of a or is nonzero. a Students know that the graph of a linear

More information

Acoustic Waves in a Duct

Acoustic Waves in a Duct Aousti Waves in a Dut 1 One-Dimensional Waves The one-dimensional wave approximation is valid when the wavelength λ is muh larger than the diameter of the dut D, λ D. The aousti pressure disturbane p is

More information

Answers to Coursebook questions Chapter J2

Answers to Coursebook questions Chapter J2 Answers to Courseook questions Chapter J 1 a Partiles are produed in ollisions one example out of many is: a ollision of an eletron with a positron in a synhrotron. If we produe a pair of a partile and

More information

Quantum Mechanics: Wheeler: Physics 6210

Quantum Mechanics: Wheeler: Physics 6210 Quantum Mehanis: Wheeler: Physis 60 Problems some modified from Sakurai, hapter. W. S..: The Pauli matries, σ i, are a triple of matries, σ, σ i = σ, σ, σ 3 given by σ = σ = σ 3 = i i Let stand for the

More information

Lecture 15 (Nov. 1, 2017)

Lecture 15 (Nov. 1, 2017) Leture 5 8.3 Quantum Theor I, Fall 07 74 Leture 5 (Nov., 07 5. Charged Partile in a Uniform Magneti Field Last time, we disussed the quantum mehanis of a harged partile moving in a uniform magneti field

More information

Answers to test yourself questions

Answers to test yourself questions Answers to test yoursel questions Topi.1 Osilliations 1 a A n osillation is any motion in whih the displaement o a partile rom a ixed point keeps hanging diretion and there is a periodiity in the motion

More information

Relative Maxima and Minima sections 4.3

Relative Maxima and Minima sections 4.3 Relative Maxima and Minima setions 4.3 Definition. By a ritial point of a funtion f we mean a point x 0 in the domain at whih either the derivative is zero or it does not exists. So, geometrially, one

More information

Math 220A - Fall 2002 Homework 8 Solutions

Math 220A - Fall 2002 Homework 8 Solutions Math A - Fall Homework 8 Solutions 1. Consider u tt u = x R 3, t > u(x, ) = φ(x) u t (x, ) = ψ(x). Suppose φ, ψ are supported in the annular region a < x < b. (a) Find the time T 1 > suh that u(x, t) is

More information

Line Radiative Transfer

Line Radiative Transfer http://www.v.nrao.edu/ourse/astr534/ineradxfer.html ine Radiative Transfer Einstein Coeffiients We used armor's equation to estimate the spontaneous emission oeffiients A U for À reombination lines. A

More information

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E')

22.54 Neutron Interactions and Applications (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') 22.54 Neutron Interations and Appliations (Spring 2004) Chapter 6 (2/24/04) Energy Transfer Kernel F(E E') Referenes -- J. R. Lamarsh, Introdution to Nulear Reator Theory (Addison-Wesley, Reading, 1966),

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES ELECTROMAGNETIC WAVES Now we will study eletromagneti waves in vauum or inside a medium, a dieletri. (A metalli system an also be represented as a dieletri but is more ompliated due to damping or attenuation

More information

Chapter 26 Lecture Notes

Chapter 26 Lecture Notes Chapter 26 Leture Notes Physis 2424 - Strauss Formulas: t = t0 1 v L = L0 1 v m = m0 1 v E = m 0 2 + KE = m 2 KE = m 2 -m 0 2 mv 0 p= mv = 1 v E 2 = p 2 2 + m 2 0 4 v + u u = 2 1 + vu There were two revolutions

More information

Mathematics II. Tutorial 5 Basic mathematical modelling. Groups: B03 & B08. Ngo Quoc Anh Department of Mathematics National University of Singapore

Mathematics II. Tutorial 5 Basic mathematical modelling. Groups: B03 & B08. Ngo Quoc Anh Department of Mathematics National University of Singapore Mathematis II Tutorial 5 Basi mathematial modelling Groups: B03 & B08 February 29, 2012 Mathematis II Ngo Quo Anh Ngo Quo Anh Department of Mathematis National University of Singapore 1/13 : The ost of

More information

Physics 218, Spring February 2004

Physics 218, Spring February 2004 Physis 8 Spring 004 8 February 004 Today in Physis 8: dispersion Motion of bound eletrons in matter and the frequeny dependene of the dieletri onstant Dispersion relations Ordinary and anomalous dispersion

More information

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3.

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3. Solutions to HW 10 Problems and Exerises: 37.. Visualize: At t t t 0 s, the origins of the S, S, and S referene frames oinide. Solve: We have 1 ( v/ ) 1 (0.0) 1.667. (a) Using the Lorentz transformations,

More information

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become Relativity and quantum mehanis: Jorgensen 1 revisited 1. Introdution Bernhard Rothenstein, Politehnia University of Timisoara, Physis Department, Timisoara, Romania. brothenstein@gmail.om Abstrat. We first

More information

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES MISN-0-211 z ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES y È B` x ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES by J. S. Kovas and P. Signell Mihigan State University 1. Desription................................................

More information

To investigate the relationship between the work done to accelerate a trolley and the energy stored in the moving trolley.

To investigate the relationship between the work done to accelerate a trolley and the energy stored in the moving trolley. SP2h.1 Aelerating trolleys Your teaher may wath to see if you an follow instrutions safely take areful measurements. Introdution The work done y a fore is a measure of the energy transferred when a fore

More information

Advanced Computational Fluid Dynamics AA215A Lecture 4

Advanced Computational Fluid Dynamics AA215A Lecture 4 Advaned Computational Fluid Dynamis AA5A Leture 4 Antony Jameson Winter Quarter,, Stanford, CA Abstrat Leture 4 overs analysis of the equations of gas dynamis Contents Analysis of the equations of gas

More information

Blackbody radiation and Plank s law

Blackbody radiation and Plank s law lakbody radiation and Plank s law blakbody problem: alulating the intensity o radiation at a given wavelength emitted by a body at a speii temperature Max Plank, 900 quantization o energy o radiation-emitting

More information

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1. c. Both kinetic and elastic potential energies can be negative.

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1. c. Both kinetic and elastic potential energies can be negative. Department of Natural Sienes Physis 3650 Quiz 1 August 5, 008 1. Whih one of the statements below is orret? a. Elasti potential energy an be negative but the kineti energy annot. b. Kineti energy an be

More information

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE?

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? The stars are spheres of hot gas. Most of them shine beause they are fusing hydrogen into helium in their entral parts. In this problem we use onepts of

More information

Geometry of Transformations of Random Variables

Geometry of Transformations of Random Variables Geometry of Transformations of Random Variables Univariate distributions We are interested in the problem of finding the distribution of Y = h(x) when the transformation h is one-to-one so that there is

More information

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave Chap.4 Dut Aoustis Dut Aoustis Plane wave A sound propagation in pipes with different ross-setional area f the wavelength of sound is large in omparison with the diameter of the pipe the sound propagates

More information

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p

We consider the nonrelativistic regime so no pair production or annihilation.the hamiltonian for interaction of fields and sources is 1 (p .. RADIATIVE TRANSITIONS Marh 3, 5 Leture XXIV Quantization of the E-M field. Radiative transitions We onsider the nonrelativisti regime so no pair prodution or annihilation.the hamiltonian for interation

More information

n n=1 (air) n 1 sin 2 r =

n n=1 (air) n 1 sin 2 r = Physis 55 Fall 7 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.4, 7.6, 7.8 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with index

More information

Physics 6C. Special Relativity. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Special Relativity. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physis 6C Speial Relatiity Two Main Ideas The Postulates of Speial Relatiity Light traels at the same speed in all inertial referene frames. Laws of physis yield idential results in all inertial referene

More information

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering 561 Fall 2017 Leture #1 page 1 Leture #1: Quantum Mehanis Historial Bakground Photoeletri Effet Compton Sattering Robert Field Experimental Spetrosopist = Quantum Mahinist TEXTBOOK: Quantum Chemistry,

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysisAndMathsTutor.om. (a (i beam splitter [or semi-silvered mirror] (ii a ompensator [or a glass blok] allows for the thikness of the (semi-silvered mirror to obtain equal optial path lengths in the

More information

A population of 50 flies is expected to double every week, leading to a function of the x

A population of 50 flies is expected to double every week, leading to a function of the x 4 Setion 4.3 Logarithmi Funtions population of 50 flies is epeted to doule every week, leading to a funtion of the form f ( ) 50(), where represents the numer of weeks that have passed. When will this

More information

Click here to order this book in one of two formats: softcover ISBN: $50.00 ISBN: $50.00

Click here to order this book in one of two formats: softcover ISBN: $50.00 ISBN: $50.00 ere is a sample hapter from Letures on Radiation Dosimetry Physis: A Deeper Look into the Foundations of Clinial Protools his sample hapter is opyrighted and made availale for personal use only No part

More information

(E B) Rate of Absorption and Stimulated Emission. π 2 E 0 ( ) 2. δ(ω k. p. 59. The rate of absorption induced by the field is. w k

(E B) Rate of Absorption and Stimulated Emission. π 2 E 0 ( ) 2. δ(ω k. p. 59. The rate of absorption induced by the field is. w k p. 59 Rate of Absorption and Stimulated Emission The rate of absorption indued by the field is π w k ( ω) ω E 0 ( ) k ˆ µ δω ( k ω) The rate is learly dependent on the strength of the field. The variable

More information

6.4 Dividing Polynomials: Long Division and Synthetic Division

6.4 Dividing Polynomials: Long Division and Synthetic Division 6 CHAPTER 6 Rational Epressions 6. Whih of the following are equivalent to? y a., b. # y. y, y 6. Whih of the following are equivalent to 5? a a. 5, b. a 5, 5. # a a 6. In your own words, eplain one method

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

Lecture 11 Buckling of Plates and Sections

Lecture 11 Buckling of Plates and Sections Leture Bukling of lates and Setions rolem -: A simpl-supported retangular plate is sujeted to a uniaxial ompressive load N, as shown in the sketh elow. a 6 N N a) Calulate and ompare ukling oeffiients

More information

Chapter 9. The excitation process

Chapter 9. The excitation process Chapter 9 The exitation proess qualitative explanation of the formation of negative ion states Ne and He in He-Ne ollisions an be given by using a state orrelation diagram. state orrelation diagram is

More information

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t).

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t). Physis 486 Tony M. Liss Leture 1 Why quantum mehanis? Quantum vs. lassial mehanis: Classial Newton s laws Motion of bodies desribed in terms of initial onditions by speifying x(t), v(t). Hugely suessful

More information

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1

QUANTUM MECHANICS II PHYS 517. Solutions to Problem Set # 1 QUANTUM MECHANICS II PHYS 57 Solutions to Problem Set #. The hamiltonian for a lassial harmoni osillator an be written in many different forms, suh as use ω = k/m H = p m + kx H = P + Q hω a. Find a anonial

More information

The Hanging Chain. John McCuan. January 19, 2006

The Hanging Chain. John McCuan. January 19, 2006 The Hanging Chain John MCuan January 19, 2006 1 Introdution We onsider a hain of length L attahed to two points (a, u a and (b, u b in the plane. It is assumed that the hain hangs in the plane under a

More information

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12.

(a) We desribe physics as a sequence of events labelled by their space time coordinates: x µ = (x 0, x 1, x 2 x 3 ) = (c t, x) (12. 2 Relativity Postulates (a) All inertial observers have the same equations of motion and the same physial laws. Relativity explains how to translate the measurements and events aording to one inertial

More information

Simple Considerations on the Cosmological Redshift

Simple Considerations on the Cosmological Redshift Apeiron, Vol. 5, No. 3, July 8 35 Simple Considerations on the Cosmologial Redshift José Franiso Garía Juliá C/ Dr. Maro Mereniano, 65, 5. 465 Valenia (Spain) E-mail: jose.garia@dival.es Generally, the

More information

(Newton s 2 nd Law for linear motion)

(Newton s 2 nd Law for linear motion) PHYSICS 3 Final Exaination ( Deeber Tie liit 3 hours Answer all 6 questions You and an assistant are holding the (opposite ends of a long plank when oops! the butterfingered assistant drops his end If

More information

Derivation of Non-Einsteinian Relativistic Equations from Momentum Conservation Law

Derivation of Non-Einsteinian Relativistic Equations from Momentum Conservation Law Asian Journal of Applied Siene and Engineering, Volue, No 1/13 ISSN 35-915X(p); 37-9584(e) Derivation of Non-Einsteinian Relativisti Equations fro Moentu Conservation Law M.O.G. Talukder Varendra University,

More information

Physics 2D Lecture Slides Lecture 7: Jan 14th 2004

Physics 2D Lecture Slides Lecture 7: Jan 14th 2004 Quiz is This Friday Quiz will over Setions.-.6 (inlusive) Remaining material will be arried over to Quiz Bring Blue Book, hek alulator battery Write all answers in indelible ink else no grade! Write answers

More information

Aharonov-Bohm effect. Dan Solomon.

Aharonov-Bohm effect. Dan Solomon. Aharonov-Bohm effet. Dan Solomon. In the figure the magneti field is onfined to a solenoid of radius r 0 and is direted in the z- diretion, out of the paper. The solenoid is surrounded by a barrier that

More information

MA2331 Tutorial Sheet 5, Solutions December 2014 (Due 12 December 2014 in class) F = xyi+ 1 2 x2 j+k = φ (1)

MA2331 Tutorial Sheet 5, Solutions December 2014 (Due 12 December 2014 in class) F = xyi+ 1 2 x2 j+k = φ (1) MA2331 Tutorial Sheet 5, Solutions. 1 4 Deember 214 (Due 12 Deember 214 in lass) Questions 1. ompute the line integrals: (a) (dx xy + 1 2 dy x2 + dz) where is the line segment joining the origin and the

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 7 Relativisti Dynamis 7.1 General Priniples of Dynamis 7.2 Relativisti Ation As stated in Setion A.2, all of dynamis is derived from the priniple of least ation. Thus it is our hore to find a suitable

More information

MOLECULAR ORBITAL THEORY- PART I

MOLECULAR ORBITAL THEORY- PART I 5.6 Physial Chemistry Leture #24-25 MOLECULAR ORBITAL THEORY- PART I At this point, we have nearly ompleted our rash-ourse introdution to quantum mehanis and we re finally ready to deal with moleules.

More information

Special Relativity. Relativity

Special Relativity. Relativity 10/17/01 Speial Relativity Leture 17 Relativity There is no absolute motion. Everything is relative. Suppose two people are alone in spae and traveling towards one another As measured by the Doppler shift!

More information

arxiv:gr-qc/ v2 6 Feb 2004

arxiv:gr-qc/ v2 6 Feb 2004 Hubble Red Shift and the Anomalous Aeleration of Pioneer 0 and arxiv:gr-q/0402024v2 6 Feb 2004 Kostadin Trenčevski Faulty of Natural Sienes and Mathematis, P.O.Box 62, 000 Skopje, Maedonia Abstrat It this

More information

Review Topic 4: Cubic polynomials

Review Topic 4: Cubic polynomials Review Topi : ui polynomials Short answer Fatorise Px ( ) = x + 5x + x- 9 into linear fators. The polynomial Px ( ) = x - ax + x- leaves a remainer of when it is ivie y ( x - ) an a remainer of - when

More information

Intercepts To find the y-intercept (b, fixed value or starting value), set x = 0 and solve for y. To find the x-intercept, set y = 0 and solve for x.

Intercepts To find the y-intercept (b, fixed value or starting value), set x = 0 and solve for y. To find the x-intercept, set y = 0 and solve for x. Units 4 an 5: Linear Relations partial variation iret variation Points on a Coorinate Gri (x-oorinate, y-oorinate) origin is (0, 0) "run, then jump" Interepts To fin the y-interept (, fixe value or starting

More information

Casimir self-energy of a free electron

Casimir self-energy of a free electron Casimir self-energy of a free eletron Allan Rosenwaig* Arist Instruments, In. Fremont, CA 94538 Abstrat We derive the eletromagneti self-energy and the radiative orretion to the gyromagneti ratio of a

More information

Introduction to Quantum Chemistry

Introduction to Quantum Chemistry Chem. 140B Dr. J.A. Mak Introdution to Quantum Chemistry Without Quantum Mehanis, how would you explain: Periodi trends in properties of the elements Struture of ompounds e.g. Tetrahedral arbon in ethane,

More information

Lecture 3 - Lorentz Transformations

Lecture 3 - Lorentz Transformations Leture - Lorentz Transformations A Puzzle... Example A ruler is positioned perpendiular to a wall. A stik of length L flies by at speed v. It travels in front of the ruler, so that it obsures part of the

More information

Astr 5465 Mar. 29, 2018 Galactic Dynamics I: Disks

Astr 5465 Mar. 29, 2018 Galactic Dynamics I: Disks Galati Dynamis Overview Astr 5465 Mar. 29, 2018 Subjet is omplex but we will hit the highlights Our goal is to develop an appreiation of the subjet whih we an use to interpret observational data See Binney

More information

The Laws of Acceleration

The Laws of Acceleration The Laws of Aeleration The Relationships between Time, Veloity, and Rate of Aeleration Copyright 2001 Joseph A. Rybzyk Abstrat Presented is a theory in fundamental theoretial physis that establishes the

More information

Experiment 03: Work and Energy

Experiment 03: Work and Energy MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.01 Purpose of the Experiment: Experiment 03: Work and Energy In this experiment you allow a art to roll down an inlined ramp and run into

More information

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms

Non-Markovian study of the relativistic magnetic-dipole spontaneous emission process of hydrogen-like atoms NSTTUTE OF PHYSCS PUBLSHNG JOURNAL OF PHYSCS B: ATOMC, MOLECULAR AND OPTCAL PHYSCS J. Phys. B: At. Mol. Opt. Phys. 39 ) 7 85 doi:.88/953-75/39/8/ Non-Markovian study of the relativisti magneti-dipole spontaneous

More information

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically.

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically. Eletrodynamis I Exam 3 - Part A - Closed Book KSU 205/2/8 Name Eletrodynami Sore = 24 / 24 points Instrutions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to

More information

SURFACE WAVES OF NON-RAYLEIGH TYPE

SURFACE WAVES OF NON-RAYLEIGH TYPE SURFACE WAVES OF NON-RAYLEIGH TYPE by SERGEY V. KUZNETSOV Institute for Problems in Mehanis Prosp. Vernadskogo, 0, Mosow, 75 Russia e-mail: sv@kuznetsov.msk.ru Abstrat. Existene of surfae waves of non-rayleigh

More information

2. Properties of Functions

2. Properties of Functions 2. PROPERTIES OF FUNCTIONS 111 2. Properties of Funtions 2.1. Injetions, Surjetions, an Bijetions. Definition 2.1.1. Given f : A B 1. f is one-to-one (short han is 1 1) or injetive if preimages are unique.

More information

1 sin 2 r = 1 n 2 sin 2 i

1 sin 2 r = 1 n 2 sin 2 i Physis 505 Fall 005 Homework Assignment #11 Solutions Textbook problems: Ch. 7: 7.3, 7.5, 7.8, 7.16 7.3 Two plane semi-infinite slabs of the same uniform, isotropi, nonpermeable, lossless dieletri with

More information

Extra Credit Solutions Math 181, Fall 2018 Instructor: Dr. Doreen De Leon

Extra Credit Solutions Math 181, Fall 2018 Instructor: Dr. Doreen De Leon Extra Credit Solutions Math 181, Fall 018 Instrutor: Dr. Doreen De Leon 1. In eah problem below, the given sstem is an almost linear sstem at eah of its equilibrium points. For eah, (i Find the (real equilibrium

More information

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013

Wavetech, LLC. Ultrafast Pulses and GVD. John O Hara Created: Dec. 6, 2013 Ultrafast Pulses and GVD John O Hara Created: De. 6, 3 Introdution This doument overs the basi onepts of group veloity dispersion (GVD) and ultrafast pulse propagation in an optial fiber. Neessarily, it

More information

Berry s phase for coherent states of Landau levels

Berry s phase for coherent states of Landau levels Berry s phase for oherent states of Landau levels Wen-Long Yang 1 and Jing-Ling Chen 1, 1 Theoretial Physis Division, Chern Institute of Mathematis, Nankai University, Tianjin 300071, P.R.China Adiabati

More information

TENSOR FORM OF SPECIAL RELATIVITY

TENSOR FORM OF SPECIAL RELATIVITY TENSOR FORM OF SPECIAL RELATIVITY We begin by realling that the fundamental priniple of Speial Relativity is that all physial laws must look the same to all inertial observers. This is easiest done by

More information

LECTURE NOTES FOR , FALL 2004

LECTURE NOTES FOR , FALL 2004 LECTURE NOTES FOR 18.155, FALL 2004 83 12. Cone support and wavefront set In disussing the singular support of a tempered distibution above, notie that singsupp(u) = only implies that u C (R n ), not as

More information

REVIEW QUESTIONS Chapter 15

REVIEW QUESTIONS Chapter 15 hemistry 10 ANSWER EY REVIEW QUESTIONS hapter 15 1. A mixture of 0.10 mol of NO, 0.050 mol of H and 0.10 mol of HO is plaed in a 1.0-L flask and allowed to reah equilibrium as shown below: NO (g) + H (g)

More information

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution.

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution. arxiv:physis/99536v1 [physis.lass-ph] 15 May 1999 Eletromagneti radiation of the travelling spin wave propagating in an antiferromagneti plate. Exat solution. A.A.Zhmudsky November 19, 16 Abstrat The exat

More information

20 Doppler shift and Doppler radars

20 Doppler shift and Doppler radars 20 Doppler shift and Doppler radars Doppler radars make a use of the Doppler shift phenomenon to detet the motion of EM wave refletors of interest e.g., a polie Doppler radar aims to identify the speed

More information

Electromagnetic Waves

Electromagnetic Waves Eletroagneti Waves Physis 6C Eletroagneti (EM) waves an be produed by atoi transitions (ore on this later), or by an alternating urrent in a wire. As the harges in the wire osillate bak and forth, the

More information

max min z i i=1 x j k s.t. j=1 x j j:i T j

max min z i i=1 x j k s.t. j=1 x j j:i T j AM 221: Advaned Optimization Spring 2016 Prof. Yaron Singer Leture 22 April 18th 1 Overview In this leture, we will study the pipage rounding tehnique whih is a deterministi rounding proedure that an be

More information

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B =

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B = L Physis MC nswers Year:1989 Question Number: 3,0,,4,6,9,30,31,36,40,4 1989MC (3) If eloity of relatie to ground = and eloity of relatie to ground =, then the eloity of relatie to = X X Y Y Suppose that

More information

Algebra: Basic Operation, Law of Indices

Algebra: Basic Operation, Law of Indices Algera: Basi Operation, Law of Indies MD MARUFUR RAHMAN Ms Sustainale Energy Systems Beng (Hons) Mehanial Engineering Bs (Hons) Computer Siene & Engineering 05-06 Inreasingly, diffiulty in understanding

More information

Metric of Universe The Causes of Red Shift.

Metric of Universe The Causes of Red Shift. Metri of Universe The Causes of Red Shift. ELKIN IGOR. ielkin@yande.ru Annotation Poinare and Einstein supposed that it is pratially impossible to determine one-way speed of light, that s why speed of

More information

Modern Physics I Solutions to Homework 4 Handout

Modern Physics I Solutions to Homework 4 Handout Moern Physis I Solutions to Homework 4 Hanout TA: Alvaro Núñez an33@sires.nyu.eu New York University, Department of Physis, 4 Washington Pl., New York, NY 0003. Bernstein, Fishbane, Gasiorowiz: Chapter

More information

MAC Calculus II Summer All you need to know on partial fractions and more

MAC Calculus II Summer All you need to know on partial fractions and more MC -75-Calulus II Summer 00 ll you need to know on partial frations and more What are partial frations? following forms:.... where, α are onstants. Partial frations are frations of one of the + α, ( +

More information

Physics 2210 Fall smartphysics Exam 3 Review smartphysics units /04/2015

Physics 2210 Fall smartphysics Exam 3 Review smartphysics units /04/2015 Physics 22 Fall 25 smartphysics Exam 3 Review smartphysics units -3 /4/25 Review Problem The figure shown extends from x = to x = and is bounded on the left by the y-axis, on the bottom by the x-axis,

More information

Espen Gaarder Haug Norwegian University of Life Sciences April 4, 2017

Espen Gaarder Haug Norwegian University of Life Sciences April 4, 2017 The Mass Gap, Kg, the Plank Constant and the Gravity Gap The Plank Constant Is a Composite Constant One kg Is 85465435748 0 36 Collisions per Seond The Mass Gap Is.734 0 5 kg and also m p The Possibility

More information

Chapter 9. There are 7 out of 50 measurements that are greater than or equal to 5.1; therefore, the fraction of the

Chapter 9. There are 7 out of 50 measurements that are greater than or equal to 5.1; therefore, the fraction of the Pratie questions 6 1 a y i = 6 µ = = 1 i = 1 y i µ i = 1 ( ) = 95 = s n 95 555. x i f i 1 1+ + 5+ n + 5 5 + n µ = = = f 11+ n 11+ n i 7 + n = 5 + n = 6n n = a Time (minutes) 1.6.1.6.1.6.1.6 5.1 5.6 6.1

More information

Microeconomic Theory I Assignment #7 - Answer key

Microeconomic Theory I Assignment #7 - Answer key Miroeonomi Theory I Assignment #7 - Answer key. [Menu priing in monopoly] Consider the example on seond-degree prie disrimination (see slides 9-93). To failitate your alulations, assume H = 5, L =, and

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

Applications of Derivatives

Applications of Derivatives ApplicationsDerivativesII.nb 1 Applications of Derivatives Now that we have covered the basic concepts and mechanics of derivatives it's time to look at some applications. We will start with a summary

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 21, 2013 Prof. Alan Guth QUIZ 3 SOLUTIONS

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 21, 2013 Prof. Alan Guth QUIZ 3 SOLUTIONS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physis Department Physis 8.286: The Early Universe Deember 2, 203 Prof. Alan Guth QUIZ 3 SOLUTIONS Quiz Date: Deember 5, 203 PROBLEM : DID YOU DO THE READING? (35

More information

2 The Bayesian Perspective of Distributions Viewed as Information

2 The Bayesian Perspective of Distributions Viewed as Information A PRIMER ON BAYESIAN INFERENCE For the next few assignments, we are going to fous on the Bayesian way of thinking and learn how a Bayesian approahes the problem of statistial modeling and inferene. The

More information

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % (

Subject: Introduction to Component Matching and Off-Design Operation % % ( (1) R T % ( 16.50 Leture 0 Subjet: Introdution to Component Mathing and Off-Design Operation At this point it is well to reflet on whih of the many parameters we have introdued (like M, τ, τ t, ϑ t, f, et.) are free

More information

As the dice is fair all the outcomes are equally likely. In theory one in every six throws would be a 6, but this is unlikely to happen in reality.

As the dice is fair all the outcomes are equally likely. In theory one in every six throws would be a 6, but this is unlikely to happen in reality. Camridge Essentials Mathematis Core 8 S. Answers S. Answers a 0 (unless you are answering this on a Saturday!) 2 Pupils own examples 3 a, 2, 3, 4, 5, 6 Yes As the die is fair all the outomes are equally

More information

Computer Engineering 4TL4: Digital Signal Processing (Fall 2003) Solutions to Final Exam

Computer Engineering 4TL4: Digital Signal Processing (Fall 2003) Solutions to Final Exam Computer Engineering TL: Digital Signal Proessing (Fall 3) Solutions to Final Exam The step response ynof a ausal, stable LTI system is: n [ ] = [ yn ] un, [ ] where un [ ] is the unit step funtion a Find

More information

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν INTRODUCTION So far, the only information we have been able to get about the universe beyond the solar system is from the eletromagneti radiation that reahes us (and a few osmi rays). So doing Astrophysis

More information

Particle Properties of Wave

Particle Properties of Wave 1 Chapter-1 Partile Properties o Wave Contains: (Blakbody radiation, photoeletri eet, Compton eet).1: Blakbody radiation A signiiant hint o the ailure o lassial physis arose rom investigations o thermalradiation

More information

Class Test 1 ( ) Subject Code :Applied Physics (17202/17207/17210) Total Marks :25. Model Answer. 3. Photon travels with the speed of light

Class Test 1 ( ) Subject Code :Applied Physics (17202/17207/17210) Total Marks :25. Model Answer. 3. Photon travels with the speed of light Class Test (0-) Sujet Code :Applied Physis (70/707/70) Total Marks :5 Sem. :Seond Model Answer Q Attempt any FOUR of the following 8 a State the properties of photon Ans:.Photon is eletrially neutral.

More information

Finding the Planck Length Independent of Newton s Gravitational Constant and the Planck Constant The Compton Clock Model of Matter

Finding the Planck Length Independent of Newton s Gravitational Constant and the Planck Constant The Compton Clock Model of Matter Finding the Plank Length Independent of Newton s Gravitational Constant and the Plank Constant The Compton Clok Model of Matter Espen Gaarder Haug Norwegian University of Life Sienes September 9, 08 In

More information

A Queueing Model for Call Blending in Call Centers

A Queueing Model for Call Blending in Call Centers A Queueing Model for Call Blending in Call Centers Sandjai Bhulai and Ger Koole Vrije Universiteit Amsterdam Faulty of Sienes De Boelelaan 1081a 1081 HV Amsterdam The Netherlands E-mail: {sbhulai, koole}@s.vu.nl

More information

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

Generation of EM waves

Generation of EM waves Generation of EM waves Susan Lea Spring 015 1 The Green s funtion In Lorentz gauge, we obtained the wave equation: A 4π J 1 The orresponding Green s funtion for the problem satisfies the simpler differential

More information

Modes are solutions, of Maxwell s equation applied to a specific device.

Modes are solutions, of Maxwell s equation applied to a specific device. Mirowave Integrated Ciruits Prof. Jayanta Mukherjee Department of Eletrial Engineering Indian Institute of Tehnology, Bombay Mod 01, Le 06 Mirowave omponents Welome to another module of this NPTEL mok

More information

ECE-320 Linear Control Systems. Winter 2013, Exam 1. No calculators or computers allowed, you may leave your answers as fractions.

ECE-320 Linear Control Systems. Winter 2013, Exam 1. No calculators or computers allowed, you may leave your answers as fractions. ECE-320 Linear Control Systems Winter 2013, Exam 1 No alulators or omputers allowed, you may leave your answers as frations. All problems are worth 3 points unless noted otherwise. Total /100 1 Problems

More information