Electromagnetic Waves

Size: px
Start display at page:

Download "Electromagnetic Waves"

Transcription

1 Eletroagneti Waves Physis 6C

2 Eletroagneti (EM) waves an be produed by atoi transitions (ore on this later), or by an alternating urrent in a wire. As the harges in the wire osillate bak and forth, the eletri field around the osillates as well, in turn produing an osillating agneti field. This agneti field is always perpendiular to the eletri field, and the EM wave propagates perpendiular to both the E- and B-fields. This gives us a right-hand-rule relating the diretions of these 3 vetors: 1) Point the fingers of your right hand in the diretion of the E-field ) Curl the toward the B-field. Eletroagneti Waves 3) Stik out your thub - it points in the diretion of propagation. Clik here for an EM wave aniation

3 Like any other wave, we know the relationship between the wavelength and frequeny, and the speed of propagation of the wave: v wave f

4 Like any other wave, we know the relationship between the wavelength and frequeny, and the speed of propagation of the wave: v wave f In the ase of EM waves, it turns out that the wave speed is the speed of light. So our forula for EM waves (in vauu) is: f 1 ; s

5 Like any other wave, we know the relationship between the wavelength and frequeny, and the speed of propagation of the wave: v wave f In the ase of EM waves, it turns out that the wave speed is the speed of light. So our forula for EM waves (in vauu) is: f 1 ; s It turns out that the speed of light is also related to the strengths of the Eletri and Magneti fields. E=B (in standard etri units)

6 Like any other wave, we know the relationship between the wavelength and frequeny, and the speed of propagation of the wave: v wave f In the ase of EM waves, it turns out that the wave speed is the speed of light. So our forula for EM waves (in vauu) is: f 1 ; s It turns out that the speed of light is also related to the strengths of the Eletri and Magneti fields. E=B (in standard etri units) The ontinuu of various wavelengths and frequenies for EM waves is alled the Eletroagneti Spetru

7 Exaples: Find the frequeny of blue light with a wavelength of 46 n.

8 Exaples: Find the frequeny of blue light with a wavelength of 46 n. f f s Hz

9 Exaples: Find the frequeny of blue light with a wavelength of 46 n. f f s Hz A ell phone transits at a frequeny of 1.5x1 8 Hz. What is the wavelength of this EM wave?

10 Exaples: Find the frequeny of blue light with a wavelength of 46 n. f f s Hz A ell phone transits at a frequeny of 1.5x1 8 Hz. What is the wavelength of this EM wave? f f s Hz.4 You will need to use this forula very often to onvert bak and forth between frequeny and wavelength.

11 Energy and oentu in EM Waves Eletroagneti waves transport energy. The energy assoiated with a wave is stored in the osillating eletri and agneti fields. We will find out later that the frequeny of the wave deterines the aount of energy that it arries. Sine the EM wave is in 3-D, we need to easure the energy density (energy per unit volue). u avg 1 E E rs B 1 1 rs B This is the energy per unit volue Note that the energy an be written in a few equivalent fors. Eah an be useful, depending on the inforation you know about the wave.

12 Energy and oentu in EM Waves Eletroagneti waves transport energy. The energy assoiated with a wave is stored in the osillating eletri and agneti fields. We will find out later that the frequeny of the wave deterines the aount of energy that it arries. Sine the EM wave is in 3-D, we need to easure the energy density (energy per unit volue). u avg 1 E E rs B 1 1 rs B This is the energy per unit volue Note that the energy an be written in a few equivalent fors. Eah an be useful, depending on the inforation you know about the wave. We an also talk about the intensity of an EM wave (for light we would think of it as brightness). Just as for sound, intensity is easured as average power/area. S Power Area avg u avg Just ultiply the energy equation above by the speed of light to get the intensity.

13 Exaple: High-Energy Caner Treatent Sientists are working on a tehnique to kill aner ells by zapping the with ultrahighenergy pulses of light that last for an extreely short aount of tie. These short pulses srable the interior of a ell without ausing it to explode, as long pulses do. We an odel a typial suh ell as a disk 5. µ in diaeter, with the pulse lasting for 4. ns with an average power of.x1 1 W. We shall assue that the energy is spread uniforly over the faes of 1 ells for eah pulse. a) How uh energy is given to the ell during this pulse? b) What is the intensity (in W/ ) delivered to the ell? ) What are the axiu values of the eletri and agneti fields in the pulse?

14 Exaple: High-Energy Caner Treatent Sientists are working on a tehnique to kill aner ells by zapping the with ultrahighenergy pulses of light that last for an extreely short aount of tie. These short pulses srable the interior of a ell without ausing it to explode, as long pulses do. We an odel a typial suh ell as a disk 5. µ in diaeter, with the pulse lasting for 4. ns with an average power of.x1 1 W. We shall assue that the energy is spread uniforly over the faes of 1 ells for eah pulse. a) How uh energy is given to the ell during this pulse? b) What is the intensity (in W/ ) delivered to the ell? ) What are the axiu values of the eletri and agneti fields in the pulse? Reall that power is energy/tie. So.x1 1 W is.x1 1 Joules/se. Energy (. 1 1 J s ) ( s) J 8J This is the total energy, whih is spread out over 1 ells, so the energy for eah individual ell is 8 Joules.

15 Exaple: High-Energy Caner Treatent Sientists are working on a tehnique to kill aner ells by zapping the with ultrahighenergy pulses of light that last for an extreely short aount of tie. These short pulses srable the interior of a ell without ausing it to explode, as long pulses do. We an odel a typial suh ell as a disk 5. µ in diaeter, with the pulse lasting for 4. ns with an average power of.x1 1 W. We shall assue that the energy is spread uniforly over the faes of 1 ells for eah pulse. a) How uh energy is given to the ell during this pulse? b) What is the intensity (in W/ ) delivered to the ell? ) What are the axiu values of the eletri and agneti fields in the pulse? To get intensity, we need to divide power/area. The area for a ell is just the area of a irle: Area r ( ). 1 11

16 Exaple: High-Energy Caner Treatent Sientists are working on a tehnique to kill aner ells by zapping the with ultrahighenergy pulses of light that last for an extreely short aount of tie. These short pulses srable the interior of a ell without ausing it to explode, as long pulses do. We an odel a typial suh ell as a disk 5. µ in diaeter, with the pulse lasting for 4. ns with an average power of.x1 1 W. We shall assue that the energy is spread uniforly over the faes of 1 ells for eah pulse. a) How uh energy is given to the ell during this pulse? b) What is the intensity (in W/ ) delivered to the ell? ) What are the axiu values of the eletri and agneti fields in the pulse? To get intensity, we need to divide power/area. The area for a ell is just the area of a irle: Area r ( ) Now divide to get intensity: Intensity Power 1 r W W This is the total area of all 1 ells.

17 Exaple: High-Energy Caner Treatent Sientists are working on a tehnique to kill aner ells by zapping the with ultrahighenergy pulses of light that last for an extreely short aount of tie. These short pulses srable the interior of a ell without ausing it to explode, as long pulses do. We an odel a typial suh ell as a disk 5. µ in diaeter, with the pulse lasting for 4. ns with an average power of.x1 1 W. We shall assue that the energy is spread uniforly over the faes of 1 ells for eah pulse. a) How uh energy is given to the ell during this pulse? b) What is the intensity (in W/ ) delivered to the ell? ) What are the axiu values of the eletri and agneti fields in the pulse? To get the field strengths, reall our forulas: u avg 1 E E rs B B 1 1 rs S avg Power Area u avg

18 Exaple: High-Energy Caner Treatent Sientists are working on a tehnique to kill aner ells by zapping the with ultrahighenergy pulses of light that last for an extreely short aount of tie. These short pulses srable the interior of a ell without ausing it to explode, as long pulses do. We an odel a typial suh ell as a disk 5. µ in diaeter, with the pulse lasting for 4. ns with an average power of.x1 1 W. We shall assue that the energy is spread uniforly over the faes of 1 ells for eah pulse. a) How uh energy is given to the ell during this pulse? b) What is the intensity (in W/ ) delivered to the ell? ) What are the axiu values of the eletri and agneti fields in the pulse? To get the field strengths, reall our forulas: u avg 1 E E rs B B 1 1 rs S avg Power Area u avg Sine the power was stated as average power we should assue that is the rs value. So our field values should get ultiplied by to find the axiu. S E S B V T

19 Photons The energy arried by an EM wave oes in pakets alled photons. The energy of a photon depends on the frequeny of the EM wave. E photon hf The onstant h is alled Plank s onstant. Notie that this is an inredibly sall nuber. h 6.66 x 1 34 J s

20 Photons The energy arried by an EM wave oes in pakets alled photons. The energy of a photon depends on the frequeny of the EM wave. E photon hf The onstant h is alled Plank s onstant. Notie that this is an inredibly sall nuber. h h 6.66 x 1 34 J s Beause photon energies are usually so sall, it is often onvenient to express their energy in units of eletron-volts (ev) instead of Joules. Reall the onversion fator: 1 ev = 1.6x1-19 J

21 Photons The energy arried by an EM wave oes in pakets alled photons. The energy of a photon depends on the frequeny of the EM wave. E photon hf The onstant h is alled Plank s onstant. h Notie that this is an inredibly sall nuber. h 6.66 x 1 34 J s Beause photon energies are usually so sall, it is often onvenient to express their energy in units of eletron-volts (ev) instead of Joules. Reall the onversion fator: 1 ev = 1.6x1-19 J For onveniene, Plank s onstant an be onverted to ev instead of Joules: h 4.14 x 1 15 ev s This will be useful when dealing with photon energies.

22 Photons Exaple: A typial x-ray ahine sans the body with EM waves of frequeny 7x1 18 Hz. How uh energy is in a typial x-ray photon?

23 Photons Exaple: A typial x-ray ahine sans the body with EM waves of frequeny 7x1 18 Hz. How uh energy is in a typial x-ray photon? We an give the answer in Joules or ev: E photon hf E photon ( J s)(7 1 Hz) E photon ( ev s)(7 1 Hz) 9,eV 9keV J

24 Energy and oentu in EM Waves EM waves also arry oentu. This eans that a ray of light an atually exert a fore. To get the pressure exerted by a sinusoidal EM wave, just divide the intensity by the speed of light. Radiation Pr essure S avg This is the sae as the total energy absorbed by the surfae.

25 Energy and oentu in EM Waves EM waves also arry oentu. This eans that a ray of light an atually exert a fore. To get the pressure exerted by a sinusoidal EM wave, just divide the intensity by the speed of light. Radiation Pr essure S avg Exaple: Solar Sails Suppose a spaeraft with a ass of 5, kg has a solar sail ade of perfetly refletive aluinized fil with an area of.59x1 6. If the spaeraft is launhed into earth orbit and then deploys its sail at right angles to the sunlight, what is the aeleration due to sunlight? Assue that at the earth s distane fro the sun, the pressure exerted by sunlight on an absorbing surfae is 4.7x1-6 Pa.

26 Exaple: Solar Sails Suppose a spaeraft with a ass of 5, kg has a solar sail ade of perfetly refletive aluinized fil with an area of.59x1 6. If the spaeraft is launhed into earth orbit and then deploys its sail at right angles to the sunlight, what is the aeleration due to sunlight? Assue that at the earth s distane fro the sun, the pressure exerted by sunlight on an absorbing surfae is 4.7x1-6 Pa. Reall that Pressure = Fore/Area. We an use this and F=a to get our forula: P F F A a F P A a F a P A Now for the triky part: When the pressure nuber was given above, that was for an absorbing surfae. What happens when the sunlight reflets instead?

27 Exaple: Solar Sails Suppose a spaeraft with a ass of 5, kg has a solar sail ade of perfetly refletive aluinized fil with an area of.59x1 6. If the spaeraft is launhed into earth orbit and then deploys its sail at right angles to the sunlight, what is the aeleration due to sunlight? Assue that at the earth s distane fro the sun, the pressure exerted by sunlight on an absorbing surfae is 4.7x1-6 Pa. Reall that Pressure = Fore/Area. We an use this and F=a to get our forula: P F F A a F P A a F a P A Now for the triky part: When the pressure nuber was given above, that was for an absorbing surfae. What happens when the sunlight reflets instead? Twie as uh oentu is transferred! a ( N.5 1 ) kg s

Electromagnetic Waves

Electromagnetic Waves Electroagnetic Waves Physics 4 Maxwell s Equations Maxwell s equations suarize the relationships between electric and agnetic fields. A ajor consequence of these equations is that an accelerating charge

More information

Lecture 17. Phys. 207: Waves and Light Physics Department Yarmouk University Irbid Jordan

Lecture 17. Phys. 207: Waves and Light Physics Department Yarmouk University Irbid Jordan Leture 17 Phys. 7: Waves and Light Physis Departent Yarouk University 1163 Irbid Jordan Dr. Nidal Ershaidat http://taps.yu.edu.jo/physis/courses/phys7/le5-1 Maxwell s Equations In 187, Jaes Clerk Maxwell's

More information

Physics (Theory) There are 30 questions in total. Question Nos. 1 to 8 are very short answer type questions and carry one mark each.

Physics (Theory) There are 30 questions in total. Question Nos. 1 to 8 are very short answer type questions and carry one mark each. Physis (Theory) Tie allowed: 3 hours] [Maxiu arks:7 General Instrutions: (i) ll uestions are opulsory. (ii) (iii) (iii) (iv) (v) There are 3 uestions in total. Question Nos. to 8 are very short answer

More information

Electromagnetic waves

Electromagnetic waves Eletromagneti waves He predited eletromagneti wave propagation James Clerk Maxwell (1831-1879) Eletromagneti waves He predited eletromagneti wave propagation A singular theoretial ahievement of the 19

More information

Chapter 3. Problem Solutions

Chapter 3. Problem Solutions Capter. Proble Solutions. A poton and a partile ave te sae wavelengt. Can anyting be said about ow teir linear oenta opare? About ow te poton's energy opares wit te partile's total energy? About ow te

More information

The Gravitation As An Electric Effect

The Gravitation As An Electric Effect The Gravitation As An Eletri Effet Hans-Jörg Hoheker Donaustr 30519 Hannover e-ail: johoer@yahoode Web-Site: http://wwwhohekereu Abstrat: The eletri fores are iensely great in oparison with the gravitational

More information

1. Which two values of temperature are equivalent to the nearest degree when measured on the Kelvin and on the

1. Which two values of temperature are equivalent to the nearest degree when measured on the Kelvin and on the . Whih two values of teperature are equivalent to the nearest degree when easured on the Kelvin and on the Celsius sales of teperature? Kelvin sale Celsius sale A. 40 33 B. 273 00 C. 33 40 D. 373 0 2.

More information

Chapter 28 Special Relativity

Chapter 28 Special Relativity Galilean Relatiity Chapter 8 Speial Relatiity A passenger in an airplane throws a ball straight up. It appears to oe in a ertial path. The law of graity and equations of otion under unifor aeleration are

More information

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES

ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES MISN-0-211 z ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES y È B` x ENERGY AND MOMENTUM IN ELECTROMAGNETIC WAVES by J. S. Kovas and P. Signell Mihigan State University 1. Desription................................................

More information

Kinematics of Elastic Neutron Scattering

Kinematics of Elastic Neutron Scattering .05 Reator Physis - Part Fourteen Kineatis of Elasti Neutron Sattering. Multi-Group Theory: The next ethod that we will study for reator analysis and design is ulti-group theory. This approah entails dividing

More information

LECTURE 22. Electromagnetic. Spectrum 11/11/15. White Light: A Mixture of Colors (DEMO) White Light: A Mixture of Colors (DEMO)

LECTURE 22. Electromagnetic. Spectrum 11/11/15. White Light: A Mixture of Colors (DEMO) White Light: A Mixture of Colors (DEMO) LECTURE 22 Eletromagneti Spetrum 2 White Light: A Mixture of Colors (DEMO) White Light: A Mixture of Colors (DEMO) 1. Add together magenta, yan, and yellow. Play with intensities of eah to get white light.

More information

(Newton s 2 nd Law for linear motion)

(Newton s 2 nd Law for linear motion) PHYSICS 3 Final Exaination ( Deeber Tie liit 3 hours Answer all 6 questions You and an assistant are holding the (opposite ends of a long plank when oops! the butterfingered assistant drops his end If

More information

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3.

( x vt) m (0.80)(3 10 m/s)( s) 1200 m m/s m/s m s 330 s c. 3. Solutions to HW 10 Problems and Exerises: 37.. Visualize: At t t t 0 s, the origins of the S, S, and S referene frames oinide. Solve: We have 1 ( v/ ) 1 (0.0) 1.667. (a) Using the Lorentz transformations,

More information

A Cosmological Model with Variable Constants (Functions of the Gravitational Potential)

A Cosmological Model with Variable Constants (Functions of the Gravitational Potential) A Cosologial Model with Variable Constants (Funtions of the Gravitational Potential) Guoliang Liu Independent Researher London, Ontario, Canada. Eail: guoliang.leo.liu@gail.o Version 1 on Deeber 4, 1.

More information

Class XII - Physics Electromagnetic Waves Chapter-wise Problems

Class XII - Physics Electromagnetic Waves Chapter-wise Problems Class XII - Physis Eletromagneti Waves Chapter-wise Problems Multiple Choie Question :- 8 One requires ev of energy to dissoiate a arbon monoxide moleule into arbon and oxygen atoms The minimum frequeny

More information

Announcements Review: Relativistic mechanics Room: G1B30 From last class: total energy Example: Deuterium fusion Example: Deuterium fusion

Announcements Review: Relativistic mechanics Room: G1B30 From last class: total energy Example: Deuterium fusion Example: Deuterium fusion Announeents Review: Relativisti ehanis Reading for Monday: Chapters 1 &! Relativisti oentu: dr p propper =γ u HW 4 due Wed. Do it before the ea! a 1 in 4 days. It overs Chapters 1 &. Roo: G1B3 (net to

More information

International Journal of Thermodynamics, Vol. 18, No. 1, P (2015). Sergey G.

International Journal of Thermodynamics, Vol. 18, No. 1, P (2015).   Sergey G. International Journal of Therodynais Vol. 8 No. P. 3-4 (5). http://dx.doi.org/.554/ijot.5343 Four-diensional equation of otion for visous opressible and harged fluid with regard to the aeleration field

More information

1. Simplify this circuit to find the total power absorbed by all resistors. R1 R3 47

1. Simplify this circuit to find the total power absorbed by all resistors. R1 R3 47 Hoework 1. iplify this iruit to find the total power asored y all resistors. R1 R 6 R4 0 47 R 47 Ans: Use series and parallel oinations to siplify iruit. R1R= 47 47 =94Ω and this resistane is in parallel

More information

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν

F = c where ^ı is a unit vector along the ray. The normal component is. Iν cos 2 θ. d dadt. dp normal (θ,φ) = dpcos θ = df ν INTRODUCTION So far, the only information we have been able to get about the universe beyond the solar system is from the eletromagneti radiation that reahes us (and a few osmi rays). So doing Astrophysis

More information

Answers to Coursebook questions Chapter J2

Answers to Coursebook questions Chapter J2 Answers to Courseook questions Chapter J 1 a Partiles are produed in ollisions one example out of many is: a ollision of an eletron with a positron in a synhrotron. If we produe a pair of a partile and

More information

TAP 702-6: Binary stars

TAP 702-6: Binary stars TAP 702-6: Binary stars Orbiting binary stars: A type of ariable star. This type of ariable star onsists of two stars orbiting around eah other. When the dier star is in front of the brighter one, the

More information

Tutorial 8: Solutions

Tutorial 8: Solutions Tutorial 8: Solutions 1. * (a) Light from the Sun arrives at the Earth, an average of 1.5 10 11 m away, at the rate 1.4 10 3 Watts/m of area perpendiular to the diretion of the light. Assume that sunlight

More information

Blackbody radiation and Plank s law

Blackbody radiation and Plank s law lakbody radiation and Plank s law blakbody problem: alulating the intensity o radiation at a given wavelength emitted by a body at a speii temperature Max Plank, 900 quantization o energy o radiation-emitting

More information

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t).

Physics 486. Classical Newton s laws Motion of bodies described in terms of initial conditions by specifying x(t), v(t). Physis 486 Tony M. Liss Leture 1 Why quantum mehanis? Quantum vs. lassial mehanis: Classial Newton s laws Motion of bodies desribed in terms of initial onditions by speifying x(t), v(t). Hugely suessful

More information

Doppler Effect (Text 1.3)

Doppler Effect (Text 1.3) Doppler Effet (et 1.3) Consider a light soure as a soure sending out a tik eery 1/ν and these tiks are traeling forward with speed. tik tik tik tik Doppler Effet (et 1.3) Case 1. Obserer oing transersely.

More information

A Theorem of Mass Being Derived From Electrical Standing Waves (Adapted for a test by Jerry E. Bayles)

A Theorem of Mass Being Derived From Electrical Standing Waves (Adapted for a test by Jerry E. Bayles) EleMaEMCD A Theorem of Mass Being Derived From Eletrial Standing Waves (Adapted for a test by Jerry E Bayles) - by - Jerry E Bayles May 1, 000 This paper formalizes a onept presented in my book, "Eletrogravitation

More information

CHAPTER 24: ELECTROMAGNETIC WAVES

CHAPTER 24: ELECTROMAGNETIC WAVES College Phyi Student Manual Chapter 4 CHAPTER 4: ELECTROMAGNETC WAVES 4. MAXWELL S EQUATONS: ELECTROMAGNETC WAVES PREDCTED AND OSERVED. Veriy that the orret value or the peed o light i obtained when nuerial

More information

Name Solutions to Test 1 September 23, 2016

Name Solutions to Test 1 September 23, 2016 Name Solutions to Test 1 September 3, 016 This test onsists of three parts. Please note that in parts II and III, you an skip one question of those offered. Possibly useful formulas: F qequb x xvt E Evpx

More information

x(t) y(t) c c F(t) F(t) EN40: Dynamics and Vibrations Homework 6: Forced Vibrations Due Friday April 5, 2018

x(t) y(t) c c F(t) F(t) EN40: Dynamics and Vibrations Homework 6: Forced Vibrations Due Friday April 5, 2018 EN40: Dynais and Vibrations Hoewor 6: Fored Vibrations Due Friday April 5, 2018 Shool of Engineering Brown University 1. The vibration isolation syste shown in the figure has =20g, = 19.8 N / = 1.259 Ns

More information

Physics 107 Problem 2.5 O. A. Pringle h Physics 107 Problem 2.6 O. A. Pringle

Physics 107 Problem 2.5 O. A. Pringle h Physics 107 Problem 2.6 O. A. Pringle Pysis 07 Problem 25 O A Pringle 3 663 0 34 700 = 284 0 9 Joules ote I ad to set te zero tolerane ere e 6 0 9 ev joules onversion ator ev e ev = 776 ev Pysis 07 Problem 26 O A Pringle 663 0 34 3 ev

More information

Physics for Scientists & Engineers 2

Physics for Scientists & Engineers 2 Review Maxwell s Equations Physis for Sientists & Engineers 2 Spring Semester 2005 Leture 32 Name Equation Desription Gauss Law for Eletri E d A = q en Fields " 0 Gauss Law for Magneti Fields Faraday s

More information

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009

Radiation processes and mechanisms in astrophysics 3. R Subrahmanyan Notes on ATA lectures at UWA, Perth 22 May 2009 Radiation proesses and mehanisms in astrophysis R Subrahmanyan Notes on ATA letures at UWA, Perth May 009 Synhrotron radiation - 1 Synhrotron radiation emerges from eletrons moving with relativisti speeds

More information

Fractal universe and the speed of light: Revision of the universal constants. Antonio Alfonso-Faus

Fractal universe and the speed of light: Revision of the universal constants. Antonio Alfonso-Faus Fratal universe and the speed of light: Revision of the universal onstants Antonio Alfonso-Faus E.U.I.T. AeronÄutia Plaza Cardenal Cisneros 40, 8040 Madrid, Spain E-ail: aalfonsofaus@yahoo.es Abstrat.

More information

ELECTROMAGNETIC WAVES

ELECTROMAGNETIC WAVES LCTROMAGNTIC WAVS 3 3 IDNTIFY: Sine the speed is onstant, distane x = t ST U: The speed of light is = 3 yr = 356 s x 34 m XCUT: (a) t = = = s 3 6 3 (b) x= t = (3 )(6 yr)(356 s/yr) = 5 m = 5 km VALUAT:

More information

Physics 6C. Special Relativity. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB

Physics 6C. Special Relativity. Prepared by Vince Zaccone For Campus Learning Assistance Services at UCSB Physis 6C Speial Relatiity Two Main Ideas The Postulates of Speial Relatiity Light traels at the same speed in all inertial referene frames. Laws of physis yield idential results in all inertial referene

More information

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically.

4. (12) Write out an equation for Poynting s theorem in differential form. Explain in words what each term means physically. Eletrodynamis I Exam 3 - Part A - Closed Book KSU 205/2/8 Name Eletrodynami Sore = 24 / 24 points Instrutions: Use SI units. Where appropriate, define all variables or symbols you use, in words. Try to

More information

Green s Function for Potential Field Extrapolation

Green s Function for Potential Field Extrapolation Green s Funtion for Potential Field Extrapolation. Soe Preliinaries on the Potential Magneti Field By definition, a potential agneti field is one for whih the eletri urrent density vanishes. That is, J

More information

Journal of Theoretics Vol.4-4

Journal of Theoretics Vol.4-4 Journal of Theoretis ol.4-4 Cherenko s Partiles as Magnetons Dipl. Ing. Andrija Radoić Nike Strugara 3a, 3 Beograd, Yugoslaia Eail: andrijar@eunet.yu Abstrat: The artile will show that the forula for Cherenko

More information

Lecture 24: Spinodal Decomposition: Part 3: kinetics of the

Lecture 24: Spinodal Decomposition: Part 3: kinetics of the Leture 4: Spinodal Deoposition: Part 3: kinetis of the oposition flutuation Today s topis Diffusion kinetis of spinodal deoposition in ters of the onentration (oposition) flutuation as a funtion of tie:

More information

Congruences and Modular Arithmetic

Congruences and Modular Arithmetic Congruenes and Modular Aritheti 6-17-2016 a is ongruent to b od n eans that n a b. Notation: a = b (od n). Congruene od n is an equivalene relation. Hene, ongruenes have any of the sae properties as ordinary

More information

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics

Newton's Laws. Lecture 2 Key Concepts. Newtonian mechanics and relation to Kepler's laws The Virial Theorem Tidal forces Collision physics Lecture 2 Key Concepts Newtonian echanics and relation to Kepler's laws The Virial Theore Tidal forces Collision physics Newton's Laws 1) An object at rest will reain at rest and an object in otion will

More information

Physics 30 Lesson 32 x-rays and the Compton Effect

Physics 30 Lesson 32 x-rays and the Compton Effect I. Disovery of x-rays Physis 30 Lesson 32 x-rays and the Compton ffet During all the researh on athode rays, several sientists missed their hane at some glory. Hertz narrowly missed disovering x-rays during

More information

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE?

THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? THEORETICAL PROBLEM No. 3 WHY ARE STARS SO LARGE? The stars are spheres of hot gas. Most of them shine beause they are fusing hydrogen into helium in their entral parts. In this problem we use onepts of

More information

Introduction to Quantum Chemistry

Introduction to Quantum Chemistry Chem. 140B Dr. J.A. Mak Introdution to Quantum Chemistry Without Quantum Mehanis, how would you explain: Periodi trends in properties of the elements Struture of ompounds e.g. Tetrahedral arbon in ethane,

More information

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B =

If velocity of A relative to ground = velocity of B relative to ground = the velocity of A relative to B = L Physis MC nswers Year:1989 Question Number: 3,0,,4,6,9,30,31,36,40,4 1989MC (3) If eloity of relatie to ground = and eloity of relatie to ground =, then the eloity of relatie to = X X Y Y Suppose that

More information

Derivation of Non-Einsteinian Relativistic Equations from Momentum Conservation Law

Derivation of Non-Einsteinian Relativistic Equations from Momentum Conservation Law Asian Journal of Applied Siene and Engineering, Volue, No 1/13 ISSN 35-915X(p); 37-9584(e) Derivation of Non-Einsteinian Relativisti Equations fro Moentu Conservation Law M.O.G. Talukder Varendra University,

More information

Physics 218, Spring February 2004

Physics 218, Spring February 2004 Physis 8 Spring 004 0 February 004 Today in Physis 8: dispersion in onduting dia Semilassial theory of ondutivity Condutivity and dispersion in tals and in very dilute ondutors : group veloity plasma frequeny

More information

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge

The Concept of Mass as Interfering Photons, and the Originating Mechanism of Gravitation D.T. Froedge The Conept of Mass as Interfering Photons, and the Originating Mehanism of Gravitation D.T. Froedge V04 Formerly Auburn University Phys-dtfroedge@glasgow-ky.om Abstrat For most purposes in physis the onept

More information

+Ze. n = N/V = 6.02 x x (Z Z c ) m /A, (1.1) Avogadro s number

+Ze. n = N/V = 6.02 x x (Z Z c ) m /A, (1.1) Avogadro s number In 1897, J. J. Thomson disovered eletrons. In 1905, Einstein interpreted the photoeletri effet In 1911 - Rutherford proved that atoms are omposed of a point-like positively harged, massive nuleus surrounded

More information

Successful Brushless A.C. Power Extraction From The Faraday Acyclic Generator

Successful Brushless A.C. Power Extraction From The Faraday Acyclic Generator Successful Brushless A.C. Power Extraction Fro The Faraday Acyclic Generator July 11, 21 Volt =.2551552 volt 1) If we now consider that the voltage is capable of producing current if the ri of the disk

More information

THE SPANN VIBROACOUSTIC METHOD Revision A

THE SPANN VIBROACOUSTIC METHOD Revision A THE SPNN VIBROCOUSTIC METHOD Revision By Tom Irvine Deember 15, 01 Email: tom@vibrationdata.om Figure 1. vionis Installation and Testing Introdution vionis omponents in airraft and launh vehiles may be

More information

Electromagnetic Waves

Electromagnetic Waves hapter 34 Eletromagneti Waves 34.1 Displaement Current and the General Form of Ampère s Law 34.2 Maxwell s Equations and Hertz s Disoveries 34.3 Plane Eletromagneti Waves 34.4 Energy Carried by Eletromagneti

More information

Generation of EM waves

Generation of EM waves Generation of EM waves Susan Lea Spring 015 1 The Green s funtion In Lorentz gauge, we obtained the wave equation: A 4π J 1 The orresponding Green s funtion for the problem satisfies the simpler differential

More information

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave

Duct Acoustics. Chap.4 Duct Acoustics. Plane wave Chap.4 Dut Aoustis Dut Aoustis Plane wave A sound propagation in pipes with different ross-setional area f the wavelength of sound is large in omparison with the diameter of the pipe the sound propagates

More information

Green s function for the wave equation

Green s function for the wave equation Green s funtion for the wave equation Non-relativisti ase January 2019 1 The wave equations In the Lorentz Gauge, the wave equations for the potentials are (Notes 1 eqns 43 and 44): 1 2 A 2 2 2 A = µ 0

More information

Optimizing Single Sweep Range and Doppler Processing for FMCW Radar using Inverse Filtering

Optimizing Single Sweep Range and Doppler Processing for FMCW Radar using Inverse Filtering Optiizing Single Sweep and Doppler Proessing for FMCW Radar using Inverse Filtering AJ de Jong and Ph van Dorp Oude Waalsdorperweg 63 2597 AK, Den Haag The Netherlands ajdejong@feltnonl ABSTRACT We disuss

More information

Physics 2D Lecture Slides Lecture 7: Jan 14th 2004

Physics 2D Lecture Slides Lecture 7: Jan 14th 2004 Quiz is This Friday Quiz will over Setions.-.6 (inlusive) Remaining material will be arried over to Quiz Bring Blue Book, hek alulator battery Write all answers in indelible ink else no grade! Write answers

More information

EYAL'C- \TION OF TELEMETRY RECORDS RECEIVED

EYAL'C- \TION OF TELEMETRY RECORDS RECEIVED j 1 AS -SR-El 85- -...?- EYAL'C- \TON OF TELEMETRY RECORDS RECEED FROM EXPLORER \- 1ND POXEER Y THE UNERSTY OF CHCAGO LABORATORES FOR APPLED SCENCES LAS-SR-El85 Otober 196 EALUATON OF TELEMETRY RECORDS

More information

The Seesaw Mechanism

The Seesaw Mechanism The Seesaw ehanis By obert. Klauber www.quantufieldtheory.info 1 Bakground It ay see unusual to have suh low values for asses of neutrinos, when all other partiles like eletrons, quarks, et are uh heavier,

More information

Einstein s theory of special relativity

Einstein s theory of special relativity Einstein s theory of speial relatiity Announements: First homework assignment is online. You will need to read about time dilation (1.8) to answer problem #3 and for the definition of γ for problem #4.

More information

Chapter 34 Solutions

Chapter 34 Solutions Chapter 34 Solutions 34.1 Sine the light from this star travels at 3.00 10 8 m/s, the last bit of light will hit the Earth in 6.44 10 18 m 3.00 10 8 m/s.15 1010 s 680 years. Therefore, it will disappear

More information

Modes are solutions, of Maxwell s equation applied to a specific device.

Modes are solutions, of Maxwell s equation applied to a specific device. Mirowave Integrated Ciruits Prof. Jayanta Mukherjee Department of Eletrial Engineering Indian Institute of Tehnology, Bombay Mod 01, Le 06 Mirowave omponents Welome to another module of this NPTEL mok

More information

PAST YEAR EXAM PAPER SOLUTION SEMESTER II, ACADEMIC YEAR PAP261 Introduction to Lasers (Solution by: Phann Sophearin)

PAST YEAR EXAM PAPER SOLUTION SEMESTER II, ACADEMIC YEAR PAP261 Introduction to Lasers (Solution by: Phann Sophearin) SPMS Physis Club PAST YEAR EXAM PAPER SOLUTION SEMESTER II, ACADEMIC YEAR 009-0 PAP6 Introdution to Lasers (Solution by: Phann Sophearin) Question (a) - Three basi eleents required: avity, gain, and pup.

More information

Unified Absolute Relativity Theory - III. António Saraiva

Unified Absolute Relativity Theory - III. António Saraiva Uniie Absolute Relativity Theory - III António Saraiva 9-- ajps@hotail.o See Uniie Absolute Relativity Theory I an II at:.babin.net/saraiva/saraiva5.p.babin.net/saraiva/saraiva.p The ass is the eletri

More information

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution.

Electromagnetic radiation of the travelling spin wave propagating in an antiferromagnetic plate. Exact solution. arxiv:physis/99536v1 [physis.lass-ph] 15 May 1999 Eletromagneti radiation of the travelling spin wave propagating in an antiferromagneti plate. Exat solution. A.A.Zhmudsky November 19, 16 Abstrat The exat

More information

Lecture #8-3 Oscillations, Simple Harmonic Motion

Lecture #8-3 Oscillations, Simple Harmonic Motion Lecture #8-3 Oscillations Siple Haronic Motion So far we have considered two basic types of otion: translation and rotation. But these are not the only two types of otion we can observe in every day life.

More information

Reference. R. K. Herz,

Reference. R. K. Herz, Identifiation of CVD kinetis by the ethod of Koiyaa, et al. Coparison to 1D odel (2012) filenae: CVD_Koiyaa_1D_odel Koiyaa, et al. (1999) disussed ethods to identify the iportant steps in a CVD reation

More information

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue.

Towards an Absolute Cosmic Distance Gauge by using Redshift Spectra from Light Fatigue. Towards an Absolute Cosmi Distane Gauge by using Redshift Spetra from Light Fatigue. Desribed by using the Maxwell Analogy for Gravitation. T. De Mees - thierrydemees @ pandora.be Abstrat Light is an eletromagneti

More information

Structural Design for Vibration Reduction in Brushless DC Stator

Structural Design for Vibration Reduction in Brushless DC Stator J Eletr Eng Tehnol.017; 1(5): 184-1850 http://doi.org/10.5370/jeet.017.1.5.184 ISSN(Print) 1975-010 ISSN(Online) 093-743 Strutural Design for Vibration Redution in Brushless DC Stator Mehrdad Jafarboland

More information

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1. c. Both kinetic and elastic potential energies can be negative.

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1. c. Both kinetic and elastic potential energies can be negative. Department of Natural Sienes Physis 3650 Quiz 1 August 5, 008 1. Whih one of the statements below is orret? a. Elasti potential energy an be negative but the kineti energy annot. b. Kineti energy an be

More information

and ζ in 1.1)? 1.2 What is the value of the magnification factor M for system A, (with force frequency ω = ωn

and ζ in 1.1)? 1.2 What is the value of the magnification factor M for system A, (with force frequency ω = ωn EN40: Dynais and Vibrations Hoework 6: Fored Vibrations, Rigid Body Kineatis Due Friday April 7, 017 Shool of Engineering Brown University 1. Syste A in the figure is ritially daped. The aplitude of the

More information

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12

= T. Oscillations and Waves. Example of an Oscillating System IB 12 IB 12 Oscillation: the vibration of an object Oscillations and Waves Eaple of an Oscillating Syste A ass oscillates on a horizontal spring without friction as shown below. At each position, analyze its displaceent,

More information

FW Phys 130 G:\130 lecture\130 tests\formulas final03.docx page 1 of 7

FW Phys 130 G:\130 lecture\130 tests\formulas final03.docx page 1 of 7 FW Phys 13 G:\13 leture\13 tests\forulas final3.dox page 1 of 7 dr dr r x y z ur ru (1.1) dt dt All onseratie fores derie fro a potential funtion U(x,y,z) (1.) U U U F gradu U,, x y z 1 MG 1 dr MG E K

More information

k T t T PHYS 2015 Week 13 E-M Waves, Interference Reading Journals Tuesday WebAssign due WEDNESDAY night

k T t T PHYS 2015 Week 13 E-M Waves, Interference Reading Journals Tuesday WebAssign due WEDNESDAY night PHYS 015 Week 13 -M Waves, Interferene Reading Jurnals Tuesday WebAssign due WDNSDAY night Test Friday: Chap 3 (Magneti indutin); Chap 33.1-4 (Indutane, self and mutual, energy, RL iruits). Chap 34 (Waves,

More information

PHY 171. Lecture 14. (February 16, 2012)

PHY 171. Lecture 14. (February 16, 2012) PHY 171 Lecture 14 (February 16, 212) In the last lecture, we looked at a quantitative connection between acroscopic and icroscopic quantities by deriving an expression for pressure based on the assuptions

More information

Relativity in Classical Physics

Relativity in Classical Physics Relativity in Classial Physis Main Points Introdution Galilean (Newtonian) Relativity Relativity & Eletromagnetism Mihelson-Morley Experiment Introdution The theory of relativity deals with the study of

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Departent of Physics and Engineering Physics 017 Saskatchewan High School Physics Scholarship Copetition Wednesday May 10, 017 Tie allowed: 90 inutes This copetition is based

More information

How the Thrust of Shawyer s Thruster can be Strongly Increased

How the Thrust of Shawyer s Thruster can be Strongly Increased How the Thrust of Shawyer s Thruster an be Strongly Inreased Fran De Aquino Professor Emeritus of Physis, Maranhao State Uniersity, UEMA. Titular Researher (R) of National Institute for Spae Researh, INPE

More information

CHAPTER 3 PROBLEMS. δ = where A is the cross-sectional area, and E is the modulus of elasticity.

CHAPTER 3 PROBLEMS. δ = where A is the cross-sectional area, and E is the modulus of elasticity. CHPTER 3 PROLEMS d SPRING-MSS-DMPER PPLICTIONS Proble 3.1 The buoy shown in figure P3.1 has a irular ross-setion with diaeter d and has length L. Most of the weight of the buoy, w, is onentrated in the

More information

' ' , and z ' components ( u u u'

' ' , and z ' components ( u u u' Mesosale Meteorology: Gravity Waves 3 April 07 Introdution Here, we priarily onsider internal gravity waves, or waves that propagate in a density-stratified fluid (noinally, a stably-stratified fluid,

More information

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering

Lecture #1: Quantum Mechanics Historical Background Photoelectric Effect. Compton Scattering 561 Fall 2017 Leture #1 page 1 Leture #1: Quantum Mehanis Historial Bakground Photoeletri Effet Compton Sattering Robert Field Experimental Spetrosopist = Quantum Mahinist TEXTBOOK: Quantum Chemistry,

More information

Copyright 2012 Nelson Education Ltd. Unit 5: Revolutions in Modern Physics U5-13

Copyright 2012 Nelson Education Ltd. Unit 5: Revolutions in Modern Physics U5-13 Unit 5 Reiew, pages 670 677 Knowledge 1. (). () 3. (b) 4. (b) 5. (b) 6. (a) 7. (a) 8. () 9. (b) 10. (a) 11. (b) 1. (d) 13. (a) 14. (a) 15. (b) 16. (b) 17. (b) 18. (b) 19. () 0. True 1. False. Speial relatiity

More information

Answers to test yourself questions

Answers to test yourself questions Answers to test yoursel questions Topi.1 Osilliations 1 a A n osillation is any motion in whih the displaement o a partile rom a ixed point keeps hanging diretion and there is a periodiity in the motion

More information

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet

Field Mass Generation and Control. Chapter 6. The famous two slit experiment proved that a particle can exist as a wave and yet 111 Field Mass Generation and Control Chapter 6 The faous two slit experient proved that a particle can exist as a wave and yet still exhibit particle characteristics when the wavefunction is altered by

More information

72. (30.2) Interaction between two parallel current carrying wires.

72. (30.2) Interaction between two parallel current carrying wires. 7. (3.) Interaction between two parallel current carrying wires. Two parallel wires carrying currents exert forces on each other. Each current produces a agnetic field in which the other current is placed.

More information

Blackbody radiation (Text 2.2)

Blackbody radiation (Text 2.2) Blabody radiation (Text.) How Raleigh and Jeans model the problem:. Next step is to alulate how many possible independent standing waves are there per unit frequeny (ν) per unit volume (of avity). It is

More information

Webreview - Ch 27 Quantum Physics Practice Test

Webreview - Ch 27 Quantum Physics Practice Test Please do write on practice test. ID A Webreview - Ch 27 Quantu Physics Practice Test Multiple Choice Identify the choice that best copletes the stateent or answers the question. 1. Planck's quantu theory

More information

(1-1) . In this case tension of the field. In denominator is made change R S 4 (1-2) 4 dt c S. d h. GM c. dt c dr S E G

(1-1) . In this case tension of the field. In denominator is made change R S 4 (1-2) 4 dt c S. d h. GM c. dt c dr S E G The Salar odel of the field of the gravity. SHestakov YU.I., The ussian sientifi entre "Kurhatovskiy institute" Mosow, ussia. e-ail yurshestak@yandex.ru The Salar odel of the field of the gravity is designed

More information

Temperature-Gradient-Driven Tearing Modes

Temperature-Gradient-Driven Tearing Modes 1 TH/S Temperature-Gradient-Driven Tearing Modes A. Botrugno 1), P. Buratti 1), B. Coppi ) 1) EURATOM-ENEA Fusion Assoiation, Frasati (RM), Italy ) Massahussets Institute of Tehnology, Cambridge (MA),

More information

arxiv:gr-qc/ v2 6 Feb 2004

arxiv:gr-qc/ v2 6 Feb 2004 Hubble Red Shift and the Anomalous Aeleration of Pioneer 0 and arxiv:gr-q/0402024v2 6 Feb 2004 Kostadin Trenčevski Faulty of Natural Sienes and Mathematis, P.O.Box 62, 000 Skopje, Maedonia Abstrat It this

More information

Announcements. Review: Lorentz & velocity transformations (relativistic version of Galileo) Transformations (in 1D) Some examples

Announcements. Review: Lorentz & velocity transformations (relativistic version of Galileo) Transformations (in 1D) Some examples Announeents Reading for Monda: Chapter.6-. First Mid-ter is in das (Feb. 9 th, 7:30p). It will oer Chapters &. Reiew: Lorentz & eloit transforations (relatiisti ersion of Galileo) Transforations (in D)

More information

Water a) 48 o b) 53 o c) 41.5 o d) 44 o. Glass. PHYSICS 223 Exam-2 NAME II III IV

Water a) 48 o b) 53 o c) 41.5 o d) 44 o. Glass. PHYSICS 223 Exam-2 NAME II III IV PHYSICS 3 Exa- NAME. In the figure shown, light travels fro aterial I, through three layers of other aterials with surfaces parallel to one another, and then back into another layer of aterial I. The refractions

More information

Aharonov-Bohm effect. Dan Solomon.

Aharonov-Bohm effect. Dan Solomon. Aharonov-Bohm effet. Dan Solomon. In the figure the magneti field is onfined to a solenoid of radius r 0 and is direted in the z- diretion, out of the paper. The solenoid is surrounded by a barrier that

More information

Espen Gaarder Haug Norwegian University of Life Sciences April 4, 2017

Espen Gaarder Haug Norwegian University of Life Sciences April 4, 2017 The Mass Gap, Kg, the Plank Constant and the Gravity Gap The Plank Constant Is a Composite Constant One kg Is 85465435748 0 36 Collisions per Seond The Mass Gap Is.734 0 5 kg and also m p The Possibility

More information

Energy Dissipation in Spacecraft Structures Incorporating Bolted Joints with Viscoelastic Layers

Energy Dissipation in Spacecraft Structures Incorporating Bolted Joints with Viscoelastic Layers Energy Dissipation in Spaeraft Strutures Inorporating Bolted Joints with Visoelasti Layers R. Wang and A. D. Croobe University of Surrey, Guildford, Surrey, GU 7XH, UK G. Rihardson Surrey Spae Tehnology

More information

National 5 Summary Notes

National 5 Summary Notes North Berwick High School Departent of Physics National 5 Suary Notes Unit 3 Energy National 5 Physics: Electricity and Energy 1 Throughout the Course, appropriate attention should be given to units, prefixes

More information

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light

Final Review. A Puzzle... Special Relativity. Direction of the Force. Moving at the Speed of Light Final Review A Puzzle... Diretion of the Fore A point harge q is loated a fixed height h above an infinite horizontal onduting plane. Another point harge q is loated a height z (with z > h) above the plane.

More information

Further refutation of the de Broglie Einstein theory in the case of general Compton scattering

Further refutation of the de Broglie Einstein theory in the case of general Compton scattering Further refutation of the de Broglie Einstein theory 7 Journal of Foundations of Physis and Cheistry, 0, vol () 7 37 Further refutation of the de Broglie Einstein theory in the ase of general Copton sattering

More information

Dynamics of the Electromagnetic Fields

Dynamics of the Electromagnetic Fields Chapter 3 Dynamis of the Eletromagneti Fields 3.1 Maxwell Displaement Current In the early 1860s (during the Amerian ivil war!) eletriity inluding indution was well established experimentally. A big row

More information

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become

). In accordance with the Lorentz transformations for the space-time coordinates of the same event, the space coordinates become Relativity and quantum mehanis: Jorgensen 1 revisited 1. Introdution Bernhard Rothenstein, Politehnia University of Timisoara, Physis Department, Timisoara, Romania. brothenstein@gmail.om Abstrat. We first

More information