Rosetta Rendezvous with a comet

Size: px
Start display at page:

Download "Rosetta Rendezvous with a comet"

Transcription

1 Rosetta Rendezvous with a comet Harald Krüger Max-Planck-Institut für Sonnensystemforschung Göttingen Picture: Comet McNaught, Akira Fujii

2 Outline 1. What do we know about comets? Composition, orbits, origin and evolution! 2. Why do we study comets?! 3. Rosetta mission overview and target comet Spacecraft, scientific instruments, orbit, target comet 67P/Churyumov- Gerasimenko! 4. Philae s landing on comet 67P/C-G on 12 November 2014! 5. First Philae science results! 6. Summary and Outlook

3 1. What do we know about comets?

4 The pieces of a comet Light and particles from the Sun Gas(Ions)-tail (~ 50 Mio. km) Coma ( km)! Dust tail Invisible nucleus (1-10 km)! Image: Comet Hale-Bopp, MPIA/Calar Alto

5 Inventory of cometary nuclei 67P/Churyumov-Gerasimenko (Rosetta) Halley (Giotto) Borelly (Deep Space 1) Wild 2 (Stardust) Tempel 1 (Deep Impact, Stardust-NExT) Hartley 2 (Deep Impact)! Image: Science

6 Orbits and origin of comets 3 types of orbits: - Jupiter family comets orbital period < 20 years; Origin: Kuiper belt - Short-period comets orbital period 20 to 200 years; Origin: Kuiper belt - Long-period comets orbital period > 200 years Origin: Oort cloud! Comets spend most of their time far from the Sun Little evolution since their formation ( deep-frozen in the fridge of the solar system ) Long-period Short-period Jupiter family

7 Some facts about comets (before Rosetta) Dirty snowball (or icy mudball?): ~ 85% water ice, 4% CO, 3% CO 2, 1% N 2, rest minerals and organic compounds Cometary activity driven by sublimation of volatiles (water, CO, CO 2 ) when the nucleus approaches the Sun Nucleus loses ~ 1% of its mass per revolution about the Sun Very dark surface, albedo ~ 4 % Very porous on average (ρ ~ 400 kg/m 3 ). A comet nucleus would swim on an Earth ocean like an iceberg Comets are the most pristine material left over from the formation of the solar system Origin: Kuiper belt (short-period and Jupiter family comets) and Oort cloud (long-period comets)

8 2. Why do we study comets? How do comets work? - Development of activity, in particular jets - Surface structure and evolution, distribution of activity regions on the surface - Life time of comets! How did comets and the solar system form? - Internal structure of the nucleus and nucleus material - Composition of cometary material! Did comets bring water and the building blocks of life to Earth? - Organic and isotopic composition

9 How do we investigate comets? Astronomical observations In-situ investigations by spacecraft Comet Hale-Bopp Rosetta at Churyumov-Gerasimenko

10 3. The Rosetta Mission

11 Pictures: ESA/Astrium

12 Pictures: ESA/Astrium 2 March 2004

13 Rosetta orbiter instruments Name Instrument PI Institute, Country OSIRIS Optical camera MPS, Germany ALICE UV spectrometer SRI, USA VIRTIS Optical and NIR spectrometer IAS-CNR, Italy MIRO Microwave spectrometer JPL, USA ROSINA Gas mass analyser University Bern, Switzerland COSIMA Dust mass spectrometer MPS, Germany MIDAS Atomic force microscope Dust particle morphology IWF, Austria CONSERT Nucleus sounding with radio waves LPG, CNRS, France GIADA Dust particle detector INAF, Italy RPC Plasma instruments: Ion and electron sensor (IES), Ion composition analyser (ICA), Langmuir probe (LAP), Mutual Impedance Probe (MIP), Magnetometer (MAG) IRF, Sweden; SRI, USA; TU Braunschweig, D; Imperial College, GB; LPCE/CNRS, France RSI Radio wave experiment University Köln, Germany

14 SESAME sensor DIM The lander Philae COSAC and PTOLEMY gas analyzers CIVA camera SD2 CIVA camera ROMAP CONSERT antenna SESAME sensor CASSE/PP MUPUS sensors APXS ROLIS camera MUPUS hammer SESAME sensor CASSE/PP SESAME sensor CASSE/PP SD2 drill Picture: ESA/ATG

15 10 years interplanetary cruise Mars Sonne Erde Jupiter Animation: Thomas Albin, MPS

16 The target comet 67P/Churyumov-Gerasimenko Discovery 1969 Nucleus size Rotation period Orbital period Perihelion distance Aphelion distance ca. 4 km ca h (12.5 h until early 2014) 6,45 yr 1,24 AU 5,68 AU Orbit inclination 7º Present orbit since 1959 (perihelion at 3.5 AU before) Next perihelion Aug Jupiter-family comet ESA/Rosetta NAVCAM Sept 2014

17 Comet 67P/Churyumov-Gerasimenko An irregularly shaped object Shape model 67P/C-G Aug 2014 ESA/Rosetta/MPS for OSIRIS Team MPS/ UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

18 Das Ziel der Reise: Der Komet 67P/Churyumov-Gerasimenko ESA/Rosetta NAVCAM Sept 2014

19 Bild: ESA/Rosetta/MPS for OSIRIS Team MPS/ UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

20 Bild: ESA/Rosetta/MPS for OSIRIS Team MPS/ UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA

21 Comet activity ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/ LAM/IAA/SSO/INTA/UPM/DASP/IDA 10 Sept 2014

22 ESA/Rosetta NAVCAM Sept 2014

23 4. Philae s landing on 12 Nov 2014

24

25 Rosetta: Close Der orbits Landeplatz to Philae deployment Roter Kreis: 500m Durchmesser Animation: ESA

26 Philae s descent as seen from the orbiter ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/ LAM/IAA/SSO/INTA/UPM/DASP/IDA

27 First touchdown Touchdown time: 12 Nov 2014; 15:34 UTC ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/ LAM/IAA/SSO/INTA/UPM/DASP/IDA

28 The nominal landing site First touchdown ~100m away from targeted landing site Red circle: 500 m radius Bild: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/ LAM/IAA/SSO/INTA/UPM/DASP/IDA

29 Nominal landing site from 40 meters altitude Generally smooth terrain covered with gravel Gravel and blocks with varying frequency Features resembling pits Partially buried blocks 10 m ESA/Rosetta/Philae/ROLIS/DLR

30 Dust raised at landing Dust cloud raised from surface ESA/Rosetta NAVCAM 12 Nov 2014

31 At the final landing site billion years old The oldest object where a man-made spacecraft has ever landed 20 years old ESA/Rosetta/Philae/CIVA

32 At the final landing site Cliff with linear fractures ESA/Rosetta/Philae/CIVA

33 At the final landing site ESA/Rosetta/Philae/CIVA/CNES/FD

34 At the final landing site ESA/Rosetta/Philae/CIVA/CNES/FD

35 5. First Philae science results

36 Structure of the cometary soil(?) (As seen before Philae landing) Drawing: DLR

37 Cometary Sampling and Composition Experiment (COSAC) The Lander Philae CIVA Camera SESAME Sensor SD2 CIVA Camera ROMAP CONSERT Antenna SESAME Sensor SESAME Sensor MUPUS Sensor SD2 Drill MUPUS Sensor APXS MUPUS Image: DLR SESAME Sensor Soil sampling with drill (SD2) Thermal treatment (pyrolysis) of sample in dedicated ovens Chromatography of released gases Electron ionisation and time-of-flight mass spectra of released gases

38 Abundances of cometary volatiles Glycine: smallest amino acid found in proteins was identified in dust samples retruned to Earth from comet Wild 2 by Stardust mission (Elsila et al., 2009) Water Carbon monoxide Carbon dioxide Methane Acetylene Ethane Methanol Formaldehyde Ethylene glycol Formic acid Methyl formate Acetaldehyde Formamide Ammonia Hydrogen cyanide Isocyanic acid Hydrogen isocyanide Acetonitrile Cyanoacetylene Hydrogen sulfide Carbonyl sulfide Sulfur dioxide Thioformaldehyde Sulfur Mumma & Charnley, 2011

39 6. Summary and Outlook Comets: - Most pristine material left over from the formation of our solar system - Dirty snowball : mostly porous water ice with contributions by rocky material (?) - Sublimation of volatiles from nucleus surface due to heating by solar radiation; leads to formation of gas and dust coma surrounding the nucleus; material from the coma forms the tails due to solar radiation and solar wind pressure! 67P/C-G: - Much more irregularly shaped than expected (two bodies sticking together?); rugged terrain with pits, landslides, boulders and a dust layer above a hard surface - Localized activity; comet more active at large heliocentric distance than expected! Rosetta: first landing on a cometary nucleus - So far very successful long-term investigation of the comet nucleus and its environment with many different measurement techniques May 2014 to mid 2016 Rosetta orbiter mission at the comet 12 Nov 2014 Philae landing at 3 AU heliocentric distance July 2015 to Sept 2015 Philae extended mission???

40 Thank you! Bild: ESA/Rosetta/MPS for OSIRIS Team MPS/ UPD/LAM/IAA/SSO/INTA/UPM/DASP/IDA; Montage: Axel M. Quetz, Sterne und Weltraum 67P/C-G and the skyline of Frankfurt

ROSETTA. One Comet Rendezvous and two Asteroid Fly-bys. Rita Schulz Rosetta Project Scientist

ROSETTA. One Comet Rendezvous and two Asteroid Fly-bys. Rita Schulz Rosetta Project Scientist ROSETTA One Comet Rendezvous and two Asteroid Fly-bys Rita Schulz Rosetta Project Scientist Giotto Mission 1986 1P/Halley DS-1 Mission 2001 19P/Borrelly Stardust Mission 2004 81P/ Wild 2 Deep Impact Mission

More information

Rosetta Mission Status Update. Hal Weaver (JHU/APL) CoI on Rosetta-Alice UV Spectrograph (with help from Art Chmielewski, JPL)

Rosetta Mission Status Update. Hal Weaver (JHU/APL) CoI on Rosetta-Alice UV Spectrograph (with help from Art Chmielewski, JPL) Rosetta Mission Status Update Hal Weaver (JHU/APL) CoI on Rosetta-Alice UV Spectrograph (with help from Art Chmielewski, JPL) Wake Up Rosetta, Please! Hibernating since June 2011 Wakeup by timer on: 2014-Jan-20

More information

ROSETTA: ESA's Comet Orbiter and Lander Mission. Hermann Boehnhardt Max-Planck Institute for Solar System Research Katlenburg-Lindau, Germany

ROSETTA: ESA's Comet Orbiter and Lander Mission. Hermann Boehnhardt Max-Planck Institute for Solar System Research Katlenburg-Lindau, Germany ROSETTA: ESA's Comet Orbiter and Lander Mission Hermann Boehnhardt Max-Planck Institute for Solar System Research Katlenburg-Lindau, Germany ROSETTA in a Nutshell Science goal: Understanding the origin

More information

U.S. ROSETTA MISSION. October 9, 2014

U.S. ROSETTA MISSION. October 9, 2014 1 The Chase is On U.S. ROSETTA MISSION October 9, 2014 2 Rosetta is here today 3 Credit: NASA/JPL Caltech Comet Hale-Bopp NASA 4 ISON Composite Photo Nov 15, 2013; credit European Southern Observatory

More information

Rosetta: getting close and personal with a comet. Matt Taylor, on behalf of the entire Rosetta community

Rosetta: getting close and personal with a comet. Matt Taylor, on behalf of the entire Rosetta community Rosetta: getting close and personal with a comet Matt Taylor, on behalf of the entire Rosetta community A follow up to ESA's first deep space mission, Giotto Giotto at Halley Distance 1430 km, resolution

More information

Rosetta Mission Amateur Data Archive

Rosetta Mission Amateur Data Archive Rosetta Mission Amateur Data Archive Raffi Shirinian Pasadena City College Dr. Bonnie J. Buratti Dr. Padma Yanamandra-Fisher Copyright 2016 California Institute of Technology. Government sponsored Acknowledgement

More information

Rosetta. ESA s Comet Lander Mission. Andrew Morse. Open University. 3 May 2012 Keck Institute for Space Studies Pasadena

Rosetta. ESA s Comet Lander Mission. Andrew Morse. Open University. 3 May 2012 Keck Institute for Space Studies Pasadena Rosetta ESA s Comet Lander Mission Andrew Morse 3 May 2012 Keck Institute for Space Studies Pasadena Open University Rosetta mission 1993 ESA approve Rosetta mission as a cornerstone mission for its long

More information

Deciphering the Rosetta stone

Deciphering the Rosetta stone Deciphering the Rosetta stone The ultimate goal of Rosetta: Decipher the origin of the solar system, the Earth and life by studying a comet Payload OSIRIS Camera 28 kg ROSINA Gas-Mass spectrometer 35 kg

More information

Spin-off Rosetta Lander for Marco Polo

Spin-off Rosetta Lander for Marco Polo Spin-off Rosetta Lander for Marco Polo S. Ulamec, J. Biele DLR, Cologne, Germany The Rosetta Lander Philae is the first ever built device to land on a comet Rosetta was launched 2004; landing is planned

More information

Comets. Ancient Ideas about comets. Draft Dec 11, Edmund Halley ( ) Great Comet of 1680

Comets. Ancient Ideas about comets. Draft Dec 11, Edmund Halley ( ) Great Comet of 1680 Comets Ancient Ideas about comets kometes = `the hairy one (hairy star) 550 BC Pythagoreans thought they were wandering planets. Draft Dec 11, 2006 Aristotle (350 BC) thought that, like meteors, they were

More information

Rosetta Mission Status Update. Hal Weaver (JHU/APL) On behalf of the Rosetta Team

Rosetta Mission Status Update. Hal Weaver (JHU/APL) On behalf of the Rosetta Team Rosetta Mission Status Update Hal Weaver (JHU/APL) On behalf of the Rosetta Team Rosetta is homing in on its target! Orbiter (11 instruments) Exited Hibernation on Jan 20 th Rendezvous with 67P/C-G on

More information

Rosetta at Comet 67P/ChuryumovGerasimenko: Landing and Archiving Data

Rosetta at Comet 67P/ChuryumovGerasimenko: Landing and Archiving Data Rosetta at Comet 67P/ChuryumovGerasimenko: Landing and Archiving Data NASA SBAG Report 1 Bonnie Buratti, US Rosetta Project Scientist, JPL Arthur B. Chmielewski US Rosetta Project Manager, JPL Mathieu

More information

Solar System Debris: Comets and Asteroids

Solar System Debris: Comets and Asteroids 1 Solar System Debris: Comets and Asteroids Primarily found in two zones in the solar system. The Asteroid Belt (rocky, between Jupiter and Mars) The Edgeworth/Kuiper Belt (beyond Neptune) and Oort Cloud

More information

Rosetta reveals Churi's secrets

Rosetta reveals Churi's secrets PRESS RELEASE I PARIS I 21 JANUARY 2015 Rosetta reveals Churi's secrets With its surprising two-lobed shape and high porosity, the nucleus of comet 67P/Churyumov- Gerasimenko (nicknamed Churi) has a wide

More information

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects

Transneptunian objects. Minor bodies in the outer Solar System. Transneptunian objects Transneptunian objects Minor bodies in the outer Solar System Planets and Astrobiology (2016-2017) G. Vladilo Around 1980 it was proposed that the hypothetical disk of small bodies beyond Neptune (called

More information

A prominent naked eye comet will appear about every 5 years. Aspects of comets that we will discuss. Comets

A prominent naked eye comet will appear about every 5 years. Aspects of comets that we will discuss. Comets Comets The last type of minor solar system object is the one which has been most noticed since deep antiquity Reasons why s were feared and considered omens prior to modern times They had a different appearance

More information

Asteroids, Comets and Meteorites. What is an Asteroid? Asteroids discovered. Asteroid facts. Example Asteroids

Asteroids, Comets and Meteorites. What is an Asteroid? Asteroids discovered. Asteroid facts. Example Asteroids Asteroids, Comets and Meteorites Perseid meteor shower courtesy NASA Eros: courtesy NASA What is an Asteroid? View from 50 km ~1.5 1.5 km Comet McNaught in 2007 by Aberdeen Astronomical Society member

More information

Asteroids, Comets and Meteorites

Asteroids, Comets and Meteorites Asteroids, Comets and Meteorites Perseid meteor shower courtesy NASA Eros: courtesy NASA Comet McNaught in 2007 by Aberdeen Astronomical Society member Phil Hart, in Melbourne What is an Asteroid? View

More information

Chapter 12 Remnants of Rock and Ice. Asteroid Facts. NEAR Spacecraft: Asteroid Eros

Chapter 12 Remnants of Rock and Ice. Asteroid Facts. NEAR Spacecraft: Asteroid Eros Chapter 12 Remnants of Rock and Ice Asteroids, Comets, and the Kuiper Belt Asteroid Facts Asteroids are rocky leftovers of planet formation Largest is Ceres, diameter ~1,000 km (most smaller) 150,000 in

More information

Comet Churyumov- Gerasimenko. A long voyage back to our origin. Prof. Kathrin Altwegg University of Bern, Switzerland

Comet Churyumov- Gerasimenko. A long voyage back to our origin. Prof. Kathrin Altwegg University of Bern, Switzerland Comet Churyumov- Gerasimenko A long voyage back to our origin Prof. Kathrin Altwegg University of Bern, Switzerland Big Bang, 13 Billion years, From hydrogen to the Hydrogen and Helium From the elements

More information

Chapter 19: Meteorites, Asteroids, and Comets

Chapter 19: Meteorites, Asteroids, and Comets Chapter 19: Meteorites, Asteroids, and Comets Comet Superstition Throughout history, comets have been considered as portants of doom, even until very recently: Appearances of comet Kohoutek (1973), Halley

More information

At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion?

At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion? At this point of its orbit, any solar satellite such as a comet or a planet is farthest away from the sun. What is the aphelion? These small, rocky worlds orbit the sun generally between the orbits of

More information

Astronomy 405 Solar System and ISM

Astronomy 405 Solar System and ISM Astronomy 405 Solar System and ISM Lecture 14 Comets February 15, 2013 Dynamics of Comet Tails Gas (ion) tails - interact with the solar wind - point away from the Sun. Dust tails - pushed by radiation

More information

Lecture 16 Dwarf Planets and Comets January 8a, 2014

Lecture 16 Dwarf Planets and Comets January 8a, 2014 1 Lecture 16 Dwarf Planets and Comets January 8a, 2014 2 Pluto -- Basic Information Discovered by Clyde Tombaugh in 1930 Period: P orb = 248 years Distance: a = 39.5 AU 3 moons (Charon, Nix, Hydra) Demoted

More information

Lecture 39. Asteroids/ Minor Planets In "Gap" between Mars and Jupiter: 20,000 observed small objects, 6000 with known orbits:

Lecture 39. Asteroids/ Minor Planets In Gap between Mars and Jupiter: 20,000 observed small objects, 6000 with known orbits: Lecture 39 Interplanetary Matter Asteroids Meteorites Comets Oort Cloud Apr 28, 2006 Astro 100 Lecture 39 1 Asteroids/ Minor Planets In "Gap" between Mars and Jupiter: 20,000 observed small objects, 6000

More information

Main Event: Comets by Paul Jenkins

Main Event: Comets by Paul Jenkins Main Event: Comets by Paul Jenkins Most people realise that comets come from the Oort Cloud, a huge ball of objects surrounding the solar system but which has a bias of objects towards the plane of the

More information

Approaching the internal structure of the nuclei of comets

Approaching the internal structure of the nuclei of comets Approaching the internal structure of the nuclei of comets Anny-Chantal Levasseur-Regourd J. Lasue, E. Hadamcik Univ. Paris VI / Aéronomie IPSL-CNRS aclr@aerov.jussieu.fr Levasseur-Regourd Alicante, 2007

More information

Rosetta activity variation and evolution

Rosetta activity variation and evolution Cometary Activity Rosetta activity variation and evolution Understanding activity understanding ice inside the nucleus Understanding ice understanding early solar system history/conditions Understand link

More information

Solar System revised.notebook October 12, 2016 Solar Nebula Theory

Solar System revised.notebook October 12, 2016 Solar Nebula Theory Solar System revised.notebook The Solar System Solar Nebula Theory Solar Nebula was a rotating disk of dust and gas w/ a dense center dense center eventually becomes the sun start to condense b/c of gravity

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Chapter 4 - Group Homework Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Density is defined as A) mass times weight. B) mass per unit volume.

More information

Rosetta images of Comet 67P/Churyumov Gerasimenko 1: Near-surface icy terrain similar to comet Tempel-1

Rosetta images of Comet 67P/Churyumov Gerasimenko 1: Near-surface icy terrain similar to comet Tempel-1 Rosetta images of Comet 67P/Churyumov Gerasimenko 1: Near-surface icy terrain similar to comet Tempel-1 Max Wallis 1 and N. Chandra Wickramasinghe 1,2,3 1 Buckingham Centre for Astrobiology (BCAB), Buckingham

More information

Comets, Asteroids, and Meteors. By: Annette Miles

Comets, Asteroids, and Meteors. By: Annette Miles Comets, Asteroids, and Meteors By: Annette Miles What is a comet? A comet is a small body which scientists sometimes call a planetesimal. They are made out of dust, ice rock, gas, and. They are kind of

More information

A s t e r o i d s, C o m e t s & N E O s ( B a c k g r o u n d I n f o r m a t i o n )

A s t e r o i d s, C o m e t s & N E O s ( B a c k g r o u n d I n f o r m a t i o n ) A s t e r o i d s, C o m e t s & N E O s ( B a c k g r o u n d I n f o r m a t i o n ) Author: Sarah Roberts Asteroids Asteroids, Comets and NEOs - Background Information Asteroids are rocky objects which

More information

The Solar System LEARNING TARGETS. Scientific Language. Name Test Date Hour

The Solar System LEARNING TARGETS. Scientific Language. Name Test Date Hour Name Test Date Hour Astronomy#3 - Notebook The Solar System LEARNING TARGETS I can describe the objects that make up our solar system. I can identify the inner and outer planets. I can explain the difference

More information

Comets after Rosetta. M. Fulle INAF Trieste, IDS Rosetta Mission

Comets after Rosetta. M. Fulle INAF Trieste, IDS Rosetta Mission Comets after Rosetta M. Fulle INAF Trieste, IDS Rosetta Mission Comets before Rosetta (historical bias) Coma composed of gas (spectroscopic lines) and dust (reflected sunlight) Whipple model (1951): the

More information

The Formation of the Solar System

The Formation of the Solar System The Formation of the Solar System Basic Facts to be explained : 1. Each planet is relatively isolated in space. 2. Orbits nearly circular. 3. All roughly orbit in the same plane. 4. Planets are all orbiting

More information

Chapter 4 The Solar System

Chapter 4 The Solar System Chapter 4 The Solar System Comet Tempel Chapter overview Solar system inhabitants Solar system formation Extrasolar planets Solar system inhabitants Sun Planets Moons Asteroids Comets Meteoroids Kuiper

More information

Cometary Science. Jessica Sunshine. Department of Astronomy University of Maryland

Cometary Science. Jessica Sunshine. Department of Astronomy University of Maryland Cometary Science Jessica Sunshine Department of Astronomy University of Maryland Slide 1 Major Cometary Goals: Last Decadal Survey Building Blocks of the Solar System Where in the solar system are the

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens 23.1 The Solar System The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus, Earth, and Mars. The Jovian planets

More information

The Solar System. Name Test Date Hour

The Solar System. Name Test Date Hour Name Test Date Hour Astronomy#3 - Notebook The Solar System LEARNING TARGETS I can describe the objects that make up our solar system. I can identify the inner and outer planets. I can explain the difference

More information

Comets and KBO's. Comets. Halley's Comet. Far outside the orbit of Neptune are an overwhelming number of small icy bodies

Comets and KBO's. Comets. Halley's Comet. Far outside the orbit of Neptune are an overwhelming number of small icy bodies Comets and KBO's Far outside the orbit of Neptune are an overwhelming number of small icy bodies The Kuiper belt is a ring of icy material located in the plane of the Solar System Comets were known and

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1

Astronomy.  physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am. Page 1 Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology I Terrestrial and Jovian planets Similarities/differences between planetary satellites Surface and atmosphere

More information

Ag Earth Science Chapter 23

Ag Earth Science Chapter 23 Ag Earth Science Chapter 23 Chapter 23.1 Vocabulary Any of the Earth- like planets, including Mercury, Venus, and Earth terrestrial planet Jovian planet The Jupiter- like planets: Jupiter, Saturn, Uranus,

More information

23.1 The Solar System. Orbits of the Planets. Planetary Data The Solar System. Scale of the Planets The Solar System

23.1 The Solar System. Orbits of the Planets. Planetary Data The Solar System. Scale of the Planets The Solar System 23.1 The Solar System Orbits of the Planets The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus, Earth, and Mars. The Jovian planets are the huge gas giants

More information

Solar System Debris. Asteroids 11/28/2010. Large rocky debris orbiting the Sun. Ceres, the largest asteroid. Discovering Asteroids

Solar System Debris. Asteroids 11/28/2010. Large rocky debris orbiting the Sun. Ceres, the largest asteroid. Discovering Asteroids Solar System Debris Material leftover from the formation of the Solar System Gives important clues about its origin Composition: Asteroids and Meteoroids: rock and iron Comets: ice and dust The basic building

More information

Prentice Hall EARTH SCIENCE

Prentice Hall EARTH SCIENCE Prentice Hall EARTH SCIENCE Tarbuck Lutgens Chapter 23 Touring Our Solar System 23.1 The Solar System The Planets: An Overview The terrestrial planets are planets that are small and rocky Mercury, Venus,

More information

Lecture Outlines. Chapter 14. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 14. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 14 Astronomy Today 7th Edition Chaisson/McMillan Chapter 14 Solar System Debris Units of Chapter 14 14.1 Asteroids What Killed the Dinosaurs? 14.2 Comets 14.3 Beyond Neptune 14.4

More information

Asteroids Physical Properties. Solar System Debris. Missions to Asteroids. Types of Asteroids (based on composition)

Asteroids Physical Properties. Solar System Debris. Missions to Asteroids. Types of Asteroids (based on composition) Solar System Debris Asteroids Physical Properties Spacecraft Missions Origin Orbits Risk to Earth Tens to hundreds of km in diameter Comets History Structure Orbits Origin Missions Meteoroids & Meteor

More information

Comparative Planetology I: Our Solar System. Chapter Seven

Comparative Planetology I: Our Solar System. Chapter Seven Comparative Planetology I: Our Solar System Chapter Seven ASTR 111 003 Fall 2006 Lecture 07 Oct. 16, 2006 Introduction To Modern Astronomy I Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-17)

More information

Planetary Science Division Status Report

Planetary Science Division Status Report Planetary Science Division Status Report James L. Green, Director Planetary Science November 17, 2014 Planetary Protection Subcommittee 1 Outline Planetary Upcoming Mission Events Recent Accomplishments

More information

Starting from closest to the Sun, name the orbiting planets in order.

Starting from closest to the Sun, name the orbiting planets in order. Chapter 9 Section 1: Our Solar System Solar System: The solar system includes the sun, planets and many smaller structures. A planet and its moon(s) make up smaller systems in the solar system. Scientist

More information

This asteroid was visited by the NEAR Shoemaker probe, which orbited it, taking extensive photographs of its

This asteroid was visited by the NEAR Shoemaker probe, which orbited it, taking extensive photographs of its Chapter 9 Part 1 Asteroids and Comets Why is there an asteroid belt? This asteroid was visited by the NEAR Shoemaker probe, which orbited it, taking extensive photographs of its surface, and, on February

More information

The Solar System. Tour of the Solar System

The Solar System. Tour of the Solar System The Solar System Tour of the Solar System The Sun more later 8 planets Mercury Venus Earth more later Mars Jupiter Saturn Uranus Neptune Various other objects Asteroids Comets Pluto The Terrestrial Planets

More information

Astronomy 150: Killer Skies Lecture 6, January 30

Astronomy 150: Killer Skies Lecture 6, January 30 Astronomy 150: Killer Skies Lecture 6, January 30 Last time: Meteors Today: Asteroids and Comets Homework: HW 1 last chance! cutoff at 5pm today. HW 2 due this Friday at 1pm http://near.jhuapl.edu/iod/20000222/20000222.jpg

More information

ARMAGEDDON DEEP IMPACT

ARMAGEDDON DEEP IMPACT ARMAGEDDON Astro 202 Spring 2008 COMETS and ASTEROIDS Small bodies in the solar system Impacts on Earth and other planets The NEO threat to Earth Lecture 1 Don Campbell DEEP IMPACT Last Days On Earth Part

More information

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers

The Cosmic Perspective Seventh Edition. Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts. Chapter 12 Review Clickers Review Clickers The Cosmic Perspective Seventh Edition Asteroids, Comets, and Dwarf Planets: Their Natures, Orbits, and Impacts Asteroids a) are rocky and small typically the size of a grain of rice or

More information

Illustrate It! You will need to set out colored pencil and markers at this station.

Illustrate It! You will need to set out colored pencil and markers at this station. Kesler Science Station Lab Comets, Meteors, and Asteroids Teacher Directions Explore It! I will spend much of my time at this station making sure that the students are doing the orbits correctly. I have

More information

Rosetta/COSIMA: High Resolution In-Situ Dust Analysis at Comet 67P/Churyumov- Gerasimenkov

Rosetta/COSIMA: High Resolution In-Situ Dust Analysis at Comet 67P/Churyumov- Gerasimenkov Rosetta/COSIMA: High Resolution In-Situ Dust Analysis at Comet 67P/Churyumov- Gerasimenkov H. Krüger [1], C. Engrand [2], H. Fischer [1], M. Hilchenbach [1], K. Hornung [3], J. Kissel [1], T. Stephan [4],

More information

Astr 1050 Wed., March. 22, 2017

Astr 1050 Wed., March. 22, 2017 Astr 1050 Wed., March. 22, 2017 Today: Chapter 12, Pluto and Debris March 24: Exam #2, Ch. 5-12 (9:00-9:50) March 27: Mastering Astronomy HW Chapter 11 & 12 1 Chapter 12: Meteorites, Asteroids, Comets

More information

Brooks Observatory telescope observing

Brooks Observatory telescope observing Brooks Observatory telescope observing Mon. - Thurs., March 22 55, 8:30 to about 9:45 PM See the class web page for weather updates. This evening s session has been cancelled. Present your blue ticket

More information

Universe Now. 5. Minor planets and other small bodies in the Solar System

Universe Now. 5. Minor planets and other small bodies in the Solar System Universe Now 5. Minor planets and other small bodies in the Solar System An overview of the known Solar System The Sun 4 terrestrial planets: Mercury, Venus, Earth, Mars 4 Jovian planets: Jupiter, Saturn,

More information

Lecture 13 Dwarf Planets and Solar System Debris October 18, 2017

Lecture 13 Dwarf Planets and Solar System Debris October 18, 2017 Lecture 13 Dwarf Planets and Solar System Debris October 18, 2017 1 2 Pluto -- Basic Information Discovered by Clyde Tombaugh in 1930 Period: P orb = 248 years Distance: a = 39.5 AU 3 moons (Charon, Nix,

More information

Today. The Little Things. Comets. Dwarf Planets. Last Exam in last class, Thursday Dec. 7. Homework also due then.

Today. The Little Things. Comets. Dwarf Planets. Last Exam in last class, Thursday Dec. 7. Homework also due then. Today The Little Things Comets Dwarf Planets Last Exam in last class, Thursday Dec. 7. Homework also due then. 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Comets Fig 9.5 FROST LINE

More information

CHAPTER 11. We continue to Learn a lot about the Solar System by using Space Exploration

CHAPTER 11. We continue to Learn a lot about the Solar System by using Space Exploration CHAPTER 11 We continue to Learn a lot about the Solar System by using Space Exploration Section 11.1 The Sun page 390 -Average sized star -Millions of km away -300,000 more massive then Earth, 99% of all

More information

Contents of the Solar System

Contents of the Solar System The Solar System Contents of the Solar System Sun Planets 9 known (now: 8) Mercury, Venus, Earth, Mars ( Terrestrials ) Jupiter, Saturn, Uranus, Neptune ( Jovians ) Pluto (a Kuiper Belt object?) Natural

More information

Smaller Bodies of the Solar System Chapter 2 continued

Smaller Bodies of the Solar System Chapter 2 continued Smaller Bodies of the Solar System Chapter 2 continued Small, rocky (sometimes metallic) bodies with no atmospheres. or planetoids 100,000 numbered and 12,000 named 1-1000 km in size most are small ~ 1

More information

Asteroids: Introduction

Asteroids: Introduction Asteroids: Introduction Name Read through the information below. Then complete the Fill-Ins at the bottom of page. Asteroids are rocky objects that orbit the Sun in our solar system. Also known as minor

More information

Earth Science 11 Learning Guide Unit Complete the following table with information about the sun:

Earth Science 11 Learning Guide Unit Complete the following table with information about the sun: Earth Science 11 Learning Guide Unit 2 Name: 2-1 The sun 1. Complete the following table with information about the sun: a. Mass compare to the Earth: b. Temperature of the gases: c. The light and heat

More information

A Lander for Marco Polo

A Lander for Marco Polo A Lander for Marco Polo Hermann Boehnhardt MPI for Solar System Research Katlenburg-Lindau, Germany Lutz Richter DLR, Institute for Space Systems Bremen, Germany The ROSETTA Lander PHILAE passive lander

More information

& ESA's Comet-Chaser Rosetta

& ESA's Comet-Chaser Rosetta & ESA's Comet-Chaser Rosetta Source: http://sci.esa.int/rosetta/14615-comet-67p/ Photo by: ESA/Rosetta/MPS for OSIRIS Team MPS/UPD/LAM/IAA/ SSO/INTA/UPM/DASP/IDA Contributors : Greg Hough, Fall 2015 James

More information

Small Bodies in our Solar System. Comets, Asteroids & Meteoroids

Small Bodies in our Solar System. Comets, Asteroids & Meteoroids Small Bodies in our Solar System Comets, Asteroids & Meteoroids * A Small Body is any object in the solar system that is smaller than a planet or moon, such as a comet, an asteroid, or a meteoroid. Compiled

More information

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280

Exam# 2 Review. Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Exam# 2 Review Exam #2 is Wednesday November 8th at 10:40 AM in room FLG-280 Bring Gator 1 ID card Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the

More information

Chapter 25. Meteorites, Asteroids, and Comets

Chapter 25. Meteorites, Asteroids, and Comets Chapter 25 Meteorites, Asteroids, and Comets Guidepost In Chapter 19 you began your study of planetary astronomy by considering evidence about how our solar system formed. In the five chapters that followed

More information

Origin of the Solar System

Origin of the Solar System Origin of the Solar System and Solar System Debris 1 Debris comets meteoroids asteroids gas dust 2 Asteroids irregular, rocky hunks small in mass and size Ceres - largest, 1000 km in diameter (1/3 Moon)

More information

What s in our solar system?

What s in our solar system? What s in our solar system? *Sun *Planets Terrestrial Jovian Dwarf Smaller objects *Meteoroids *Comets Dust http://www.techastronomy.com/userfiles/2007/7/22/solar_system4(1).jpg *Sun a. Most of mass (>99%)

More information

Which of the following statements best describes the general pattern of composition among the four jovian

Which of the following statements best describes the general pattern of composition among the four jovian Part A Which of the following statements best describes the general pattern of composition among the four jovian planets? Hint A.1 Major categories of ingredients in planetary composition The following

More information

Mystery Object #1. Mystery Object #2

Mystery Object #1. Mystery Object #2 Mystery Object #1 Diameter (km) 12,756 Revolution Period (Earth days) 150 million km 24 hours/ 1 Earth day 365 days Nitrogen and Oxygen A terrestrial body including iron, oxygen, silicon, magnesium, sulfur,

More information

Griffith Observatory Samuel Oschin Planetarium. Griffith Observatory Samuel Oschin Planetarium. Griffith Observatory Samuel Oschin Planetarium

Griffith Observatory Samuel Oschin Planetarium. Griffith Observatory Samuel Oschin Planetarium. Griffith Observatory Samuel Oschin Planetarium Test 04 Chapters 15-20 Limited Copies Are available Griffith Observatory Samuel Oschin Planetarium June 4 th from 8:00 pm - 10:00 pm Covering ALL Tests Slide 1 Slide 2 Griffith Observatory Samuel Oschin

More information

Scientific instruments of Rosetta's Philae lander 23 September 2014, by Tim Reyes

Scientific instruments of Rosetta's Philae lander 23 September 2014, by Tim Reyes Scientific instruments of Rosetta's Philae lander 23 September 2014, by Tim Reyes Rosetta s Philae lander includes a carefully selected set of instruments and is being prepared for a November 11th dispatch

More information

Comet Demo. Comet Demo. Supplies:

Comet Demo. Comet Demo. Supplies: Comet Demo Comet Demo Supplies: Apron Zip Lock Bags Beakers Bowl; Large Gloves Safety Goggles Hammer Newspaper and/or Aluminum Foil Spoons Paper Towel (To Clean Up The Mess!) Plastic Table Cover Comet

More information

Rendezvous with a Primordial Rock

Rendezvous with a Primordial Rock Rendezvous with a Primordial Rock Although the comparison with the manned moon landing may appear somewhat exaggerated, Rosetta is undoubtedly one of space travel s most daring enterprises: For the first

More information

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits

7. Our Solar System. Planetary Orbits to Scale. The Eight Planetary Orbits 7. Our Solar System Terrestrial & Jovian planets Seven large satellites [moons] Chemical composition of the planets Asteroids & comets The Terrestrial & Jovian Planets Four small terrestrial planets Like

More information

Chapter 29. The Solar System. The Solar System. Section 29.1 Models of the Solar System notes Models of the Solar System

Chapter 29. The Solar System. The Solar System. Section 29.1 Models of the Solar System notes Models of the Solar System The Solar System Chapter 29 The Solar System Section 29.1 Models of the Solar System 29.1 notes Models of the Solar System Geocentric: : Earth-centered model of the solar system. (Everything revolves around

More information

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts

Jupiter. Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by Spacecrafts Jupiter Orbit, Rotation Physical Properties Atmosphere, surface Interior Magnetosphere Moons (Voyager 1) Jupiter is the third-brightest object in the night sky (after the Moon and Venus). Exploration by

More information

primary PR01 teach with space OUR SOLAR SYSTEM Journey to other celestial objects teacher s guide and pupil activities

primary PR01 teach with space OUR SOLAR SYSTEM Journey to other celestial objects teacher s guide and pupil activities primary PR01 teach with space OUR SOLAR SYSTEM Journey to other celestial objects teacher s guide and pupil activities INTRODUCTION Our Solar System consists of the Sun, eight planets, their moons and

More information

Your task for each planet...

Your task for each planet... Solar System Your task for each planet... Slide 1: What type of planet is it? (either rocky terrestrial world, gas giant or ice giant) What is it made of? Does it have any moons? What is its mass relative

More information

Space Notes 2. Covers Objectives 3, 4, and 8

Space Notes 2. Covers Objectives 3, 4, and 8 Space Notes 2 Covers Objectives 3, 4, and 8 Sun Average Size Star Sun 101 Sun s Mass almost 100 times the mass of all the planets combined. Most of the mass is hydrogen gas Thermonuclear Reaction Thermonuclear

More information

UNIT 3: Chapter 8: The Solar System (pages )

UNIT 3: Chapter 8: The Solar System (pages ) CORNELL NOTES Directions: You must create a minimum of 5 questions in this column per page (average). Use these to study your notes and prepare for tests and quizzes. Notes will be turned in to your teacher

More information

ASE 379L Space Systems Engineering Fb February 4, Group 1: Johnny Sangree. Nimisha Mittal Zach Aitken

ASE 379L Space Systems Engineering Fb February 4, Group 1: Johnny Sangree. Nimisha Mittal Zach Aitken Rosetta Mission Scope and CONOPS ASE 379L Space Systems Engineering Fb February 4, 2008 Group 1: Johnny Sangree Ankita Mh Maheshwarih Kevin Burnett Nimisha Mittal Zach Aitken 1 Need Statement To understand

More information

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 6. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 6 Astronomy Today 7th Edition Chaisson/McMillan Chapter 6 The Solar System Units of Chapter 6 6.1 An Inventory of the Solar System 6.2 Measuring the Planets 6.3 The Overall Layout

More information

Charting the Solar System

Charting the Solar System Diameter (km) Surface Temperature Interior Temperature Charting the Solar System (Source: http://solarsystem.nasa.gov; http://solarviews.com) Rotation (length of day ) The Sun 1,391,940 11,000 o F 28,000,000

More information

VENUS EXPRESS. The First European Mission to Venus. Gerhard Schwehm and Hakan Svedhem ESA/ESTEC

VENUS EXPRESS. The First European Mission to Venus. Gerhard Schwehm and Hakan Svedhem ESA/ESTEC VENUS EXPRESS The First European Mission to Venus Gerhard Schwehm and Hakan Svedhem ESA/ESTEC Why is ESA going to Venus? Venus is a fascinating planet and an attractive target for planetary sciences. 1960-1990:

More information

Comparative Planetology I: Our Solar System

Comparative Planetology I: Our Solar System Comparative Planetology I: Our Solar System Guiding Questions 1. Are all the other planets similar to Earth, or are they very different? 2. Do other planets have moons like Earth s Moon? 3. How do astronomers

More information

Solar System. Sun, 8 planets, hundred moons, thousand.dwarf.planets million asteroids, billion comets etc.

Solar System. Sun, 8 planets, hundred moons, thousand.dwarf.planets million asteroids, billion comets etc. Solar System Sun, 8 planets, hundred moons, thousand.dwarf.planets million asteroids, billion comets etc. Comparative Planetology Compares planets and other solar system bodies to help understand how they

More information

The Sun. - this is the visible surface of the Sun. The gases here are very still hot, but much cooler than inside about 6,000 C.

The Sun. - this is the visible surface of the Sun. The gases here are very still hot, but much cooler than inside about 6,000 C. Name: The Sun The Sun is an average sized. Earth, Mars, Jupiter and Uranus are. A star is the only object in space that makes its own. This includes and. The sun is about million miles from Earth. This

More information

AST 105. Overview of the Solar System

AST 105. Overview of the Solar System AST 105 Overview of the Solar System Scale of the Solar System Earth Voyager 1, 1991, distance = 4 billion miles Recap: The Solar System in Scale If the Solar System were the size of a football

More information

Comets a probe to understand early solar nebula

Comets a probe to understand early solar nebula thermal metamorphism (Fig. 2), or even large scale melting and differentiation (Fig. 3). The results obtained from the numerical simulations of the thermal processing of asteroids explain the diversity

More information

OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC

OUR SOLAR SYSTEM. James Martin. Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC OUR SOLAR SYSTEM James Martin Facebook.com/groups/AstroLSSC Twitter.com/AstroLSSC It s time for the human race to enter the solar system. -Dan Quayle Structure of the Solar System Our Solar System contains

More information

Human Understanding of both Earth and Space has Changed Over Time. Unit E: Topic One

Human Understanding of both Earth and Space has Changed Over Time. Unit E: Topic One Human Understanding of both Earth and Space has Changed Over Time Unit E: Topic One 1.4 Our Solar Neighbourhood Nebular Hypothesis The theory of how solar systems are formed Evolution of solar system

More information