The massive black hole and central star cluster in the Milky Way Center

Size: px
Start display at page:

Download "The massive black hole and central star cluster in the Milky Way Center"

Transcription

1 The massive black hole and central star cluster in the Milky Way Center R.Genzel SgrA* paradox of MPE youth & UC Berkeley testing the BH paradigm with stellar orbits emission and properties of SgrA* F.Eisenhauer, T.Paumard, R.Schödel, T.Ott, A.Eckart, T.Alexander, S.Trippe, R.Abuter, S.Gillessen, F.Martins

2 Massive Black Holes Reinhard Genzel MPE Garching & UC Berkeley

3 New Results in the Galactic Center R.Genzel MPE Garching & UC Berkeley R.Schödel, T.Ott, A.Eckart, T.Alexander, F.Eisenhauer, R.Abuter, T.Paumard a paradox of youth testing the BH paradigm with stellar orbits accretion, flares & BH spin

4 Quasars: stars or black holes? E <.5 Mc 2 HST WFPC 2 mass distribution radio source 3C 273 Schmidt, Lynden-Bell, Rees E.4 Mc 2 variable X- und γ - radiation relativistic radio jets

5 The Galactic Center as Laboratory: Expectations (Morris 1993, Genzel, Hollenbach & Townes 1994, Melia & Falcke 21, Alexander 22) t ~ 15Myr, 2Myr rt t ms tcoll m m tfor ms tr r 1" mms-ms 1.3M for R 2.5" ms-g tidal disruption of stars ms R 15 light minutes 1/t 1 yr disruption v c α 1 2 σ = + ρgas ρroche 1 R cm " R acc M acc 1" Lacc 1 L 1 LEdd observed : L 1 SgrA* M yr 3 L stellar cusp : ρ( R) ( ) R α =

6 The Galactic Center as Laboratory: Expectations (Morris 1993, Genzel, Hollenbach & Townes 1994, Melia & Falcke 21, Alexander 22) ~ 15Myr, 2Myr tr t ms tcoll m m tfor ms R t r 1" mms-ms 1.3M for R 2.5" ms-g R acc M acc 1" Lacc 1 L 1 LEdd observed : L 1 ms tidal disruption of stars R 15 light minutes low abundance rapid in-spiral of binaries of because σ 1/t cluster >v escape 1 yr dynamical friction (<a few Myr) dense star cluster 5-1 by disruption SgrA* M yr 3 L ρgas ρroche 1 R cm star-stellar BH scattering stellar cusp : ρ( R) " ( ) R α =

7 The MPE G.C.experiments proper motion experiment at the 3.5m ESO NTT (near-ir speckle camera SHARP): since 1991 adaptive optics-assisted (AO) integral field spectroscopy on ESO 2.2m (3D): since 1994 AO camera/spectrometer NAOS/CONICA on 8m ESO VLT: since 22 AO integral field spectroscopy on VLT (SINFONI/SPIFFI): since Feb 23 key people: A.Eckart, F.Eisenhauer, T.Ott, R.Schödel

8 stars (NIR) Ionized gas (radio) 1 ( 8 ly) The center of the Milky Way Hot gas (X-rays) diameter 1 light minutes SgrA* * (synchrotron)

9 Ionized gas (radio) The Center of stars (NIR) diameter 1 light minutes the Milky Way SgrA* * (synchrotron) The center of the Milky Way 6 ( 5 light years) Hot gas (X-rays) 3 light years

10 NAOS/CONICA and SINFONI at the VLT NAOS-CONICA: Co-PIs: G.Rousset (ONERA), R.Lenzen (MPIA), R.Hofmann(MPE) SPIFFI/SINFONI: PIs: F.Eisenhauer & N.Thatte (MPE)

11 Adaptive NACO H/K s /L 15NE E N optics 7 1EE 3 1W SgrA* IRS ( 1 light years) ) 12N ALFA Calar Alto (MPIA/MPE) (Eckart Eckart,, Genzel, 1 (.39 Ghez pc) et al.)

12 SINFONI ( = SPIFFI (MPE, PI F.Eisenhauer)+MACAO(ESO,, PI H.Bonnet)) Integral field spectrometer with reflective image slicer 32x64 spatial pixels (.125,.5,.125 ) x 2 spectral pixels (2K Hawaii) spectral resolving power: 2-5 ~4% throughput in J, H and K 6 element, curvature sensor AO system/bimorph mirror with APDs Eisenhauer et al. 23, ESO Messgr. 113, 17, Eisenhauer et al. 23, SPIE 4841, 1548, Bonnet et al. SPIE 4839, 329 Bonnet et al., 24, ESO Messgr 117, 17 anticipated LGS performance (25)

13 4 3 IRS1 EE (K5 Ia/b) stellar cusp and its properties.2 IRS3 (WC 5/6) 2 1 H+K, K s 17 crowding corrected wavelength (µm) wavelength (µm) IRS16SE2 (WN5/6) S2 (O8/9 V) IRS16 SgrA* wavelength (µm) IRS1 EE (M7/8 adaptive III) optics IR instruments on Keck IRS16 SW (Ofpe/LBV) 1 and VLT: 5 mas resolution wavelength (µm) Genzel et al. 23, Ott et al. 24 NACO H/K s /L SINFONI wavelength (µm) Ghez et al. 24, Keck laser guide star AO

14 1 e a r ly K < e a r ly K < 1 2 c lo c k w is e two coeval, rotating discs of stars at R~ pc x(arcsec) J z /J z (max) r a d ia l y (arcsec) c o u n te r c lo c k w is e p SgrA* (arcsec) 4 early type stars type clockwise counterclockwise V z (km/s) LBV/WN1 WN9/Ofpe Genzel et al. 2, 23 Ott et al. 24, Paumard et al. 21, Dec-offset (") WN7/8 WN5/6 WC8/9 WC5-7 OB > >5

15 NACO NACO H/K s /L images 15NE E N 7 1EE 3 1W SgrA* IRS ( 1 light years ) 1 (.39 pc) 12N

16 Integral field spectroscopy 1996:.6 with 3D 24:.7 with SINFONI/VLT +AO 1.5 (22 ld) 3 23:.27 SPIFFI/VLT

17 stars in the central 2 light days: a paradox of youth SINFONI : K(75 mas) 7 S () (λ/2.157) 2 (mjy) 5.5 S S S Dec.-offset from SgrA* (arcsec) light days R.A.-offset from SgrA* (arcsec) S S S S S14 5. S S1 Brγ velocity offset (km/s) Eisenhauer et al. 25

18 ordinary B main sequence-stars stars! HeI (±35) km/s 1.3(±.3) Å HI Brγ (±2) km/s 5.8(±.4) Å HeI: v rot sin(i)~.55 FWHM = 154(±19) km/s. solar neighborhood early B stars <v rot sini>~13 km/s (Gathier, Lamers & Snow 1981) <1Å FWHM= 12(±8) km/s EW=11.7(±2) Å wavelength (µm)

19 parodox of youth: two basic scenarios in situ formation from molecular clouds formation in massive disk collision of less massive stars general problem: tidal field external star formation and migration - mass segregation - spiraling in of star cluster - scattering general problem: timescale and efficiency Morris 1993, Genzel, Hollenbach & Townes 1994, Lee 1994, Sanders 1998, Gerhard 21, Portegies Zwart et al. 22, Levin & Beloborodov 23, Nayakshin et al. 23, 24, Gould & Quillen 23, Genzel et al.23, Hansen & Milosavlevic 23, Kim & Morris 23, Alexander 23, Milosavlevic & Loeb 24

20 NACO/VLT AO images H+K, K s 17 crowding corrected surface density (sources per square arcsecs) ρ * ( R )=3x1 7 (R/arcsec) -1.4 (M pc -3 ) fraction of late type stars radius from SgrA* (arcsecs) 1 (.39 pc) Genzel et al. 23, Ap.J. 594, 812

21 NACO/VLT AO images 1 (.39 pc)

22 radius from SgrA* (arcsecs) surface density (sources per square arcsecs) fraction of late type stars

23 Properties of nuclear star cluster: K-luminosity function surface density (sources per sq.-arcsec per mag) supergiants Galactic center KLF 8 Gyr SSP model Zoccali et al. Bulge KLF AGB O/B V K/M giants p 9" K-mag HB A/F V Best fit: old metal rich component + young burst population, or constant star formation Genzel et al. 23, Zoccali et al.22, Tiede et al. 1995, Figer 22

24 Properties of nuclear star cluster: K-K luminosity function surface density (sources per sq.-arcsec per mag) Galactic center KLF Zoccali et al. Bulge KLF supergiantso/b V AGB HB K/M giants p 9" A/F V NACO Galactic center Zoccali et al. Bulge KLF p 1.5" Genzel et al. 23 K-mag K-mag

25 KLF of cusp surface density (sources per sq.-arcsec per mag) supergiants NACO Galactic center Zoccali et al. Bulge KLF 8 Gyr SSP model AGB O/B V K/M giants p 1.5" K-mag HB A/F V lack of red clump/hb stars KLF+cusp mass model: either KLF steepens at K>19, or IMF is flatter than Salpeter

26 4 3 2 IRS1 EE (K5 Ia/b) SPIFFI 3D spectroscopy.2.1 IRS3 (WC 5/6) wavelength (µm) wavelength (µm) IRS16SE2 (WN5/6) S2 (O8/9 V) wavelength (µm) 7.5 IRS1 EE (M7/8 III) IRS16 SW (Ofpe/LBV) (.39 pc) wavelength (µm) wavelength (µm) Ott et al. 24, in prep. S2: see Ghez et al. 23

27 la te ty p e s ta r s K < e a r ly K < e a r ly K < c lo c k w is e 1 c lo c k w is e Dynamics of stellar components J z /J z (max) r a d ia l J z /J z (max) r a d ia l -1 c o u n te r c lo c k w is e c o u n te r c lo c k w is e proper motions and radial velocities (Ott et al. 24) p SgrA* (arcsec) p SgrA* (arcsec) 4 late type stars 4 early type stars 2 2 v z ( km/s ) McGinn et al. 1989, Sellgren et al.199, Krabbe et al. 1995, Haller et al. 1996, Genzel et al. 2, 23, Paumard et al. 21, Figer et al. 23 Dec-offset from SgrA* (arcsec) Dec-offset (")

28 v perpendicular (km/s) clockwise J(z)>, i=12 o, φ o =-6 o counter-clockwise χ 2 =3.9 (1.9) red d(sgra*)<7" o J(z)<, i=-4, φo =16 o χ 2 =5.1 (4.8) red d(sgra*)<7" v parallel (km/s) v parallel (km/s) Genzel et al. 23, Ap.J. 594, 812, Levin & Beloborodov, 23, ApJ, 59, L33

29 massive stars in two counter-rotating disks x(arcsec) z (arcsec) 5 x(arcsec) y (arcsec) z (arcsec) type clockwise counterclockwise -2.5 LBV/WN1 4 1 WN9/Ofpe 4 2 WN7/8 1 1 WN5/ y (arcsec) WC8/9 5 5 WC5-7 1

30 NACO 1.6.4: H (4mas).5 (23 light days) Dec.-offset from SgrA* (arcsec) SINFONI : K(75 mas) 26 S S S S5 S S S S9 15. S S S1 S S S S W W S13 S S R.A.-offset from SgrA* (arcsec) -.6

31 S-stars are main sequence B-starsB K= : S5,6, 8, 12, 13, 14 July+Aug K 15: S1,2,4,8,9 July+Aug HeI (±35) km/s 1.3(±.3) Å HI Brγ (±2) km/s 5.8(±.4) Å 1. S ν ν -2 (mjy) HI Br HeI HI Br HI Br S ν ν -2 (normalized) <1Å FWHM= 12(±8) km/s EW=11.7(±2) Å wavelength (µm) wavelength (µm) Eisenhauer et al. 25

32 A Paradox of Youth : how did the massive stars get into the cusp? formation outside and mass-segregation into center: excluded for stars >2 M in situ formation in extremely dense gas (>1 9 cm -3 ): fragmentation of self-gravitating accretion disk, following cloud infall and dissipation, + perhaps cloud-cloud collisions sinking to the center of a young, very massive (1 5 6 M ) and compact (<.2pc) cluster formed at R~1 pc creation of massive stars from collisions and mergers of lower mass stars in the central.5 (but not further out) shuttling in of stars by intermediate mass black hole binary scattering resonant scattering by stellar black holes near SgrA* Morris 1993, Genzel, Hollenbach & Townes 1994, Lee 1994, Sanders 1998, Gerhard 21, Portegies Zwart et al. 22, Levin & Beloborodov 23, Nayakshin et al. 23, Gould & Quillen 23, Genzel et al.23, Hansen & Milosavlevic 23, Kim & Morris 23, Alexander 23, Milosavlevic & Loeb 24

33 S-stars are main sequence B-starsB K= : S5,6, 8, 12, 13, 14 July+Aug K 15: S1,2,4,8,9 July+Aug K 15 K> HeI (±35) km/s 1.3(±.3) Å I HI Brγ (±2) km/s 5.8(±.4) Å 1. S ν ν -2 (mjy) HI Br HeI HI Br HI Br S ν ν -2 (normalized) III.95 V.9.85 <1Å FWHM= 12(±8) km/s EW=11.7(±2) Å wavelength (µm) wavelength (µm) Eisenhauer et al. 25

34 7 1 IRS 13 E IRS 16 NE/C log (L Bol (L o ) ) Sgr A* cluster 15 6 AF 2 M o IRS 7 2 M o AGB M o 2 M o 4 M o 12 M o Najarro et al. 1997, Genzel et al. 1997, 21, Ghez et al. 23, Blum et al. 23, Tanner et al log (T eff (K) )

35 Tidally disrupted dispersion rings R. Sanders 1998

36 Proper Motions and Orbit of S2 H (1.6µm): 4 mas Aug H/K 22 s /L NW 15NE N E E 7 E N N CC 16 C 1EE W 5mas 2 light days 21 IRS16 3 SgrA* 13 S2 S2 S3 S1 SgrA* (±3σ) SgrA* 1 km/s 9 12N SW 1 (.39 pc) 1 (46 light days) 1 (46 light days)

37 stellar proper motions in central 45 light days S km/s 24 5mas 2 light days 2 NACO H 4 mas T~15 years e=.88 R min =17 lh 22 1 (46 ld)

38 probing the central gravitational potential with stellar orbits 2 light days R o =7.9±.5 kpc SgrA* 6 light months Schödel et al. 22, 23, Ghez et al. 23, 24, Eisenhauer et al. 23, 25

39 precision determination of S2 orbit Schödel et al. 22, NATURE 419, 694 Schödel, et al. 23, Ap.J. 596, 115 Eisenhauer et al., 23, Ap.J.Lett 597, L121, 25 in prep Ghez et al. 23, ApJ 586, L127, + astro-ph 3613 S2 parameters Eisenhauer et al ± ± ±.29(.59) ± ± ± ± ± ± ± ±.1 R o (kpc) 7.94±.42 line of sight velocity (km/s) Ghez et al ± ± ± ± ± ± ± ± ±.25 Brγ time 5mas 2 light days R o =7.94±.42 kpc

40

41 3D structure of orbits.6.5 x=+2.5mas y=-2.1 mas M o =3.68±.2x1 6 M(sun).4 (R o = 8 kpc) Dec-offset (arcsec) S17 S8 S14 S12 S13 S8 S2 S1 line of sight velocity (km/s) RA-offset (arcsec) time Schödel et al. 23, Ghez et al. 23, Eisenhauer et al. 25

42 .2 x z.2 3 x y.2 sky plane view (x-y) 1 y y-z view.2 z view in the plane of the clockwise, outer star ring/disk x z 1 x-z view y y -.2 S1 S2 S8 S12 S13 S14 S17 z

43

44 orientation of orbital spin directions Eisenhauer et al. 25

45 3 x x y y S1 S2 S8 S12 S13 S14 S z z 2 4 Orientation of S-orbits relative to outer star disks

46 mass distribution radius (light hours) enclosed mass (solar masses) R o = 8 kpc multiple orbits S2 dark cluster ρ o =1.6x1 18 M(sun) pc -3 α =5 S3 3.35(±.15) x1 6 M(sun) point mass plus visible star cluster (χ 2 =1.2) red G G visible star cluster ρ o =1.5x1 6 M(sun) pc -3 r core =.46 pc, α=1.7 G G radius (parsec) Schödel et al., NATURE 22, 419, 694; 23, Ap.J. 596, 115, Ghez et al. 23, Ap.J. 586, L127, astro-ph 3613, Eisenhauer et al. 23, ApJ 597, L121

47 mass distribution radius (light hours) enclosed mass (solar masses) R o = 8 kpc multiple orbits S2 dark cluster ρ o =1.6x1 18 M(sun) pc -3 α =5 S3 3.35(±.15) x1 6 M(sun) point mass plus visible star cluster (χ 2 =1.2) red G G visible star cluster ρ o =1.5x1 6 M(sun) pc -3 r core =.46 pc, α=1.7 G G radius (parsec) Schödel et al., NATURE 22, 419, 694; 23, Ap.J. 596, 115, Ghez et al. 23, Ap.J. 586, L127, astro-ph 3613, Eisenhauer et al. 23, ApJ 597, L121

48 stars: v> 5 km/s SgrA* * does not move VLBI: v(sgra*)<1 (2) km/s diameter radio source <2 R s (Backer, Reid et al. 1999, 24) M SgrA* > 1 5 M ρ SgrA* > M pc -3 = g cm -3 Reid et al. 1999, 24, Chatterjee et al. 22, Dorband et al. 23

49 limits to the proper motion of SgrA* 4 IR radio Dec-offset from best focus of S2 (mas) RA-offset from best focus of S2 (mas) v IR 1 km/s v rad < 2 (2) km/s proper motion of SgrA* Backer &Sramek 1999, Reid et al. 1999, Genzel et al. 23, Ghez et al. 24, Reid et al. 24

50 X-ray flares 1 light minutes 2 (3 light years) Chandra May 22 campaign: ~.5 flares/day 2 light hours Baganoff et al. 2, 21,23

51 properties of SgrA* radio/mm 4 IR flares radio Dec-offset from best focus of S2 (mas) 2-2 SgrA* (.1 pc) RA-offset from best focus of S2 (mas) v IR 1 km/s v rad < 2 (2) km/s proper motion of SgrA* Lo et al. 1998, Zhao et al. 22, Doeleman et al. 22, Backer & Sramek 1999, Reid et al. 1999, Genzel et al. 23, Ghez et al. 24, Reid et al. 24, Bower et al. 24

52 Black hole or not black hole? 2.8x1 3x1 6 6 M sun BH size (R s (2.8x1 3x1 6 6 M sun )) boson star 23 22/3 1 2 density (M sun pc -3 ) >1 5 yrs >1 9 yrs SgrA* size/motion relative S2 size X-ray/ IR flare emission region S2 orbit SgrA* cluster proper motions fermion ball (17 kev) 1996 density stellar cusp at.5" 1986 gas motions mini-spiral density (g cm -3 ) >1 1 yrs density nuclear star cluster at.3 pc size (pc)

53 black hole or no black hole? size (R s (3x1 6 M )) x1 6 M BH boson star 1 2 density (M pc -3 ) SgrA* size/motion relative S2 >1 5 yrs >1 9 yrs size X- ray/ IR flare emission region S2 orbit SgrA* cluster proper motions fermion ball (17 kev) density stellar cusp at.5" gas motions mini-spiral density (g cm -3 ) >1 1 yrs density nuclear star cluster at.3 pc size (pc) Schödel et al. 22, 23, Ghez et al. 24, Reid et al. 24

54 surface density (sources per sq.-arcsec per mag) Constraints on cusp properties & mass Galactic center KLF Zoccali et al. Bulge KLF 1S2-orbit allows 3-7x1 5 M of extended O/B mass V supergiants AGB HB K/M giants p 9" A/F V K-band luminosity function NACO Galactic center Zoccali et al. Bulge KLF p 1.5" K-mag Mouawad Genzel et et al. al , A&A in press (astro-ph 42338) K-mag

55 X- and γ-rays from SgrA* 6 kev INTEGRAL cont. & 6.4 kev ASCA FeK SgrA* Chandra 2-8 kev why is the BH so faint: L~1-6 8 L Edd? May 22 campaign: ~ flares/day TeV source Aharonian et al hours low accretion rate low conversion efficiency to radiation low efficiency of removal of angular momentum Baganoff et al. 1, 4, Muno et al. 4, Mayer-Hasselwander et al. 99, Porquet et al. 23, Goldwurm et al. 1998, 23, Sunyaev et al. 1993, Koyama et al. 1996, Revnivtsev et al. 24

56 Distance to Galactic Center NACO 1 SPIFFI Distance Galactic Center: 7.94±.42 kpc Rotation velocity of sun: km/s GC Eisenhauer et al. 23

57 radio/mm SgrA*: diameter ~ 1 AU ~ 2 R s accretion onto the black hole 1 min. 2-8 kev 3 (.1 pc) why is the BH so faint: L~1-6 8 L Edd? low accretion rate low conversion efficiency to radiation low efficiency of removal of angular momentum 2 hours May 22 campaign: ~ flares/day Baganoff et al. 2, 21,23, Porquet et al. 23, Aschenbach et al. 24, Yusef- Zadeh, Zhao et al. 2, 23,Aitken et al. 99, Bower et al. 23

58 radio/mm 2-8 kev SgrA*: diameter ~ 1 AU ~ 2 R s 1 min. Accretion onto the Black Hole Why is the BH so faint: L~1-9 L Edd? 3 (.1 pc) 2 hours May 22 campaign: ~ flares/day X-rays low accretion rate low conversion efficiency to radiation low efficiency of removal of angular momentum Baganoff et al. 2, 21,23, Porquet et al. 23, Aschenbach et al. 24 Baganoff, Bower, Doeleman, Lo, Yusef-Zadeh days Yusef-Zadeh, Zhao et al. 2, 23,Aitken et al. 99, Bower et al. 23

59 infrared flares & BH spin location of black hole.22 (1 light days) May 9, 23: NACO (VLT) H-band, 4 mas resolution (adaptive optics), 1 min per image

60 K t o =3 h 1 m 7 s (UT) 12 infrared flares K t o =4 h 47 m 46 s (UT) dereddened flux density (mjy) d 8 S1 SgrA* 5 1 J u ly 8 th, 2 4, t o = 2 h 3 7 m 5 7 s 4 4 e 5 1 S (mjy) 2 Genzel et al. 23, Nature 425, Ghez et al. 24 ApJL t - t o (m in)

61 Infrared flares: quasi-periodicity 12 K t o =4 h 47 m 46 s (UT) S1 SgrA* normalized power spectrum 4 2 period: 16.8±2 min S1 June16th all June15th flare June16th flare e 5 1 spin parameter: a=.52± x x1-3 5x Frequency (Hz) Genzel et al. 23, Nature 425, 934

62 IR variability VLT/Keck H t o = 2 h 1 8 m 2 ( U T ) Dereddened flux density (mjy) Genzel et al. 23 Nature 425, S1 x2 5 1 t-t o (min) K, 15 Jun. 23, t o =3 h 1 m 7s (UT) S (mjy) 12 L -band 8 4 S1 SgrA* Ghez et al. 24, ApJ 61, L t-t o (min) K, 16 Jun. 23, t o =4h 47m 46 s (UT)

63 Fundamental dynamical frequencies around a black hole fundamental dynamical frequencies for M=3.59x1 6 M sun,a=.52 GM/c 3 2 orbital period at last stable orbit ν orbital n=1 g-mode acoustic oscillation R/R s T lsto (min) 1 a =.52 (±.1,.1,±.7,.7,±.14).14) ν (Hz) ν epicycle a/(gm/c) 1-6 last stable orbit ν Lense-Thirring ν R, precession R(cm)

64 SgrA* * flare variability and evidence for significant BH spin Normalized power spectrum period: 17±2 min S1 June 16 average flares June15/16 average 'quiescent' June 15/July21 5x x1-3 5x1-3 T lsto (min) a =.52 (±.1,.1,±.7,.7,±.14).14) orbital period at last stable orbit a/(gm/c) frequency (Hz) Genzel et al. 24, Aschenbach et al. 24

65 Kerr MHD accretion disk simulation De Villers, Hawley & Krolik, 24, Narayan, Quataert, Blandford, Begelman, Balbus, Stone, Gammie

66 IR SED of flares t= t=6 t= t-t (min)= t-t (min)= t-t (min)= α=-2.2± ν L ν (L sun ) 2.5 α=-3.7± α=-3.5±.4 July 15th, 24: t =3 h 37 m UT July 17th, 24: t =3 h 46 m UT SINFONI 24: Eisenhauer et al x x x x x1 14 frequency (Hz) 1.3x x x1 14 frequency (Hz)

67 SgrA* * SED and models E (ev) ν L ν (3.8x1 33 erg/s) RIAF + 1.5% p=3.5 power law RIAF + SSC jet-disk ν (Hz) Radio: Zhao, Falcke, Bower, Aitken, et al X-ray: Baganoff et al. 21, 23, Goldwurm et al. 23, Porquet et al. 23, models: Markoff, Falcke, Liu, Melia, Narayan, Quataert, Yuan et al Genzel et al. 23, Nature Ghez et al. 24, ApJ 61, L159, Eisenhauer et al. 25

68 Evidence for rotation of the black hole Genzel et al. 23, Nature 425, 934

69 Simultaneous X-/IRX /IR-Flares Eckart et al. 4, 5

70

71

72 overall SgrA* * spectral July 4 (2) July 4 (1) July 3 j RIAF + 1.5% p=3.5 power law energy distribution E(eV) E RIAF + SSC jet-disk XMM 2 ν L ν (3.8x1 33 erg/s) 1 1 SINFONI flares Jul/Aug4 Chandra.1 Chandra quiescent ν (Hz) Falcke et al. 1999, Zhao et al. 24, Markoff et al. 21, Genzel et al. 23, Ghez et al. 24,Eisenhauer et al. 25, Baganoff et al. 21, 23, Porquet et al. 23, Eckart et al. 24, 25, Yuan et al. 21, 23, 24, Liu et al. 24

73 Kormendy & Ho 21 Black hole demographics

74 ark central masses in external galaxies NGC 4258 M31 M =4x1 7 M ρ > M pc -3 M =3.6x1 7 M ρ > 1 12 M pc -3 Greenhill, Myoshi, Moran et al Bacon, Bender, Kormendy, Richstone, Tonry, van der Marel, et al

75 Dark central masses in external galaxies: H 2 O maser disk in NGC 4258 M =3.6x1 7 M ρ > 1 12 M pc -3 Greenhill, Herrnstein, Myoshi, Moran et al (e.g. Nature 373, 127)

76 Dark central masses in external galaxies: bulges and ellipticals M31 M =3x1 7 M M84 M =2x1 9 M Bacon, Bender, Bower, Dressler, Kormendy, Richstone, Tonry, van der Marel, et al

77 -ray spectroscopy: relativistic accretion disks XMM-Newton MCG Tanaka et al. 95, Nandra et al. 97, Ballantyne and Fabian 21, Wilms et al. 21, Lee et al. 2, Elvis 2, Fabian et al. 22

78 Relativistic accretion disks in external galaxies Fe KαK MCG (XMM Newton) 15 km/s Tanaka, Nandra et al Fabian et al. 22

79 NGC 4258 Black Holes in the Local Universe M =3.6x1 7 M M =4x1 7 M M31 (Andromeda) Miyoshi et al. 1995, Kormendy & Richstone 1995, Gebhardt et al. 2, Merritt und Ferrarese 2, Tremaine et al. 22, Bender et al. 22, 25

80 Black Holes & Galaxy Formation ROSAT/XMM/Chandra Quasar -density Cosmic star formation rate FORS/VLT M BH ~ a few 1 9 M at t~8 Myrs after Big Bang! Hasinger et al. 1999, 22, Steidel et al. 1999, Bender und FORS Team 22 Fan et al. 21, Becker et al. 22

81 ROSAT/XMM/Chandra Black Holes & Galaxy Formation Quasar -density FORS/VLT cosmic star formation rate M BH ~ a few 1 9 M at t~8 Myrs after Big Bang! redshift z Hasinger et al. 1999, 22, Steidel et al. 1999, Bender und FORS Team 22, Osmer 23, Fan et al. 22

82 ROSAT/XMM/Chandra Black Holes and Galaxy Formation Quasar -density FORS/VLT Cosmic Star formation rate Hasinger et al. 1999, 22, Steidel et al. 1999, Bender und FORS Team 22

83 Nearby Black Holes as Ashes of the QSO Era ρ ρ ε QSO dn( L, z) dt 1 = ( dz ( dl L) ) /( εc ) M Mpc dl dz ε bu lg e, early, theoretical = 2x1 M Mpc ρ 5 bu lg e 5 2 < ε accretion >= 5x1 5x1 x 6 3x1 ρ Gebhardt et al. 2 e.g. Soltan et al. 1982, Yu & Tremaine 22

84 Black Holes and Galaxy formation quasar Density cosmic star formation rate Magorrian et al. 1998, Kormendy and Ho 2, Gebhardt et al. 2, Merritt and Ferrarese 2, Hasinger et al. 1999, Steidel et al. 1999

85 NGC 624 Chandra Formation of Quasars Springel 21 Binary black hole: Komossa & Hasinger 23

86 The future interferometry: : relativistic regime submm VLBI: detection of event horizon simultaneous radio to γ-emission : accretion flow TeV emission: dark matter spike? z~1 QSOs and galaxies ESO-VLTI

87 the future 2 AU VLTI beam 1µas astrometry with PRIMA =3µas per orbit T~2 yrs R min ~2 AU (3 R s, V max ~.2 c ESO-VLT(I)

88 the future shadow of the Black Hole Falcke et al. 2 VLBI 2 AU VLTI beam 1µas astrometry with PRIMA =3µas per orbit T~2 yrs R min ~2 AU (3 R s, V max ~.2 c ESO-VLT(I)

89 Galactic center summary SgrA* is a ~3 million solar mass black hole, beyond any reasonable doubt mm/ir/x-ray emission from BH accretion zone: probably synchrotron/self-compton emission QPOs of flares: a.5? detection of power-law stellar cusp around BH two disks of young massive stars formed ~5Myrs ago: cloud infall and star formation in accretion disk? cusp stars at < 22 light days : paradox of youth

Rainer Schödel & Andreas Eckart Universität zu Köln. Stellar Dynamics Star Formation/Young Stars

Rainer Schödel & Andreas Eckart Universität zu Köln. Stellar Dynamics Star Formation/Young Stars Rainer Schödel & Andreas Eckart Universität zu Köln The Center of the Milky Way Stellar Dynamics Star Formation/Young Stars Variable emission from Sgr A* e.g. Eckart & Genzel (1996); Ghez et al. (1998);

More information

The Galactic Center a unique laboratory for studying massive black holes

The Galactic Center a unique laboratory for studying massive black holes The Galactic Center a unique laboratory for studying massive black holes Reinhard Genzel MPE on behalf of the ESO Galactic Center community (MPE, MPIA, UCologne, Observatoire de Paris, Granada, MPIfR,

More information

The Discovery of Quasars

The Discovery of Quasars Massive Black Holes Reinhard Genzel Max-Planck Institut für extraterrestrische Physik, Garching & Departments of Physics & Astronomy, University of California, Berkeley, USA Radio source 3C 273 The Discovery

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA , USA

G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA , USA E-mail: shahzaman@ph1.uni-koeln.de A.Eckart E-mail: eckart@ph1.uni-koeln.de G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA 90095-1547, USA N. Sabha M. Zamaninasab

More information

In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes

In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes Stellar velocity fields MW Distant galaxies Gas motions gas disks around nearby black holes

More information

Thus Far. Intro / Some Definitions Hubble Classification Components of Galaxies. Specific Galaxy Types Star Formation Clusters of Galaxies

Thus Far. Intro / Some Definitions Hubble Classification Components of Galaxies. Specific Galaxy Types Star Formation Clusters of Galaxies Thus Far Intro / Some Definitions Hubble Classification Components of Galaxies Stars Gas Dust Black Holes Dark Matter Specific Galaxy Types Star Formation Clusters of Galaxies Components of Galaxies:

More information

Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.1/24. T. Paumard (MPE)

Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.1/24. T. Paumard (MPE) Scientific prospects for VLTI in the Galactic Centre: Getting to the Schwarzschild Radius T. Paumard (MPE) G. Perrin, A. Eckart, R. Genzel, P. Léna, R. Schödel, F. Eisenhauer, T. Müller, S. Gillessen Scientific

More information

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) Accretion onto the Massive Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? GR! Best evidence for a BH (stellar orbits) M 4x10 6 M Largest BH on the sky

More information

The Galactic Center a unique laboratory

The Galactic Center a unique laboratory The Galactic Center a unique laboratory Stefan Gillessen, Reinhard Genzel, Frank Eisenhauer, Thomas Ott, Katie Dodds-Eden, Oliver Pfuhl, Tobias Fritz The GC is highly obscured Radio IR X-ray Extremely

More information

Bulletin on the Biggest, Baddest Black Hole on the Block

Bulletin on the Biggest, Baddest Black Hole on the Block Bulletin on the Biggest, Baddest Black Hole on the Block (SgrA* that is) Scott C. Noble UIUC CTA Lunch Seminar September 21, 2005 Outline: Introduction: How Big and Bad is it? M, R, tdyn, d, etc. What

More information

Fermi Bubbles: echoes of the last quasar outburst?

Fermi Bubbles: echoes of the last quasar outburst? Fermi Bubbles: echoes of the last quasar outburst? Sergei Nayakshin, University of Leicester Kastytis Zubovas, Andrew King (Leicester) Chris Power (U of Western Australia, Perth) The Fermi Bubbles in the

More information

Black Holes in Hibernation

Black Holes in Hibernation Black Holes in Hibernation Black Holes in Hibernation Only about 1 in 100 galaxies contains an active nucleus. This however does not mean that most galaxies do no have SMBHs since activity also requires

More information

Thibaut Paumard (MPE) F. Eisenhauer, R. Genzel, S. Rabien, S. Gillessen, F. Martins, T. Müller, G. Perrin, A. Eckart, W. Brandner, et al.

Thibaut Paumard (MPE) F. Eisenhauer, R. Genzel, S. Rabien, S. Gillessen, F. Martins, T. Müller, G. Perrin, A. Eckart, W. Brandner, et al. The Galactic Centre: from SINFONI to GRAVITY Thibaut Paumard (MPE) F. Eisenhauer, R. Genzel, S. Rabien, S. Gillessen, F. Martins, T. Müller, G. Perrin, A. Eckart, W. Brandner, et al. The Galactic Centre:

More information

Active Galactic Nuclei-I. The paradigm

Active Galactic Nuclei-I. The paradigm Active Galactic Nuclei-I The paradigm An accretion disk around a supermassive black hole M. Almudena Prieto, July 2007, Unv. Nacional de Bogota Centers of galaxies Centers of galaxies are the most powerful

More information

Star formation near Sgr A*

Star formation near Sgr A* Star formation near Sgr A* Sergei Nayakshin University of Leicester Plan Stay away from the S-stars (Schoedel et al. 02, Ghez et al 03) of the inner arcsecond (see T. Alexander talk) Sgr A* young stars

More information

The Centre of the Milky Way: Stellar Dynamics, Potential Star Formation, and Variable NIR Emission from Sgr A*

The Centre of the Milky Way: Stellar Dynamics, Potential Star Formation, and Variable NIR Emission from Sgr A* Mem. S.A.It. Vol. 76, 65 c SAIt 2005 Memorie della The Centre of the Milky Way: Stellar Dynamics, Potential Star Formation, and Variable NIR Emission from Sgr A* R. Schödel, and A. Eckart I.Physikalisches

More information

Astronomy 422! Lecture 7: The Milky Way Galaxy III!

Astronomy 422! Lecture 7: The Milky Way Galaxy III! Astronomy 422 Lecture 7: The Milky Way Galaxy III Key concepts: The supermassive black hole at the center of the Milky Way Radio and X-ray sources Announcements: Test next Tuesday, February 16 Chapters

More information

The Nuclear Cluster of the Milky Way

The Nuclear Cluster of the Milky Way The Nuclear Cluster of the Milky Way VLT/NACO Ks-band 87''=3.4 pc box Fritz et al ApJ submitted Chatzopolus et al. in prep. Pfuhl et al. 2011, ApJ, 741, 108 T.K. Fritz 1,2, S. Chatzopoulos 1, O. Pfuhl

More information

Massive Star Formation near Sgr A* and in the Nuclear Disk

Massive Star Formation near Sgr A* and in the Nuclear Disk Massive Star Formation near Sgr A* and in the Nuclear Disk F. Yusef-Zadeh Northwestern University Outline 1. Small Scale ~ 0.5pc The stellar disk around Sgr A* Consequence of the Motion of GMCs Engulfing

More information

Orbits and origins of the young stars in the central parsec of the Galaxy

Orbits and origins of the young stars in the central parsec of the Galaxy Orbits and origins of the young stars in the central parsec of the Galaxy J R Lu 1, A M Ghez 1,2, M Morris 1, S D Hornstein 1,3 and K Matthews 4 1 UCLA Department of Physics and Astronomy, Los Angeles,

More information

A THERMAL BREMSSTRAHLUNG MODEL FOR THE QUIESCENT X-RAY EMISSION FROM SAGITTARIUS A* Eliot Quataert

A THERMAL BREMSSTRAHLUNG MODEL FOR THE QUIESCENT X-RAY EMISSION FROM SAGITTARIUS A* Eliot Quataert The Astrophysical Journal, 575:855 859, 2002 August 20 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. A THERMAL BREMSSTRAHLUNG MODEL FOR THE QUIESCENT X-RAY EMISSION

More information

Star Formation Near Supermassive Black Holes

Star Formation Near Supermassive Black Holes 1 Star Formation Near Supermassive Black Holes Jessica Lu California Institute of Technology June 8, 2009 Collaborators: Andrea Ghez, Keith Matthews, (all) Mark Morris, Seth Hornstein, Eric Becklin, Sylvana

More information

Sgr A : from 10 0 to m in 3000 seconds

Sgr A : from 10 0 to m in 3000 seconds Sgr A : from 10 0 to 10 18 m in 3000 seconds Mark Wardle Department of Physics Macquarie University Outline The Galactic centre and Sgr A Mass determination Accretion Spectrum: radio to x-ray TeV gamma

More information

A Supermassive Black Hole in the Dwarf Starburst Galaxy Henize Amy Reines Einstein Fellow National Radio Astronomy Observatory

A Supermassive Black Hole in the Dwarf Starburst Galaxy Henize Amy Reines Einstein Fellow National Radio Astronomy Observatory A Supermassive Black Hole in the Dwarf Starburst Galaxy Henize 2-10 Amy Reines Einstein Fellow National Radio Astronomy Observatory Supermassive black holes and galaxy evolution Supermassive black holes

More information

Photo credit: Ethan Tweedie

Photo credit: Ethan Tweedie Galactic Center Andrea Ghez (UCLA/Keck Galactic Center Group) Mark Morris, Eric Becklin, Tuan Do, Jessica Lu, Mike Fitzgerald, James Larkin, Keith Matthews, Peter Wizinowich, Anna Boehle, Randy Campbell,

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

X-ray Binaries. Image credit: Robert Hynes (2002)

X-ray Binaries. Image credit: Robert Hynes (2002) Ramesh Narayan X-ray Binaries Image credit: Robert Hynes (2002) Galactic Nuclei Image credit: Lincoln Greenhill, Jim Moran Outline Measuring BH mass Estimating BH spin Testing Relativity Evidence for the

More information

arxiv:astro-ph/ v1 21 Apr 2005

arxiv:astro-ph/ v1 21 Apr 2005 A Black Hole in the Galactic Center Complex IRS 13E? R. Schödel, A. Eckart, and C. Iserlohe I.Physikalisches Institut, Universität zu Köln, Zülpicher Str.77, 50937 Köln, Germany rainer@ph1.uni-koeln.de,

More information

FORMATION OF SUPERMASSIVE BLACK HOLES Nestor M. Lasso Cabrera

FORMATION OF SUPERMASSIVE BLACK HOLES Nestor M. Lasso Cabrera FORMATION OF SUPERMASSIVE BLACK HOLES Nestor M. Lasso Cabrera In this presentation the different theories that can explain the formation of Supermassive Black Holes (SMBH) are presented. Before focus on

More information

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers?

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers? Elaine M. Sadler Black holes in massive galaxies Demographics of radio galaxies nearby and at z~0.55 Are radio galaxies signposts to black-hole mergers? Work done with Russell Cannon, Scott Croom, Helen

More information

arxiv: v1 [astro-ph] 10 Apr 2007

arxiv: v1 [astro-ph] 10 Apr 2007 Black Holes: from Stars to Galaxies across the Range of Masses Proceedings IAU Symposium No. 238, 2006 c 2006 International Astronomical Union V. Karas & G. Matt, eds. DOI: 10.1017/S1743921307004851 The

More information

Gravitation. Isaac Newton ( ) Johannes Kepler ( )

Gravitation. Isaac Newton ( ) Johannes Kepler ( ) Schwarze Löcher History I Gravitation Isaac Newton (1643-1727) Johannes Kepler (1571-1630) Isaac Newton (1643-1727) Escape Velocity V = 2GM R 1/2 Earth: 11.2 km/s (40 320 km/h) Moon: 2.3 km/s (8 300 km/h)

More information

SINFONI IN THE GALACTIC CENTER: YOUNG STARS AND INFRARED FLARES IN THE CENTRAL LIGHT-MONTH 1

SINFONI IN THE GALACTIC CENTER: YOUNG STARS AND INFRARED FLARES IN THE CENTRAL LIGHT-MONTH 1 The Astrophysical Journal, 628:246 259, 2005 July 20 # 2005. The American Astronomical Society. All rights reserved. Printed in U.S.A. A SINFONI IN THE GALACTIC CENTER: YOUNG STARS AND INFRARED FLARES

More information

Measuring Black Hole Masses in Nearby Galaxies with Laser Guide Star Adaptive Optics

Measuring Black Hole Masses in Nearby Galaxies with Laser Guide Star Adaptive Optics Measuring Black Hole Masses in Nearby Galaxies with Laser Guide Star Adaptive Optics Claire Max Anne Medling Mark Ammons UC Santa Cruz Ric Davies Hauke Engel MPE-Garching Image of NGC 6240: Bush et al.

More information

- Strong extinction due to dust

- Strong extinction due to dust The Galactic Centre - Strong extinction due to dust At optical wavelemgth the absorption is almost total Information from the 21 line, IR and radio 10 Region between and cm 14 10 22 1 arcsec at the distance

More information

The Centre of the Milky Way

The Centre of the Milky Way ESO in the 2020s, 20 January 2015, Garching, Germany The Centre of the Milky Way An easy one, for today: stars and star formation, ISM, galaxy evolution, accretion, supermassive black holes, fundamental

More information

AGN Feedback In an Isolated Elliptical Galaxy

AGN Feedback In an Isolated Elliptical Galaxy AGN Feedback In an Isolated Elliptical Galaxy Feng Yuan Shanghai Astronomical Observatory, CAS Collaborators: Zhaoming Gan (SHAO) Jerry Ostriker (Princeton) Luca Ciotti (Bologna) Greg Novak (Paris) 2014.9.10;

More information

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar Quasars ASTR 2120 Sarazin Quintuple Gravitational Lens Quasar Quasars Quasar = Quasi-stellar (radio) source Optical: faint, blue, star-like objects Radio: point radio sources, faint blue star-like optical

More information

arxiv:astro-ph/ v1 5 Jul 2005

arxiv:astro-ph/ v1 5 Jul 2005 Astronomy & Astrophysics manuscript no. hd281 February 5, 2008 (DOI: will be inserted by hand later) A dual emission mechanism in Sgr A*/L? Y. Clénet 1, D. Rouan 1, D. Gratadour 1, O. Marco 2, P. Léna

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

SINFONI in the Galactic Center: young stars. and IR flares in the central light month 1

SINFONI in the Galactic Center: young stars. and IR flares in the central light month 1 SINFONI in the Galactic Center: young stars and IR flares in the central light month 1 F.Eisenhauer 1, R.Genzel 1,2, T.Alexander 3,6, R.Abuter 1, T.Paumard 1, T.Ott 1, A.Gilbert 1, S.Gillessen 1, M.Horrobin

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information

Probing into the shadow of the galactic center black hole with sub-millimeter VLBI

Probing into the shadow of the galactic center black hole with sub-millimeter VLBI Probing into the shadow of the galactic center black hole with sub-millimeter VLBI Zhi-Qiang Shen (Shanghai Astronomical Observatory) In collaboration with: L. Huang, M. Cai, F. Yuan, S.-M. Liu K. Y. Lo,

More information

Publ. Astron. Obs. Belgrade No. 96 (2017), CENTRAL SUPERMASSIVE BLACK HOLE OF THE MILKY WAY

Publ. Astron. Obs. Belgrade No. 96 (2017), CENTRAL SUPERMASSIVE BLACK HOLE OF THE MILKY WAY Publ. Astron. Obs. Belgrade No. 96 (2017), 193-201 Invited Lecture CENTRAL SUPERMASSIVE BLACK HOLE OF THE MILKY WAY P. JOVANOVIĆ Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia E mail: pjovanovic@aob.bg.ac.rs

More information

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion Robert Laing Overview Evidence for black holes in galaxies and techniques for estimating their mass Simple

More information

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics with: Tim Heckman (JHU) GALEX Science Team (PI: Chris Martin), Lee Armus,

More information

Black Holes and Active Galactic Nuclei

Black Holes and Active Galactic Nuclei Black Holes and Active Galactic Nuclei A black hole is a region of spacetime from which gravity prevents anything, including light, from escaping. The theory of general relativity predicts that a sufficiently

More information

Optical studies of an ultraluminous X-ray source: NGC1313 X-2

Optical studies of an ultraluminous X-ray source: NGC1313 X-2 Optical studies of an ultraluminous X-ray source: NGC1313 X-2 Jifeng Liu Harvard-Smithsonian Center for Astrophysics in collaboration with Joel Bregman, Jon Miller, Philip Kaaret outline background: ultraluminous

More information

Young Stars in the Galactic Center

Young Stars in the Galactic Center Young Stars in the Galactic Center Jessica R. Lu Institute for Astronomy University of Hawaii, Manoa Tuan Do, Andrea Ghez, Mark Morris, Sylvana Yelda, Keith Matthews, Will Clarkson, Andrea Stolte, Nate

More information

Quasars and AGN. What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs

Quasars and AGN. What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs Goals: Quasars and AGN What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs Discovery of Quasars Radio Observations of the Sky Reber (an amateur

More information

Part 2. Hot gas halos and SMBHs in optically faint ellipticals. Part 3. After Chandra?

Part 2. Hot gas halos and SMBHs in optically faint ellipticals. Part 3. After Chandra? Hot gas and AGN Feedback in Nearby Groups and Galaxies Part 1. Cool cores and outbursts from supermassive black holes in clusters, groups and normal galaxies Part 2. Hot gas halos and SMBHs in optically

More information

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies Other Galaxy Types Active Galaxies Active Galaxies Seyfert galaxies Radio galaxies Quasars Origin??? Different in appearance Produce huge amount of energy Similar mechanism a Galactic mass black hole at

More information

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney Class 3 January 23, 2017 The Milky Way Galaxy: Vertical Distributions of Stars & the Stellar Disk disks exist in many astrophysical systems

More information

Roman Shcherbakov (University of Maryland, Hubble Fellow),

Roman Shcherbakov (University of Maryland, Hubble Fellow), NGC3115, credit: NASA Sgr A*, credit: NASA Roman Shcherbakov (University of Maryland, Hubble Fellow), Ka-Wah Wong, Jimmy Irwin (University of Alabama), Chris Reynolds (UMD), Fred Baganoff (MIT), Daniel

More information

Today in Astronomy 102: the Galactic center

Today in Astronomy 102: the Galactic center Today in Astronomy 102: the Galactic center The center of the Milky Way Galaxy: compelling evidence for a 3.6- million-solar-mass black hole. Image: wide-angle photo and overlay key of the Sagittarius

More information

Astro2010 Science White Paper: Tracing the Mass Buildup of Supermassive Black Holes and their Host Galaxies

Astro2010 Science White Paper: Tracing the Mass Buildup of Supermassive Black Holes and their Host Galaxies Astro2010 Science White Paper: Tracing the Mass Buildup of Supermassive Black Holes and their Host Galaxies Anton M. Koekemoer (STScI) Dan Batcheldor (RIT) Marc Postman (STScI) Rachel Somerville (STScI)

More information

arxiv: v1 [astro-ph] 27 Apr 2007

arxiv: v1 [astro-ph] 27 Apr 2007 Astronomy & Astrophysics manuscript no. 6265man c ESO 2009 March 22, 2009 First proper motions of thin dust filaments at the Galactic Center K. Mužić 1,2, A. Eckart 1,2, R. Schödel 1, L. Meyer 1, A. Zensus

More information

The Supermassive Black Hole at the Center of Our Galaxy Sagittarius A*

The Supermassive Black Hole at the Center of Our Galaxy Sagittarius A* The Supermassive Black Hole at the Center of Our Galaxy Sagittarius A* Frederick K. Baganoff MIT Optical View of the Galactic Center 30 magnitudes of optical extinction => optical diminished by factor

More information

Active galactic nuclei (AGN)

Active galactic nuclei (AGN) Active galactic nuclei (AGN) General characteristics and types Supermassive blackholes (SMBHs) Accretion disks around SMBHs X-ray emission processes Jets and their interaction with ambient medium Radio

More information

AGN in hierarchical galaxy formation models

AGN in hierarchical galaxy formation models AGN in hierarchical galaxy formation models Nikos Fanidakis and C.M. Baugh, R.G. Bower, S. Cole, C. Done, C. S. Frenk Physics of Galactic Nuclei, Ringberg Castle, June 18, 2009 Outline Brief introduction

More information

Quasars and Active Galactic Nuclei (AGN)

Quasars and Active Galactic Nuclei (AGN) Quasars and Active Galactic Nuclei (AGN) Astronomy Summer School in Mongolia National University of Mongolia, Ulaanbaatar July 21-26, 2008 Kaz Sekiguchi Hubble Classification M94-Sa M81-Sb M101-Sc M87-E0

More information

Dynamics of Stars and Black Holes in Dense Stellar Systems:

Dynamics of Stars and Black Holes in Dense Stellar Systems: Michela Mapelli INAF - Padova Dynamics of Stars and Black Holes in Dense Stellar Systems: Lecture VI: DYNAMICS AROUND SUPER-MASSIVE BHs 0. nuclear star clusters (NSCs) 1. dynamics around super-massive

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Supermassive Black Holes

Supermassive Black Holes Supermassive Black Holes Richard McDonald, student number 2798107 Swinburne Astronomy Online HET-604 April 8, 2006 Introduction This paper discusses black holes as they relate to active galactic nuclei

More information

How do disks transfer angular momentum to deliver gas onto compact objects? How do accretion disks launch winds and jets?

How do disks transfer angular momentum to deliver gas onto compact objects? How do accretion disks launch winds and jets? Astro2010 Science White Paper (GCT) Fundamental Accretion and Ejection Astrophysics J. Miller, M. Nowak, P. Nandra, N. Brandt, G. Matt, M. Cappi, G. Risaliti, S. Kitamoto, F. Paerels. M. Watson, R. Smith,

More information

The X-Ray Universe. The X-Ray Universe

The X-Ray Universe. The X-Ray Universe The X-Ray Universe The X-Ray Universe Potsdam University Dr. Lidia Oskinova Sommersemester 2017 lida@astro.physik.uni-potsdam.de astro.physik.uni-potsdam.de ~lida/vorlesungxrayso17.html Chandra X-ray,

More information

Infrared Emission from the dusty veil around AGN

Infrared Emission from the dusty veil around AGN Infrared Emission from the dusty veil around AGN Thomas Beckert Max-Planck-Institut für Radioastronomie, Bonn Bonn, 2. October 2004 In collaboration with! Bernd Vollmer (Strasbourg)! Wolfgang Duschl &

More information

Chapter 14 The Milky Way Galaxy

Chapter 14 The Milky Way Galaxy Chapter 14 The Milky Way Galaxy Spiral Galaxy M81 - similar to our Milky Way Galaxy Our Parent Galaxy A galaxy is a giant collection of stellar and interstellar matter held together by gravity Billions

More information

Martin Ward (Durham University, UK) allenges in Modern Astrophysics Sofia, Bulgaria Oct. 2009

Martin Ward (Durham University, UK) allenges in Modern Astrophysics Sofia, Bulgaria Oct. 2009 Martin Ward (Durham University, UK) allenges in Modern Astrophysics Sofia, Bulgaria Oct. 2009 What Makes a Galaxy ACTIVE? What is a Normal Galaxy? What is an Normal Galaxy? A literary analogy, adapted

More information

The Galactic Center with METIS

The Galactic Center with METIS The Galactic Center with METIS THE E-ELT E ELT DESIGN REFERENCE MISSION DRM & DRSP Workshop 26 28 May 2009 ESO Garching Andreas Eckart I.Physikalisches Institut der Universität zu Köln Max-Planck Planck-Institut

More information

Black Hole Accretion and Wind

Black Hole Accretion and Wind Black Hole Accretion and Wind Feng Yuan Shanghai Astronomical Observatory, Chinese Academy of Sciences Accretion Regimes Hyper-accretion, slim disk, ADAF (Abramowicz et al. 1988) TDEs, ULXs, SS433 Thin

More information

Feeding Sgr A*, the Supermassive Black Hole at the Center of our Galaxy

Feeding Sgr A*, the Supermassive Black Hole at the Center of our Galaxy Feeding Sgr A*, the Supermassive Black Hole at the Center of our Galaxy Thanks to James M. Moran Luis F. Rodríguez Centro de Radioastronomía y Astrofísica, UNAM and El Colegio Nacional Summary Astronomical

More information

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014

ASTRON 449: Stellar (Galactic) Dynamics. Fall 2014 ASTRON 449: Stellar (Galactic) Dynamics Fall 2014 In this course, we will cover the basic phenomenology of galaxies (including dark matter halos, stars clusters, nuclear black holes) theoretical tools

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

Nuclear Star Formation, The Torus, & Gas Inflow in Seyfert Galaxies

Nuclear Star Formation, The Torus, & Gas Inflow in Seyfert Galaxies Nuclear Star Formation, The Torus, & Gas Inflow in Seyfert Galaxies Richard Davies 1, H. Engel 1, M. Schartmann 1, G. Orban de Xivry 1, E. Sani 2, E. Hicks 3, A. Sternberg 4, R. Genzel 1, L. Tacconi 1,

More information

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar. Chapter 11: Neutron Stars and Black Holes A supernova explosion of an M > 8 M sun star blows away its outer layers. Neutron Stars The central core will collapse into a compact object of ~ a few M sun.

More information

The center of the Milky Way

The center of the Milky Way Highlights of Spanish Astrophysics VI, Proceedings of the IX Scientific Meeting of the Spanish Astronomical Society held on September 13-17, 2010, in Madrid, Spain. M. R. Zapatero Osorio et al. (eds.)

More information

Chapter 15 The Milky Way Galaxy. The Milky Way

Chapter 15 The Milky Way Galaxy. The Milky Way Chapter 15 The Milky Way Galaxy The Milky Way Almost everything we see in the night sky belongs to the Milky Way We see most of the Milky Way as a faint band of light across the sky From the outside, our

More information

Probing the properties of the Milky Way s central supermassive black hole with stellar orbits

Probing the properties of the Milky Way s central supermassive black hole with stellar orbits A Giant Step: from Milli- to Micro-arcsecond Astrometry Proceedings IAU Symposium No. 248, 2007 W. J. Jin, I. Platais & M. A. C. Perryman, eds. c 2008 International Astronomical Union doi:10.1017/s1743921308018620

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Optical spectra, distance, line width Varieties of AGN and unified scheme Variability and lifetime Black hole mass and growth Geometry: disk, BLR, NLR Reverberation mapping Jets

More information

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye Our Galaxy Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust Held together by gravity! The Milky Way with the Naked Eye We get a special view of our own galaxy because we are part of it!

More information

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA Hello! The Universe of Galaxies The Universe o Galaxies Ajit Kembhavi IUCAA Galaxies: Stars: ~10 11 Mass: ~10 11 M Sun Contain stars, gas and dust, possibly a supermassive black hole at the centre. Much

More information

Physics of the hot evolving Universe

Physics of the hot evolving Universe Physics of the hot evolving Universe Science themes for a New-Generation X-ray Telescope Günther Hasinger Max-Planck-Institut für extraterrestrische Physik Garching ESA Cosmic Vision 2015-2025 Workshop,

More information

Statistical and theoretical studies of flares in Sgr A*

Statistical and theoretical studies of flares in Sgr A* Statistical and theoretical studies of flares in Sgr A* Yaping Li Shanghai Astronomical Observatory (SHAO) Collaborators: Feng Yuan (SHAO), Q. Daniel Wang (UMass), Qiang Yuan (UMass) AND P.F. Chen (NJU),

More information

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013 T-REX Renato Falomo T-REX meeting, Bologna 14 Jan 2013 1 T-REX MICADO: Multi-AO Imaging Camera for Deep Observations The Consortium MPE Garching, Germany MPIA Heidelberg, Germany USM Munich, Germany OAPD

More information

COSMOLOGY PHYS 30392 OBSERVING THE UNIVERSE Part I Giampaolo Pisano - Jodrell Bank Centre for Astrophysics The University of Manchester - January 2013 http://www.jb.man.ac.uk/~gp/ giampaolo.pisano@manchester.ac.uk

More information

Lecture 9. Quasars, Active Galaxies and AGN

Lecture 9. Quasars, Active Galaxies and AGN Lecture 9 Quasars, Active Galaxies and AGN Quasars look like stars but have huge redshifts. object with a spectrum much like a dim star highly red-shifted enormous recessional velocity huge distance (Hubble

More information

Supermassive Black Holes

Supermassive Black Holes Supermassive Black Holes Leiden, Modern Research: Galaxy Formation and Evolution Tom van Leth & Maarten van Dijk November 25, 2005 1 Introduction Introduction Black hole theory Characteristics of SMBH

More information

Micro-arcsec Astrometry with the VLBA. Harvard-Smithsonian Center for

Micro-arcsec Astrometry with the VLBA. Harvard-Smithsonian Center for Micro-arcsec Astrometry with the VLBA Mark J. Reid Harvard-Smithsonian Center for Astrophysics Micro-arcsec Astrometry with the VLBA Fringe spacing: θ f ~λ/d ~ 1 cm / 8000 km = 250 μas Centroid Precision:

More information

X-ray spectroscopy of nearby galactic nuclear regions

X-ray spectroscopy of nearby galactic nuclear regions X-ray spectroscopy of nearby galactic nuclear regions 1. How intermittent are AGNs? 2. What about the silent majority of the SMBHs? 3. How do SMBHs interplay with their environments? Q. Daniel Wang University

More information

Active Galactic Nuclei - Zoology

Active Galactic Nuclei - Zoology Active Galactic Nuclei - Zoology Normal galaxy Radio galaxy Seyfert galaxy Quasar Blazar Example Milky Way M87, Cygnus A NGC 4151 3C273 BL Lac, 3C279 Galaxy Type spiral elliptical, lenticular spiral irregular

More information

The Black Hole at the Center of Our Galaxy. Pu, Hung-Yi 2009 Nov. NTHU

The Black Hole at the Center of Our Galaxy. Pu, Hung-Yi 2009 Nov. NTHU The Black Hole at the Center of Our Galaxy Pu, Hung-Yi 2009 Nov. 26 @ NTHU Outline The radio source Sgr A* seems to be a SMBH in our galactic center The Sgr West and Sgr East Multiband observation for

More information

Osservatorio Astronomico di Bologna, 27 Ottobre 2011

Osservatorio Astronomico di Bologna, 27 Ottobre 2011 Osservatorio Astronomico di Bologna, 27 Ottobre 2011 BASIC PARADIGM: Copious energy output from AGN (10 9-10 13 L Θ ) from accretion of material onto a Supermassive Black Hole SMBH ( 10 6-10 9 M Θ ). AGN

More information

Models of Inefficient Accretion onto a Black Hole and Pair Production in Jets

Models of Inefficient Accretion onto a Black Hole and Pair Production in Jets Models of Inefficient Accretion onto a Black Hole and Pair Production in Jets Monika Mościbrodzka University of Illinois Urbana-Champaign In collaboration with: C.F. Gammie, J. Dolence, H. Shiokawa, P.K.

More information

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky.

Our Galaxy. We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Our Galaxy Our Galaxy We are located in the disk of our galaxy and this is why the disk appears as a band of stars across the sky. Early attempts to locate our solar system produced erroneous results.

More information

arxiv:astro-ph/ v1 3 Jan 2002

arxiv:astro-ph/ v1 3 Jan 2002 Stellar Orbits Near Sagittarius A* A. Eckart.Physikalisches nstitut, Universität zu Köln, Zülpicher Str.77, 5937 Köln, Germany and arxiv:astro-ph/2131v1 3 Jan 22 R. Genzel, T. Ott, R. Schödel Max-Planck-nstitut

More information

Probing Sgr A* flares with VLTI/GRAVITY

Probing Sgr A* flares with VLTI/GRAVITY Probing Sgr A* flares with VLTI/GRAVITY Frédéric Vincent 1 T. Paumard, G. Perrin, P. Varniere, F. Casse, F. Eisenhauer, S. Gillessen, P. Armitage 1 Centrum Astronomiczne M. Kopernika, Warsaw, Poland 1/26

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information

Active Galaxies & Quasars

Active Galaxies & Quasars Active Galaxies & Quasars Normal Galaxy Active Galaxy Galactic Nuclei Bright Active Galaxy NGC 5548 Galaxy Nucleus: Exact center of a galaxy and its immediate surroundings. If a spiral galaxy, it is the

More information