The Galactic Center a unique laboratory

Size: px
Start display at page:

Download "The Galactic Center a unique laboratory"

Transcription

1 The Galactic Center a unique laboratory Stefan Gillessen, Reinhard Genzel, Frank Eisenhauer, Thomas Ott, Katie Dodds-Eden, Oliver Pfuhl, Tobias Fritz

2 The GC is highly obscured Radio IR X-ray

3

4 Extremely dense star cluster 30 = 4 lightyears Schödel (ISAAC, VLT)

5 The central 20 : Seeing limited

6 AO 1

7 AO 2

8 Really a big step forward: AO

9 Strehl ratio 40% NACO, HKL color composite

10 Diffractionlimited images

11 100 stars in the central arcsecond S2

12 Observed Tracks

13 Observed Tracks

14 Observed Tracks

15 Observed Tracks

16 Observed Tracks

17 Result of 16 years monitoring

18 Currently: 30 orbits known S2 20 stars shown, Gillessen+ 2009

19 Stars move on Keplerian orbits Real Data (!) Model

20 S2: the showcase star AO, 8/10m pose err: < 500µas Speckle 3.5m pos err: 2 mas VLT & Keck data suitably combined (Gillessen et al. 2009, ApJL, 707, 114) 2002 Speckle 10m pos err: 1 mas period: 15.9 years semi major axis: 125 mas eccentricity 0.88 M = 4.30 ± 0.06 ± 0.35 x 10 6 M R 0 = 8.28 ± 0.15 ± 0.30 kpc

21 Radial velocity data & fit

22 M = M in 100 AU 30 AU

23 The radio view Sgr A*

24 Sgr A* and mass coincide to within 2mas Reid+ 2007

25 Sgr A* must be very heavy perfectly linear motion reflex motion of Sun (~200 km/s) intrinsic motion gal. l : -7.2 ± 8.5 km/s gal. b: -0.4 ± 0.9 km/s Sgr A* is much heavier than surrounding stars > 4 x 10 5 M Reid 2007, 2009

26 1.3mm VLBI

27 Sgr A* is very small: r < 4 Rs 1 AU Shen et al Bower et al Doeleman et al (VLBI) Schwarzschild radius: 10 µas

28 Not yet real imaging but a size measurement SMT-CARMA JCMT-CARMA SMT-JCMT Falcke et al. 2000, Gammie et al., Broderick et al.,...

29 The dream for the future Broderick & Loeb 2006

30 Sgr A* is a MBH Compact mass from stellar orbits: 4 x 106 M Radio Sgr A* coincides with the mass Radio Sgr A* moves in a straight line Radio Sgr A* is < 1 AU

31 Mass and R 0 are highly correlated pure astrometry: M ~ R 3 astrometry + radial velocities: M ~ R 2.0 only radial velocities: M ~ R 0

32 How well do we know that potential is that of a point mass? Measured fraction of mass inside of S2 orbit that is not pointlike (100 AU < r < 2000 AU) Theory: Drain Limit Number of XRBs: (Alexander & Livio 2004) (Muno 2005) Theory: Dynamical Modeling 98% of 4 million suns in 100 AU (Cosmological) Dark Matter (Hopman & Alexander 2006) (Gnedin & Primack 2004, Vasiliev & Zelnikov 2008)

33 How sensitive are we to relativistic effects? Wrong: For given orbit compare Keplerian & Relativistic data Right: For given data compare Keplerian & Relativistic fit

34 Zucker et al Special relativistic effects for S2 easily observable with today s technique Romer effect Transverse Doppl Gravitational reds Spectroscopy error band

35 Astrometric deviations are much harder to detect x (µas) Dec < 0.5 mas RA best fitting Keplerian orbit minus best fitting relativistic orbit t (yr) Schwarzschild correction to 1/r potential

36 Rubilar & Eckart (2001) Another way to look at it: Measure pericenter shift explicitely expected: Δω = 0.22 per revolution (16 years) measured: Δω = 0.84 in 18 years

37 Surprisingly, the S-stars are young Eisenhauer+ 2005

38 The spectrum of S2 really is that of an ordinary main sequence B2 star Martins+ 2008

39 S-stars: A Paradox of Youth Ghez Star formation so close the MBH impossible Stars are too young to have migrated from further out

40 For r > 1 : Hard to measure accelerations r < 1 r > 1 x y vx vy vz a 2D (a, e, i, ω, Ω, t)

41 The traces for the young, clockwise moving stars intersect in one point orientation of orbital angular momentum Bartko Lu+ 2009

42 (Most of) the CW moving O/WR-stars revolve in a disk

43 The disk has a topheavy IMF Bartko+ 2010

44 Disk orbits have <e> 0.4 Bartko+ 2009

45 cumulative PDF Eccentricities: S-stars Disk stars early-type S-stars: 6 disk stars: cpdf e e = 0.34 ± eccentricity

46 Orbital planes: S-stars disk stars

47 Two paradoxes of Youth O/WR stars B stars 1 < R < 10 age 6 Myr R< 1 age 10 8 yr

48 Portegies-Zwart Idea I: Cluster in-spiral Gerhard 2001 Problems: To spiral in within 6 Myr, cluster mass would exceed stellar mass seen by far large IMBH would be required surface density profile of disk is too steep Where are the B-stars?

49 Bonnel & Rice 2008, Hobbs & Nayakshin 2008 Idea II: In-situ formation in infalling gas cloud More promising: critical density for star formation is reached easily moderate eccentricities IMF gets top-heavy warps possible

50 Two paradoxes of Youth O/WR stars B stars 1 < R < 10 age 6 Myr R< 1 age 10 8 yr

51 The S-stars puzzle is hard In-situ formation Fast transport Rejuvination Critical density ~ M/R g/cm 3 (for R = 0.5 ) Core of clump in molecular cloud 10 6 /cm g/cm 3 cosmic pool game fast relaxation processes Migration from O/WR star disks? Stars are actually old but look young stripping of giants, S-stars are the hot cores Spectrum of S2

52 Currently a Hills-like mechanism seems to be preferred Massive Perturbers Scattering of field binaries into near loss cone orbits due to Massive Perturbers Tidal break-up of binaries at pericenter passage Hills 1988 Fast Relaxation of orbit to match observed properties Resonant? Migration Formation of B-stars in (former) disks Interactions to increase <e> 2 nd disk, stellar cusp, IMBH Interactions to lower <a> planetary migration Fast Relaxation IMBH?

53 Both scenarios direct stars to large <e> orbits within few Myr Massive Perturbers Migration Perets, Hopman & Alexander 2007 Löckmann, Baumgardt & Kroupa (2008)

54 Both resonant and IMBH-aided relaxation are fast enough Massive Perturbers Migration Alexander 2008 Merritt, Gualandris, Mikkola 2009

55 The eccentricity distribution might be the clue Migration Perets More orbits Massive Perturbers?

56 Dynamics of the star cluster Schödel+ 2009

57 The old stars: missing towards the center? Buchholz+ 2009, Do+ 2009, Bartko+ 2010

58 Standard game : σ mass

59 Cluster rotation: In v rad and proper motion

60 The next puzzle: Sgr A* should be bright - but is not Limit: Eddington luminosity radiation pressure = gravitation S2 L = x 5 x erg/s = x L pos of Sgr A* S17

61 Sgr A* is dim at all wavelengths: ~ 10-8 < 200 L

62 Sgr A* does not have a surface Accretion flow models: Accretion rate is well-determined from radio data: ~ 5 x 10-8 M /yr radio flux: 1% % of the gravitational binding energy is released before surface / horizon is reached > 99% of the energy reaches surface / horizon Assume a surface: Accretion powered source would have to approach black body in equilibrium Size of surface limited by submm measurement Broderick & Narayan 2009 Such a small object with given infall rate would shine in the M/NIR M/NIR-Observations in quiescence constrain allowable surface

63 Observational constraint: Only 0.4% of the energy can be released from a surface Broderick & Narayan 2009 Allowed

64 Sometimes, SgrA* flares up in the NIR Typically one flare per night Lasts ~ 90 min Much redder than the stars Genzel et al. 2003, Eisenhauer et al Gillessen et al. 2006, Hornstein et al Dodds-Eden et al. 2009

65 Sgr A* is a source that undergoes bursts Dodds-Eden et al. in prep.

66 Continuous variability & a tail of flares Dodds-Eden et al. in prep.

67 Sgr A* is the only strongly polarized source in the GC Sum of two polarizations Difference of two polarizations Trippe 2007

68 Flares are synchrotron emission of transiently heated electrons

69 Flares often are quasi-periodic Minute-timescale variability: size < 2 light min = 30 µas

70 Basic picture: Orbiting hot spot Magnetic field winds up Reconnection event Energy from B heats electrons

71 Sgr A* has spin parameter > 0.5 if QPO is due to orbital dynamics allowed shortest QPO observed: 17min not allowed Genzel+ 2003

72 Simultaneous X-ray flares happen on the same timescale Dodds-Eden et al. 2009, Porquet et al Eckart et al. 2006

73 X-ray origin is under discussion IC SSC seed photon region < 0.1 R S B > 3000G synchrotron synchr. + cool IR color wrong Dodds-Eden et al. 2009

74 Dodds-Eden et al. arxiv/ Energy for flares might come from B 2 new idea : no submm flares but submm dips

75 Limits and beyond

76 What is limiting astrometry today?

77 Fritz S2 like stars: Distortions Fainter stars: Halo noise

78 Halo noise

79 Assume, we continue what we are doing. How well do we do then? NACO: Astrometry with 300 µas SINFONI: Spectroscopy with 15 km/s

80 2020: 3σ detection of GR precession possible

81 Imagine we could zoom in further Expected in central 100 mas: -- ~5 stars -- K = mag Orbital Period: 1 year Precession: ~ few per year

82 The next step in angular resolution: NIR-Interferometry

83 Simulations show: VLTI can observe such stars Cleaned image Simulated Image PSF: 4 UTs, K, 9 hrs

84 A factor 15 more powerful than the VLT VLT (8m): R = 50 mas Δx = 150 µas VLTI (120m): R = 3 mas Δx = 10 µas

85 Flares orbit with amplitudes > 50µas 60 µas

86 GR effects dominate inner accretion zone

87 1 flare observed shows wobble, 10 flares coadded show GR 1 flare 10 flares

88 Dual feed, 4-telescope, adaptive optics assisted, fringe tracking beam combiner instrument

89 Concept for GRAVITY is advanced Object Phase reference Wavefront reference Telescope #1 2 FoV Metrology fringes on secondary Metrology Telescope #2 Metrology camera Starlight Star separator Switchyard 2 FoV Delay line MACAO DM IR wavefront sensor Tip Tilt Guider dopd control Beam Combiner Instrument IO Beam combiner Spectrometer A D Fiber coupler Polarization control OPD control Phase Shifter Metrology Laser B C

90 GRAVITY guaranteed to be a success We know: Flare must be a small region in space Flare must be close to event horizon Everything moves with nearly c Flares last an hour travelled path: independent of exact model

91 The physics perspective: Tests of GR Psaltis 2004

92 Dynamical tests: Low curvature, low mass Dynamical Tests

93 LIGO: Supernovae & gravitational waves

94 LISA: SMBH mergers

95 Fuzzy laboratory Difficult to get to dynamics submm-shadow of MBH in GC Falcke et al. 2000

96 VLTI in GC: GRAVITY 2 effects in stellar orbits

97 VLTI in GC: GRAVITY Lense-Thirring precession of central cusp stars

98 Flares at last stable orbit VLTI in GC: GRAVITY

99

The Galactic Center a unique laboratory for studying massive black holes

The Galactic Center a unique laboratory for studying massive black holes The Galactic Center a unique laboratory for studying massive black holes Reinhard Genzel MPE on behalf of the ESO Galactic Center community (MPE, MPIA, UCologne, Observatoire de Paris, Granada, MPIfR,

More information

Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.1/24. T. Paumard (MPE)

Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.1/24. T. Paumard (MPE) Scientific prospects for VLTI in the Galactic Centre: Getting to the Schwarzschild Radius T. Paumard (MPE) G. Perrin, A. Eckart, R. Genzel, P. Léna, R. Schödel, F. Eisenhauer, T. Müller, S. Gillessen Scientific

More information

Rainer Schödel & Andreas Eckart Universität zu Köln. Stellar Dynamics Star Formation/Young Stars

Rainer Schödel & Andreas Eckart Universität zu Köln. Stellar Dynamics Star Formation/Young Stars Rainer Schödel & Andreas Eckart Universität zu Köln The Center of the Milky Way Stellar Dynamics Star Formation/Young Stars Variable emission from Sgr A* e.g. Eckart & Genzel (1996); Ghez et al. (1998);

More information

Orbits and origins of the young stars in the central parsec of the Galaxy

Orbits and origins of the young stars in the central parsec of the Galaxy Orbits and origins of the young stars in the central parsec of the Galaxy J R Lu 1, A M Ghez 1,2, M Morris 1, S D Hornstein 1,3 and K Matthews 4 1 UCLA Department of Physics and Astronomy, Los Angeles,

More information

Photo credit: Ethan Tweedie

Photo credit: Ethan Tweedie Galactic Center Andrea Ghez (UCLA/Keck Galactic Center Group) Mark Morris, Eric Becklin, Tuan Do, Jessica Lu, Mike Fitzgerald, James Larkin, Keith Matthews, Peter Wizinowich, Anna Boehle, Randy Campbell,

More information

Star Formation Near Supermassive Black Holes

Star Formation Near Supermassive Black Holes 1 Star Formation Near Supermassive Black Holes Jessica Lu California Institute of Technology June 8, 2009 Collaborators: Andrea Ghez, Keith Matthews, (all) Mark Morris, Seth Hornstein, Eric Becklin, Sylvana

More information

Thibaut Paumard (MPE) F. Eisenhauer, R. Genzel, S. Rabien, S. Gillessen, F. Martins, T. Müller, G. Perrin, A. Eckart, W. Brandner, et al.

Thibaut Paumard (MPE) F. Eisenhauer, R. Genzel, S. Rabien, S. Gillessen, F. Martins, T. Müller, G. Perrin, A. Eckart, W. Brandner, et al. The Galactic Centre: from SINFONI to GRAVITY Thibaut Paumard (MPE) F. Eisenhauer, R. Genzel, S. Rabien, S. Gillessen, F. Martins, T. Müller, G. Perrin, A. Eckart, W. Brandner, et al. The Galactic Centre:

More information

Dynamics of Stars and Black Holes in Dense Stellar Systems:

Dynamics of Stars and Black Holes in Dense Stellar Systems: Michela Mapelli INAF - Padova Dynamics of Stars and Black Holes in Dense Stellar Systems: Lecture VI: DYNAMICS AROUND SUPER-MASSIVE BHs 0. nuclear star clusters (NSCs) 1. dynamics around super-massive

More information

The Discovery of Quasars

The Discovery of Quasars Massive Black Holes Reinhard Genzel Max-Planck Institut für extraterrestrische Physik, Garching & Departments of Physics & Astronomy, University of California, Berkeley, USA Radio source 3C 273 The Discovery

More information

G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA , USA

G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA , USA E-mail: shahzaman@ph1.uni-koeln.de A.Eckart E-mail: eckart@ph1.uni-koeln.de G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA 90095-1547, USA N. Sabha M. Zamaninasab

More information

The Centre of the Milky Way

The Centre of the Milky Way ESO in the 2020s, 20 January 2015, Garching, Germany The Centre of the Milky Way An easy one, for today: stars and star formation, ISM, galaxy evolution, accretion, supermassive black holes, fundamental

More information

Astronomy 422! Lecture 7: The Milky Way Galaxy III!

Astronomy 422! Lecture 7: The Milky Way Galaxy III! Astronomy 422 Lecture 7: The Milky Way Galaxy III Key concepts: The supermassive black hole at the center of the Milky Way Radio and X-ray sources Announcements: Test next Tuesday, February 16 Chapters

More information

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

Accretion onto the Massive Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) Accretion onto the Massive Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? GR! Best evidence for a BH (stellar orbits) M 4x10 6 M Largest BH on the sky

More information

The Nuclear Cluster of the Milky Way

The Nuclear Cluster of the Milky Way The Nuclear Cluster of the Milky Way VLT/NACO Ks-band 87''=3.4 pc box Fritz et al ApJ submitted Chatzopolus et al. in prep. Pfuhl et al. 2011, ApJ, 741, 108 T.K. Fritz 1,2, S. Chatzopoulos 1, O. Pfuhl

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

Black Holes in Hibernation

Black Holes in Hibernation Black Holes in Hibernation Black Holes in Hibernation Only about 1 in 100 galaxies contains an active nucleus. This however does not mean that most galaxies do no have SMBHs since activity also requires

More information

Star formation near Sgr A*

Star formation near Sgr A* Star formation near Sgr A* Sergei Nayakshin University of Leicester Plan Stay away from the S-stars (Schoedel et al. 02, Ghez et al 03) of the inner arcsecond (see T. Alexander talk) Sgr A* young stars

More information

Relativistic loss-cone dynamics: Implications for the Galactic Center

Relativistic loss-cone dynamics: Implications for the Galactic Center Relativistic loss-cone dynamics: Implications for the Galactic Center Relativistic loss-cone dynamics: Implications for the Galactic Center Tal Alexander Weizmann Institute of cience 3 RR < NR Plunge log

More information

Fermi Bubbles: echoes of the last quasar outburst?

Fermi Bubbles: echoes of the last quasar outburst? Fermi Bubbles: echoes of the last quasar outburst? Sergei Nayakshin, University of Leicester Kastytis Zubovas, Andrew King (Leicester) Chris Power (U of Western Australia, Perth) The Fermi Bubbles in the

More information

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar. Chapter 11: Neutron Stars and Black Holes A supernova explosion of an M > 8 M sun star blows away its outer layers. Neutron Stars The central core will collapse into a compact object of ~ a few M sun.

More information

General relativistic effects on the orbit of the S2 star with GRAVITY

General relativistic effects on the orbit of the S2 star with GRAVITY General relativistic effects on the orbit of the S2 star with GRAVITY Marion Grould Collaborators: Frédéric Vincent, Thibaut Paumard & Guy Perrin GPhys, June 19 th 2017 The Galactic center the S2 star

More information

Probing Sgr A* flares with VLTI/GRAVITY

Probing Sgr A* flares with VLTI/GRAVITY Probing Sgr A* flares with VLTI/GRAVITY Frédéric Vincent 1 T. Paumard, G. Perrin, P. Varniere, F. Casse, F. Eisenhauer, S. Gillessen, P. Armitage 1 Centrum Astronomiczne M. Kopernika, Warsaw, Poland 1/26

More information

Energy Source for Active Galactic Nuclei

Energy Source for Active Galactic Nuclei Quasars Quasars are small, extremely luminous, extremely distant galactic nuclei Bright radio sources Name comes from Quasi-Stellar Radio Source, as they appeared to be stars! Can have clouds of gas near

More information

In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes

In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes Stellar velocity fields MW Distant galaxies Gas motions gas disks around nearby black holes

More information

Publ. Astron. Obs. Belgrade No. 96 (2017), CENTRAL SUPERMASSIVE BLACK HOLE OF THE MILKY WAY

Publ. Astron. Obs. Belgrade No. 96 (2017), CENTRAL SUPERMASSIVE BLACK HOLE OF THE MILKY WAY Publ. Astron. Obs. Belgrade No. 96 (2017), 193-201 Invited Lecture CENTRAL SUPERMASSIVE BLACK HOLE OF THE MILKY WAY P. JOVANOVIĆ Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia E mail: pjovanovic@aob.bg.ac.rs

More information

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy

Learning Objectives: Chapter 13, Part 1: Lower Main Sequence Stars. AST 2010: Chapter 13. AST 2010 Descriptive Astronomy Chapter 13, Part 1: Lower Main Sequence Stars Define red dwarf, and describe the internal dynamics and later evolution of these low-mass stars. Appreciate the time scale of late-stage stellar evolution

More information

Gravitation. Isaac Newton ( ) Johannes Kepler ( )

Gravitation. Isaac Newton ( ) Johannes Kepler ( ) Schwarze Löcher History I Gravitation Isaac Newton (1643-1727) Johannes Kepler (1571-1630) Isaac Newton (1643-1727) Escape Velocity V = 2GM R 1/2 Earth: 11.2 km/s (40 320 km/h) Moon: 2.3 km/s (8 300 km/h)

More information

Plunging Plasma Blobs near the Marginally Stable Orbit of Sgr A*

Plunging Plasma Blobs near the Marginally Stable Orbit of Sgr A* International Journal of Astronomy 2015, 4(1): 5-11 DOI: 10.5923/j.astronomy.20150401.02 Plunging Plasma Blobs near the Marginally Stable Orbit of Sgr A* E. M. Howard Department of Physics and Astronomy,

More information

Measuring the physical proper2es of the Milky Way nuclear star cluster with 3D kinema2cs

Measuring the physical proper2es of the Milky Way nuclear star cluster with 3D kinema2cs Measuring the physical proper2es of the Milky Way nuclear star cluster with 3D kinema2cs Tuan Do Dunlap Ins2tute, University of Toronto Dunlap Fellow Collaborators: A. Ghez (UCLA), J. Lu (IfA), G. Mar2nez

More information

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath Review: Creating Stellar Remnants Binaries may be destroyed in white dwarf supernova Binaries be converted into black holes Review: Stellar

More information

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar Quasars ASTR 2120 Sarazin Quintuple Gravitational Lens Quasar Quasars Quasar = Quasi-stellar (radio) source Optical: faint, blue, star-like objects Radio: point radio sources, faint blue star-like optical

More information

Chapter 19 Lecture. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Lecture. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Chapter 19 Lecture The Cosmic Perspective Seventh Edition Our Galaxy Our Galaxy 19.1 The Milky Way Revealed Our goals for learning: Where are we located within our galaxy? What does our galaxy look like?

More information

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies?

Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Components of Galaxies Stars What Properties of Stars are Important for Understanding Galaxies? Temperature Determines the λ range over which the radiation is emitted Chemical Composition metallicities

More information

The Galactic Center with METIS

The Galactic Center with METIS The Galactic Center with METIS THE E-ELT E ELT DESIGN REFERENCE MISSION DRM & DRSP Workshop 26 28 May 2009 ESO Garching Andreas Eckart I.Physikalisches Institut der Universität zu Köln Max-Planck Planck-Institut

More information

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation! Bring pencil #2 with eraser No use of calculator or any electronic device during the exam We provide the scantrons

More information

arxiv: v1 [astro-ph.ga] 2 Mar 2009

arxiv: v1 [astro-ph.ga] 2 Mar 2009 The Galactic Center: A Laboratory for Fundamental Astrophysics and Galactic Nuclei An Astro2010 Science White Paper arxiv:0903.0383v1 [astro-ph.ga] 2 Mar 2009 Authors: Andrea Ghez (UCLA; ghez@astro.ucla.edu),

More information

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 14 Neutron

More information

Neutron Stars. Properties of Neutron Stars. Formation of Neutron Stars. Chapter 14. Neutron Stars and Black Holes. Topics for Today s Class

Neutron Stars. Properties of Neutron Stars. Formation of Neutron Stars. Chapter 14. Neutron Stars and Black Holes. Topics for Today s Class Foundations of Astronomy 13e Seeds Phys1403 Introductory Astronomy Instructor: Dr. Goderya Chapter 14 Neutron Stars and Black Holes Cengage Learning 2016 Topics for Today s Class Neutron Stars What is

More information

Chapter 19 Lecture. The Cosmic Perspective. Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Lecture. The Cosmic Perspective. Seventh Edition. Our Galaxy Pearson Education, Inc. Chapter 19 Lecture The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed Our goals for learning: Where are we located within our galaxy? What does our galaxy look like? How do stars

More information

Chapter 14 The Milky Way Galaxy

Chapter 14 The Milky Way Galaxy Chapter 14 The Milky Way Galaxy Spiral Galaxy M81 - similar to our Milky Way Galaxy Our Parent Galaxy A galaxy is a giant collection of stellar and interstellar matter held together by gravity Billions

More information

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013 T-REX Renato Falomo T-REX meeting, Bologna 14 Jan 2013 1 T-REX MICADO: Multi-AO Imaging Camera for Deep Observations The Consortium MPE Garching, Germany MPIA Heidelberg, Germany USM Munich, Germany OAPD

More information

Active Galactic Nuclei-I. The paradigm

Active Galactic Nuclei-I. The paradigm Active Galactic Nuclei-I The paradigm An accretion disk around a supermassive black hole M. Almudena Prieto, July 2007, Unv. Nacional de Bogota Centers of galaxies Centers of galaxies are the most powerful

More information

The Milky Way nuclear star cluster: theoretical perspective. Structure Formation Evolution. Eugene Vasiliev

The Milky Way nuclear star cluster: theoretical perspective. Structure Formation Evolution. Eugene Vasiliev The Milky Way nuclear star cluster: theoretical perspective Structure Formation Evolution Eugene Vasiliev Institute of Astronomy, Cambridge Survival of dense star clusters in the Milky Way system Heidelberg,

More information

Feeding Sgr A*, the Supermassive Black Hole at the Center of our Galaxy

Feeding Sgr A*, the Supermassive Black Hole at the Center of our Galaxy Feeding Sgr A*, the Supermassive Black Hole at the Center of our Galaxy Thanks to James M. Moran Luis F. Rodríguez Centro de Radioastronomía y Astrofísica, UNAM and El Colegio Nacional Summary Astronomical

More information

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation

More information

Supermassive Black Hole Formation in Galactic Nuclei

Supermassive Black Hole Formation in Galactic Nuclei Supermassive Black Hole Formation in Galactic Nuclei Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University Ross Church (Lund), Cole Miller (Maryland), Serge Nzoke (Lund), Jillian

More information

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye Our Galaxy Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust Held together by gravity! The Milky Way with the Naked Eye We get a special view of our own galaxy because we are part of it!

More information

AST Cosmology and extragalactic astronomy. Lecture 20. Black Holes Part II

AST Cosmology and extragalactic astronomy. Lecture 20. Black Holes Part II AST4320 - Cosmology and extragalactic astronomy Lecture 20 Black Holes Part II 1 AST4320 - Cosmology and extragalactic astronomy Outline: Black Holes Part II Gas accretion disks around black holes, and

More information

- Strong extinction due to dust

- Strong extinction due to dust The Galactic Centre - Strong extinction due to dust At optical wavelemgth the absorption is almost total Information from the 21 line, IR and radio 10 Region between and cm 14 10 22 1 arcsec at the distance

More information

PoS(10th EVN Symposium)052

PoS(10th EVN Symposium)052 MIT Haystack Observatory, USA E-mail: vfish@haystack.mit.edu Due to recent technological and scientific advancements, VLBI at 1.3 mm wavelength has matured to a point where observations can readily achieve

More information

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies Other Galaxy Types Active Galaxies Active Galaxies Seyfert galaxies Radio galaxies Quasars Origin??? Different in appearance Produce huge amount of energy Similar mechanism a Galactic mass black hole at

More information

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition The Bizarre Stellar Graveyard 18.1 White Dwarfs What is a white dwarf? What can happen to a white dwarf in a close binary system? What supports

More information

Bizarre eating habits of the Black Hole in the center of the Milky Way. Roman Shcherbakov Hubble Fellow at University of Maryland 12 Feb 2012

Bizarre eating habits of the Black Hole in the center of the Milky Way. Roman Shcherbakov Hubble Fellow at University of Maryland 12 Feb 2012 Bizarre eating habits of the Black Hole in the center of the Milky Way Roman Shcherbakov Hubble Fellow at University of Maryland 12 Feb 2012 The Milky Way galaxy A typical spiral galaxy is our home: 100.000

More information

Our View of the Milky Way. 23. The Milky Way Galaxy

Our View of the Milky Way. 23. The Milky Way Galaxy 23. The Milky Way Galaxy The Sun s location in the Milky Way galaxy Nonvisible Milky Way galaxy observations The Milky Way has spiral arms Dark matter in the Milky Way galaxy Density waves produce spiral

More information

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way

Chapter 33 The History of a Star. Introduction. Radio telescopes allow us to look into the center of the galaxy. The milky way Chapter 33 The History of a Star Introduction Did you read chapter 33 before coming to class? A. Yes B. No You can see about 10,000 stars with the naked eye. The milky way Radio telescopes allow us to

More information

The Milky Way - Chapter 23

The Milky Way - Chapter 23 The Milky Way - Chapter 23 The Milky Way Galaxy A galaxy: huge collection of stars (10 7-10 13 ) and interstellar matter (gas & dust). Held together by gravity. Much bigger than any star cluster we have

More information

Chapter 15 The Milky Way Galaxy. The Milky Way

Chapter 15 The Milky Way Galaxy. The Milky Way Chapter 15 The Milky Way Galaxy The Milky Way Almost everything we see in the night sky belongs to the Milky Way We see most of the Milky Way as a faint band of light across the sky From the outside, our

More information

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of?

The Milky Way Galaxy. Some thoughts. How big is it? What does it look like? How did it end up this way? What is it made up of? Some thoughts The Milky Way Galaxy How big is it? What does it look like? How did it end up this way? What is it made up of? Does it change 2 3 4 5 This is not a constant zoom The Milky Way Almost everything

More information

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 22 Astronomy Today 8th Edition Chaisson/McMillan Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 Neutron-Star Binaries 22.4 Gamma-Ray

More information

Black Holes and Active Galactic Nuclei

Black Holes and Active Galactic Nuclei Black Holes and Active Galactic Nuclei A black hole is a region of spacetime from which gravity prevents anything, including light, from escaping. The theory of general relativity predicts that a sufficiently

More information

Resolving Black Holes with Millimeter VLBI

Resolving Black Holes with Millimeter VLBI Resolving Black Holes with Millimeter VLBI Vincent L. Fish MIT Haystack Observatory and the Event Horizon Telescope collaboration Model courtesy C. Gammie Bringing resolution to black holes There is lots

More information

Stellar Populations: Resolved vs. unresolved

Stellar Populations: Resolved vs. unresolved Outline Stellar Populations: Resolved vs. unresolved Individual stars can be analyzed Applicable for Milky Way star clusters and the most nearby galaxies Integrated spectroscopy / photometry only The most

More information

Evolution of High Mass stars

Evolution of High Mass stars Evolution of High Mass stars Neutron Stars A supernova explosion of a M > 8 M Sun star blows away its outer layers. The central core will collapse into a compact object of ~ a few M Sun. Pressure becomes

More information

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox

If there is an edge to the universe, we should be able to see our way out of the woods. Olber s Paradox. This is called Olber s Paradox Suppose the Universe were not expanding, but was in some kind of steady state. How should galaxy recession velocities correlate with distance? They should a) be directly proportional to distance. b) reverse

More information

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc) THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

More information

Our goals for learning: 2014 Pearson Education, Inc. We see our galaxy edge-on. Primary features: disk, bulge, halo, globular clusters All-Sky View

Our goals for learning: 2014 Pearson Education, Inc. We see our galaxy edge-on. Primary features: disk, bulge, halo, globular clusters All-Sky View Our Galaxy Chapter 19 Lecture The Cosmic Perspective 19.1 The Milky Way Revealed What does our galaxy look like? What does our galaxy look like? How do stars orbit in our galaxy? Seventh Edition Our Galaxy

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

An Introduction to Radio Astronomy

An Introduction to Radio Astronomy An Introduction to Radio Astronomy Bernard F. Burke Massachusetts Institute of Technology and Francis Graham-Smith Jodrell Bank, University of Manchester CAMBRIDGE UNIVERSITY PRESS Contents Preface Acknowledgements

More information

Stellar processes in Galactic center

Stellar processes in Galactic center Univerza v Ljubljani, Fakulteta za matematiko in fiziko Seminar Stellar processes in Galactic center Avtor: Janez Kos Mentor: prof. dr. Tomaž Zwitter Ljubljana, December 2008 Abstract The seminar is about

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture 14; November 10, 2016 Previously on Astro 1 Late evolution and death of intermediate-mass stars (about 0.4 M to about 4 M ): red giant when shell hydrogen fusion begins, a

More information

The center of the Milky Way

The center of the Milky Way Highlights of Spanish Astrophysics VI, Proceedings of the IX Scientific Meeting of the Spanish Astronomical Society held on September 13-17, 2010, in Madrid, Spain. M. R. Zapatero Osorio et al. (eds.)

More information

The evolution of a Solar-like system. Young Solar-like Systems. Searching for Extrasolar Planets: Motivation

The evolution of a Solar-like system. Young Solar-like Systems. Searching for Extrasolar Planets: Motivation Young Solar-like Systems The evolution of a Solar-like system FIG.2. Panels(a),(b),and(c)show2.9,1.3,and0.87mmALMAcontinuum images of HL Tau. Panel (d) shows the 1.3 mm psf for the same FOV as the other

More information

The Galaxy. (The Milky Way Galaxy)

The Galaxy. (The Milky Way Galaxy) The Galaxy (The Milky Way Galaxy) Which is a picture of the Milky Way? A A is what we see from Earth inside the Milky Way while B is what the Milky Way might look like if we were far away looking back

More information

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars Distribution of X-ray binary stars in the Galaxy (RXTE) Robert Laing Primary Compact accreting binary systems Compact star WD NS BH

More information

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

More information

Gas dynamics and accretion in the Galactic centre

Gas dynamics and accretion in the Galactic centre Gas dynamics and accretion in the Galactic centre Jorge Cuadra P. Universidad Católica (PUC) Chile JC acknowledges support from CONICYT- Chile through FONDECYT (1141175), Basal (PFB0609) and Anillo (ACT1101)

More information

1932: KARL JANSKY. 1935: noise is identified as coming from inner regions of Milky Way

1932: KARL JANSKY. 1935: noise is identified as coming from inner regions of Milky Way 1932: KARL JANSKY Is assigned the task of identifying the noise that plagued telephone calls to Europe 1935: noise is identified as coming from inner regions of Milky Way MANY YEARS GO BY. 1960: a strong

More information

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with

Cosmologists dedicate a great deal of effort to determine the density of matter in the universe. Type Ia supernovae observations are consistent with Notes for Cosmology course, fall 2005 Dark Matter Prelude Cosmologists dedicate a great deal of effort to determine the density of matter in the universe Type Ia supernovae observations are consistent

More information

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name

Astronomy Stars, Galaxies and Cosmology Exam 3. Please PRINT full name Astronomy 132 - Stars, Galaxies and Cosmology Exam 3 Please PRINT full name Also, please sign the honor code: I have neither given nor have I received help on this exam The following exam is intended to

More information

Bulletin on the Biggest, Baddest Black Hole on the Block

Bulletin on the Biggest, Baddest Black Hole on the Block Bulletin on the Biggest, Baddest Black Hole on the Block (SgrA* that is) Scott C. Noble UIUC CTA Lunch Seminar September 21, 2005 Outline: Introduction: How Big and Bad is it? M, R, tdyn, d, etc. What

More information

The Event Horizon Telescope: A (sub)mm-vlbi Network. Shep Doeleman MIT Haystack Observatory for the EHT Collaboration

The Event Horizon Telescope: A (sub)mm-vlbi Network. Shep Doeleman MIT Haystack Observatory for the EHT Collaboration The Event Horizon Telescope: A (sub)mm-vlbi Network Shep Doeleman MIT Haystack Observatory for the EHT Collaboration Big Questions Is there an Event Horizon? Does GR hold near BH? How does matter accrete/outflow

More information

Recent Results and Perspectives for Precision Astrometry and Photometry with Adaptive Optics.

Recent Results and Perspectives for Precision Astrometry and Photometry with Adaptive Optics. Invited Paper Recent Results and Perspectives for Precision Astrometry and Photometry with Adaptive Optics. Jessica R. Lu a, Andrea M. Ghez b,c, Sylvana Yelda b, Tuan Do b, Will Clarkson b,nate McCrady

More information

Probing into the shadow of the galactic center black hole with sub-millimeter VLBI

Probing into the shadow of the galactic center black hole with sub-millimeter VLBI Probing into the shadow of the galactic center black hole with sub-millimeter VLBI Zhi-Qiang Shen (Shanghai Astronomical Observatory) In collaboration with: L. Huang, M. Cai, F. Yuan, S.-M. Liu K. Y. Lo,

More information

Massive Star Formation near Sgr A* and in the Nuclear Disk

Massive Star Formation near Sgr A* and in the Nuclear Disk Massive Star Formation near Sgr A* and in the Nuclear Disk F. Yusef-Zadeh Northwestern University Outline 1. Small Scale ~ 0.5pc The stellar disk around Sgr A* Consequence of the Motion of GMCs Engulfing

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Prof. Jeff Kenney Class 18 June 20, 2018 the first quasar discovered 3C273 (1963) very bright point source (the quasar ) jet the first quasar discovered 3C273 (1963) very bright

More information

Decadal Survey White Paper: Probing Stellar Dynamics in Galactic Nuclei

Decadal Survey White Paper: Probing Stellar Dynamics in Galactic Nuclei Decadal Survey White Paper: Probing Stellar Dynamics in Galactic Nuclei Contributors: Tal Alexander, Pau Amaro-Seoane, Aaron Barth, Curt Cutler, Jonathan Gair, Clovis Hopman, David Merritt, Cole Miller,

More information

L = 4 d 2 B p. 4. Which of the letters at right corresponds roughly to where one would find a red giant star on the Hertzsprung-Russell diagram?

L = 4 d 2 B p. 4. Which of the letters at right corresponds roughly to where one would find a red giant star on the Hertzsprung-Russell diagram? Fall 2016 Astronomy - Test 3 Test form B Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form B on the answer sheet. Write your name above as well.

More information

L = 4 d 2 B p. 1. Which outer layer of the Sun has the highest temperature? A) Photosphere B) Corona C) Chromosphere D) Exosphere E) Thermosphere

L = 4 d 2 B p. 1. Which outer layer of the Sun has the highest temperature? A) Photosphere B) Corona C) Chromosphere D) Exosphere E) Thermosphere Fall 2016 Astronomy - Test 3 Test form A Name Do not forget to write your name and fill in the bubbles with your student number, and fill in test form A on the answer sheet. Write your name above as well.

More information

Simulating the mass assembly history of Nuclear Star Clusters

Simulating the mass assembly history of Nuclear Star Clusters Simulating the mass assembly history of Nuclear Star Clusters The imprints of cluster inspirals Alessandra Mastrobuono-Battisti Sassa Tsatsi Hagai Perets Nadine Neumayer Glenn vad de Ven Ryan Leyman David

More information

Centers of Galaxies. = Black Holes and Quasars

Centers of Galaxies. = Black Holes and Quasars Centers of Galaxies = Black Holes and Quasars Models of Nature: Kepler Newton Einstein (Special Relativity) Einstein (General Relativity) Motions under influence of gravity [23] Kepler The planets move

More information

Young Solar-like Systems

Young Solar-like Systems Young Solar-like Systems FIG.2. Panels(a),(b),and(c)show 2.9,1.3,and 0.87 mm ALMA continuum images of other panels, as well as an inset with an enlarged view of the inner 300 mas centered on the (f) show

More information

A. Thermal radiation from a massive star cluster. B. Emission lines from hot gas C. 21 cm from hydrogen D. Synchrotron radiation from a black hole

A. Thermal radiation from a massive star cluster. B. Emission lines from hot gas C. 21 cm from hydrogen D. Synchrotron radiation from a black hole ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nicholas Nelson Lecture 26 Thur 14 Apr 2011 zeus.colorado.edu/astr1040-toomre toomre HST Abell 2218 Reading clicker what makes the light? What

More information

Today. Neutron stars & Black Holes. Homework 5 due in one week

Today. Neutron stars & Black Holes. Homework 5 due in one week Today Neutron stars & Black Holes Homework 5 due in one week Extra credit (2 points) What supports a neutron star against gravity? Be sure to include your name and section number You may consult your notes,

More information

Black Hole Mergers at Galactic. The Final Parsec: Supermassive. Centers. Milos Milosavljevic. California Institute of Technology

Black Hole Mergers at Galactic. The Final Parsec: Supermassive. Centers. Milos Milosavljevic. California Institute of Technology The Final Parsec: Supermassive Black Hole Mergers at Galactic Centers Milos Milosavljevic California Institute of Technology MBH Binaries Form in Galaxy Mergers Borne et al 2000 by transferring binding

More information

Keck laser guide star: Science case

Keck laser guide star: Science case Keck laser guide star: Science case Claire Max, LLNL Keck SSC Meeting September 11, 2000 Science case: Central issues How do Keck NGS and LGS AO compare with AO systems on other 8-10 m telescopes? How

More information

VLBI with the SMA: Observing an Event Horizon. Sheperd Doeleman MIT Haystack Observatory

VLBI with the SMA: Observing an Event Horizon. Sheperd Doeleman MIT Haystack Observatory VLBI with the SMA: Observing an Event Horizon Sheperd Doeleman MIT Haystack Observatory VLBI with the SMA: Observing an Event Horizon Sheperd Doeleman MIT Haystack Observatory SgrA*: Best Case for a SMBH

More information

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed What does our galaxy look like? How do stars orbit in our galaxy? Where are globular clusters located

More information

Probing the properties of the Milky Way s central supermassive black hole with stellar orbits

Probing the properties of the Milky Way s central supermassive black hole with stellar orbits A Giant Step: from Milli- to Micro-arcsecond Astrometry Proceedings IAU Symposium No. 248, 2007 W. J. Jin, I. Platais & M. A. C. Perryman, eds. c 2008 International Astronomical Union doi:10.1017/s1743921308018620

More information

the astrophysics of emris

the astrophysics of emris the astrophysics of emris Capture of compact objects by SMBHs Pau Amaro Seoane August 2015, Astro-GR@Brazil 2015, ICTP-SAIFR Max-Planck Institute for Gravitational Physics (Albert Einstein Institute) capture

More information

arxiv: v3 [astro-ph.ga] 19 Feb 2010

arxiv: v3 [astro-ph.ga] 19 Feb 2010 The Galactic Center: A Window on the Nuclear Environment of Disk Galaxies ASP Conference Series, Vol. 000, 2010 Ed. Mark Morris, Daniel Q. Wang and Feng Yuan Dynamical Models of the Galactic Center arxiv:1001.5435v3

More information