Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009

Save this PDF as:
Size: px
Start display at page:

Download "Exoplanet Search Techniques: Overview. PHY 688, Lecture 28 April 3, 2009"

Transcription

1 Exoplanet Search Techniques: Overview PHY 688, Lecture 28 April 3, 2009

2 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation 1 week before talk midterm exam discussion Review of previous lecture exoplanet search techniques: direct imaging Exoplanet search techniques (continued) comparison of sensitivities April 3, 2009 PHY 688, Lecture 28 2

3 Hydrogen Phase Diagram Hydrogen phase diagram (From Lecture 14) T ρ 0.67 T T ρ 0.4 T ρ 0.67 Midterm Problem 1 (Burrows & Liebert 1993) April 3, 2009 PHY 688, Lecture 28 3

4 Lecture 25: Radii of Very Hot Jupiters some large radii cannot be explained by coreless planet models with high-altitude stratospheres: extra internal power source? stratospheric heat trap tidal heating damping or orbital eccentricity and apparent resetting of planet age? host stars are giga-years old (Fortney et al. 2007) Midterm Problem 2: Transit Radius Effect April 3, 2009 PHY 688, Lecture 28 4

5 From Lecture 22: Exoplanet Transit Spectroscopy From Star To Observer Planet X A ray may be wholly, partly, or negligibly absorbed, depending upon its impact parameter and its wavelength. Thus, the planet appears larger when observed at wavelengths that are strongly absorbed. Midterm Problem 2: Transit Radius Effect April 3, 2009 PHY 688, Lecture 28 5

6 From Lecture 11: Luminosity (i.e., Surface Gravity) Effects at A0 Midterm Problem 3: Young and Old Brown Dwarfs (figure: D. Gray) April 3, 2009 PHY 688, Lecture 28 6

7 From Lecture 11: Gravity-Sensitive Features in UCDs Midterm Problem 3: Young and Old Brown Dwarfs April 3, 2009 PHY 688, Lecture 28 7 (McGovern et al. 2004)

8 From Lecture 11: Gravity in UCDs Key species: neutral alkali elements (Na, K) weaker at low g hydrides CaH weaker at low g FeH unchanged oxides VO, CO, TiO stronger at low g H 2 O ~ unchanged Midterm Problem 3: Young and Old Brown Dwarfs (Kirkpatrick et al. 2006) Wavelength (µm) April 3, 2009 PHY 688, Lecture 28 8

9 Course administration final presentations Outline see me for paper recommendations 2 3 weeks before talk see me with draft of presentation 1 week before talk midterm exam discussion Review of previous lecture exoplanet search techniques: direct imaging Exoplanet search techniques (continued) comparison of sensitivities April 3, 2009 PHY 688, Lecture 28 9

10 Previously in PHY 688 April 3, 2009 PHY 688, Lecture 28 10

11 From Lecture 2: Detection Techniques for Substellar Objects brown dwarfs precision radial velocity monitoring periodic Doppler shift of host star spectrum due to planet s gravitational pull resolved imaging of binary systems seeing-limited, speckle interferometry, adaptive optics unresolved photometry of hot stars e.g., cool infrared excess in an otherwise much hotter white dwarf large-area sky surveys extremely red objects exoplanets precision radial velocity monitoring pulsar timing apparent periodicity in pulsar rotation period due to planet s gravitational pull transit photometry ~1% dimming of star due to planet passing in front microlensing gravitational lensing of light from background stars resolved imaging! extremely high-contrast adaptive optics April 3, 2009 PHY 688, Lecture 28 11

12 Planet Detection Methods (statistics as of Oct 2007) (Perryman 2000) April 3, 2009 PHY 688, Lecture 28 12

13 Planet Detection History 318 radial velocity 58 transits 8 microlensing 7 pulsar timing 4 (11) imaging April 3, 2009 PHY 688, Lecture 28 13

14 Planet Detection: Direct Imaging 2MASS B ~ 5 M Jup primary is a young (~10 Myr) brown dwarf discovered with adaptive optics (AO) on the 8 m Very Large Telescope (VLT) (Chauvin et al. 2004) April 3, 2009 PHY 688, Lecture 28 14

15 Challenge of Direct Imaging: In the visible near-ir F Sun / F Earth ~ 10 9 F Sun / F Jup ~ 10 8 challenging wavefront control small PSF can observe from the ground In mid-ir F Sun / F Earth ~ 10 6 F Sun / F Jup ~ 10 4 easier wavefront control >10 larger PSF need to observe from space Star-Planet Contrast April 3, 2009 PHY 688, Lecture 28 15

16 Challenge of Direct Imaging: Keck AO speckles at 2.2 µm Star-Planet Contrast 2M 1207 B (~5 M Jup ) r = 1 high angular resolution, high-contrast imaging suffers from wavefront aberrations or order ~ λ aberrations manifested as speckles of size ~ λ/d speckles pose as fake planets d exoplanets HR 8799 b,c,d (~10 15 M Jup ) c b (Kalas 2005) April 3, 2009 PHY 688, Lecture 28 16

17 Planet Detection: Imaging state of the art: contrast of 9 mag at 0.5", 11 mag at 1" in the near-ir benefits: can perform atmospheric spectroscopy limitations: hot (young), well-separated (>0.5") planets no mass, radius information false positives: telescope speckles, distant background stars April 3, 2009 PHY 688, Lecture 28 17

18 Course administration final presentations Outline see me for paper recommendations at least 2 weeks before talk see me with draft of presentation 1 week before talk midterm exam discussion Review of previous lecture exoplanet search techniques: direct imaging Exoplanet search techniques (continued) comparison of sensitivities April 3, 2009 PHY 688, Lecture 28 18

19 Planet Detection: Precision Radial Velocity (Doppler Spectroscopy) (Johnson et al. 2006) April 3, 2009 PHY 688, Lecture 28 19

20 Planet Detection: Precision Radial Velocity (Doppler Spectroscopy) (Johnson et al. 2006) April 3, 2009 PHY 688, Lecture 28 20

21 Planet Detection: Precision Radial Velocity (Doppler Spectroscopy) stellar spectrum April 3, 2009 PHY 688, Lecture 28 21

22 Planet Detection: Precision Radial Velocity (Doppler Spectroscopy) stellar spectrum with I 2 lines superposed: I 2 allows precise wavelength calibration April 3, 2009 PHY 688, Lecture 28 22

23 Planet Detection: Precision Radial Velocity (Doppler Spectroscopy) state of the art: m/s precision HF or iodine cell dual optical fiber (one looking at target star, one at ThAr calibration source) benefits: orbital solution modulo sin i limitations: sin i ambiguity; radius, atmospheric composition unknown false positives: star spots, pulsations April 3, 2009 PHY 688, Lecture 28 23

24 1 0 Planet Detection: Astrometry y (mas) x (mas) (Benedict et al. 2006) April 3, 2009 PHY 688, Lecture 28 24

25 Planet Detection: Astrometry state of the art: ~0.05 mas precision benefits: exact orbital solution, dynamical mass limitations: gets harder with heliocentric distance (>20 pc) planet radius, atmospheric composition unknown false positives: star spots April 3, 2009 PHY 688, Lecture 28 25

26 Planet Detection: Transits HD b was a known extrasolar planet in a = AU semi-major axis April 3, 2009 PHY 688, Lecture (Charbonneau et al. 2000)

27 Planet Detection: Transits April 3, 2009 PHY 688, Lecture 28 27

28 Planet Detection: Transits "F max F # $ R ' P & ) % ( duration # R S 2 $ #10 *2 R P R S & % R Jup R Sun R S 2+a P #14 hr $ R S & % R Sun ' ) ( 2 ' $ P ' )& ) (% 11 yr ( 1 3 #1.3 hr $ probability # 0.1% R S R Sun ' $ & ) #10% R S R Sun ' & ) % a 5 AU( % a 0.05 AU( $ & % R S R Sun ' $ P ' )& ) (% 3 days( 1 3 state of the art: 0.1% photometry benefits: full orbital solution, temperature, radius, more! limitations: close-in planets (hot Jupiters) false positives: F-M star binaries, grazing eclipses of stars, triple stars with eclipses April 3, 2009 PHY 688, Lecture 28 28

29 Planet Detection: Pulsar Timing 98.2-day periodicity subtracted (Wolszczan & Frail 1992) 66-day periodicity subtracted PSR pulse shape, 430 MHz rotational period: ± s (10 14 s) both periodicities subtracted April 3, 2009 PHY 688, Lecture 28 29

30 The Pulsar Planets only one more pulsar planet known: around PSR B very different from the original pulsar planetary system planet orbits a close neutron star white dwarf binary a p = 23 AU M p = 2.5±1 M Jup April 3, 2009 PHY 688, Lecture (Wolszczan 2008)

31 Pulsar Timing: Non-Keplerian Orbital Motions residuals of standard pulsar timing model; no planets residuals including Keplerian orbits for 3 planets residuals including non-keplerian resonant (3:2) interactions between planets B and C April 3, 2009 PHY 688, Lecture (Konacki & Wolszczan 2003)

32 Pulsar Timing state of the art: s pulsar timing precision s residuals after orbital fits benefits: very high sensitivity to mass: ~10 2 M Earth ~ M Moon most sensitive technique to date! full orbital solution limitations: few pulsars known, planet radius, atmospheric composition unknown false positives: pulsar position needs to be known precisely (<0.1") first reported pulsar planets (1991) were retracted April 3, 2009 PHY 688, Lecture 28 32

33 Planet Detection: Gravitational Microlensing April 3, 2009 PHY 688, Lecture 28 33

34 Planet Detection: Gravitational Microlensing to be presented in more detail by Dharmesh on May 8! April 3, 2009 PHY 688, Lecture 28 34

35 Planet Detection Techniques: Comparison direct imaging habitable zone ~150 planets detected as of mid-2004: r.v. (blue) transits (red) microlensing (yellow) pulsar timing (purple) sample ~doubled by 2009 added 5 through direct imaging (magenta, at >20AU) April 3, 2009 (LawsonPHY et al. 2004) 688, Lecture 28 35

36 Planet Detection Techniques: Comparison direct imaging Super-Jupiters (>1 MJup) r.v., astrometry, transits, pulsar timing, microlensing, direct imaging Jupiters, Neptunes, Super-Earths (>0.01 MJup 3 MEarth) r.v., astrometry, transits, pulsar timing, microlensing lowest mass r.v. planet: Msini = 4.2 MEarth lowest mass microlensing planet: M = 3.3 MEarth orbits a brown dwarf Earths pulsar timing to be detected through transits by Kepler Lunar/Mercury-mass (0.02 MEarth) planet pulsar timing April 3, 2009 (LawsonPHY et al. 2004) 688, Lecture 28 36

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects

Extrasolar Planets. Methods of detection Characterization Theoretical ideas Future prospects Extrasolar Planets Methods of detection Characterization Theoretical ideas Future prospects Methods of detection Methods of detection Methods of detection Pulsar timing Planetary motion around pulsar

More information

Fundamental (Sub)stellar Parameters: Surface Gravity. PHY 688, Lecture 11

Fundamental (Sub)stellar Parameters: Surface Gravity. PHY 688, Lecture 11 Fundamental (Sub)stellar Parameters: Surface Gravity PHY 688, Lecture 11 Outline Review of previous lecture binary stars and brown dwarfs (sub)stellar dynamical masses and radii Surface gravity stars,

More information

Observations of extrasolar planets

Observations of extrasolar planets Observations of extrasolar planets 1 Mercury 2 Venus radar image from Magellan (vertical scale exaggerated 10 X) 3 Mars 4 Jupiter 5 Saturn 6 Saturn 7 Uranus and Neptune 8 we need to look out about 10 parsecs

More information

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009

Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets. PHY 688, Lecture 23 Mar 20, 2009 Exoplanetary Atmospheres: Temperature Structure of Irradiated Planets PHY 688, Lecture 23 Mar 20, 2009 Outline Review of previous lecture hot Jupiters; transiting planets primary eclipses and atmospheric

More information

Searching for Other Worlds

Searching for Other Worlds Searching for Other Worlds Lecture 32 1 In-Class Question What is the Greenhouse effect? a) Optical light from the Sun is reflected into space while infrared light passes through the atmosphere and heats

More information

Actuality of Exoplanets Search. François Bouchy OHP - IAP

Actuality of Exoplanets Search. François Bouchy OHP - IAP Actuality of Exoplanets Search François Bouchy OHP - IAP How detect extrasolar planets? Two main difficulties : 1 A tiny angular separation 0.75 arcsec Sun Jupiter at 4 light years 4 Sun Jupiter at 100

More information

Adam Burrows, Princeton April 7, KITP Public Lecture

Adam Burrows, Princeton April 7, KITP Public Lecture Adam Burrows, Princeton April 7, 2010 KITP Public Lecture The Ancient History of Comparative Planetology There are infinite worlds both like and unlike this world of ours...we must believe that in all

More information

Extra Solar Planetary Systems and Habitable Zones

Extra Solar Planetary Systems and Habitable Zones Lecture Overview Extra Solar Planetary Systems and Habitable Zones Our Galaxy has 200 Billion Stars, Our Sun has 8 planets. It seems like an awful waste if we are alone Exoplanets Karen J. Meech, Svetlana

More information

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009

Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets. PHY 688, Lecture 24 Mar 23, 2009 Exoplanetary Atmospheres: Atmospheric Dynamics of Irradiated Planets PHY 688, Lecture 24 Mar 23, 2009 Outline Review of previous lecture: atmospheric temperature structure of irradiated planets isothermal

More information

II Planet Finding.

II Planet Finding. II Planet Finding http://sgoodwin.staff.shef.ac.uk/phy229.html 1.0 Introduction There are a lot of slides in this lecture. Much of this should be familiar from PHY104 (Introduction to Astrophysics) and

More information

Observations of Extrasolar Planets

Observations of Extrasolar Planets Observations of Extrasolar Planets Hamilton 2005 Shay Zucker Observations of Extrasolar Planets Spectroscopic detection of exoplanets Emerging properties of the sample Transiting planets Future prospects

More information

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017 Lecture 12: Extrasolar planets Astronomy 111 Monday October 9, 2017 Reminders Star party Thursday night! Homework #6 due Monday The search for extrasolar planets The nature of life on earth and the quest

More information

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley

Extrasolar Planets. Properties Pearson Education Inc., publishing as Pearson Addison-Wesley Extrasolar Planets Properties 2007 Pearson Education Inc., publishing as Pearson Addison-Wesley Finding extrasolar planets is hard quick recap Planet Detection Direct: pictures or spectra of the planets

More information

Extrasolar planets Astronomy

Extrasolar planets Astronomy Extrasolar planets Astronomy 9601 1 Topics to be covered 12.11 Physics and sizes 12.2 Detecting extrasolar planets 12.3 Observations of exoplanets 12.4 Exoplanet statistics 12.5 Planets and Life 2 What

More information

The Transit Method: Results from the Ground

The Transit Method: Results from the Ground The Transit Method: Results from the Ground Results from individual transit search programs The Mass-Radius relationships (internal structure) Global Properties The Rossiter-McClaughlin Effect There are

More information

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due

Extrasolar Planets. Today. Dwarf Planets. Extrasolar Planets. Next week. Review Tuesday. Exam Thursday. also, Homework 6 Due Extrasolar Planets Today Dwarf Planets Extrasolar Planets Next week Review Tuesday Exam Thursday also, Homework 6 Due will count best 5 of 6 homeworks 2007 Pearson Education Inc., publishing as Pearson

More information

Extrasolar Transiting Planets: Detection and False Positive Rejection

Extrasolar Transiting Planets: Detection and False Positive Rejection 4 Harvard-Smithsonian Center for Astrophysics Extrasolar Transiting Planets: Detection and False Positive Rejection Willie Torres Harvard-Smithsonian Center for Astrophysics Young Planetary Systems Workshop

More information

EART164: PLANETARY ATMOSPHERES

EART164: PLANETARY ATMOSPHERES EART164: PLANETARY ATMOSPHERES Francis Nimmo Last Week - Dynamics Reynolds number, turbulent vs. laminar flow Velocity fluctuations, Kolmogorov cascade Brunt-Vaisala frequency, gravity waves Rossby waves,

More information

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars

4. Direct imaging of extrasolar planets. 4.1 Expected properties of extrasolar planets. Sizes of gas giants, brown dwarfs & low-mass stars 4. Direct imaging of extrasolar planets Reminder: Direct imaging is challenging: The proximity to its host star: 1 AU at 1 for alpha Cen 0.15 for the 10th most nearby solar-type star The low ratio of planet

More information

Planets and Brown Dwarfs

Planets and Brown Dwarfs Extra Solar Planets Extra Solar Planets We have estimated there may be 10 20 billion stars in Milky Way with Earth like planets, hospitable for life. But what evidence do we have that such planets even

More information

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh

DEPARTMENT OF PHYSICS AND ASTRONOMY. Planets around white dwarfs Matt Burleigh DEPARTMENT OF PHYSICS AND ASTRONOMY Planets around white dwarfs Matt Burleigh Contents Original motivation DODO - results from our direct imaging survey Where do we go next? The role for E-ELT Direct imaging

More information

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

More information

Extrasolar planets. Lecture 23, 4/22/14

Extrasolar planets. Lecture 23, 4/22/14 Extrasolar planets Lecture 23, 4/22/14 Extrasolar planets Extrasolar planets: planets around other stars Also called exoplanets 1783 exoplanets discovered as of 4/21/14 Orbitting 1105 different stars Number

More information

Data from: The Extrasolar Planet Encyclopaedia.

Data from: The Extrasolar Planet Encyclopaedia. Data from: The Extrasolar Planet Encyclopaedia http://exoplanet.eu/ 2009->10 Status of Exoplanet Searches Direct Detection: 5->9 planets detected Sensitive to large planets in large orbits around faint

More information

III The properties of extrasolar planets

III The properties of extrasolar planets III The properties of extrasolar planets (as of early 2016) http://sgoodwin.staff.shef.ac.uk/phy229.html 3.0 Introduction This lecture will discuss what we have found so far. It is important to remember

More information

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

More information

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

More information

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds 10/16/17 Lecture Outline 10.1 Detecting Planets Around Other Stars Chapter 10: Other Planetary Systems The New Science of Distant Worlds Our goals for learning: How do we detect planets around other stars?

More information

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC

Exploring the giant planet - brown dwarf connection with astrometry. Johannes Sahlmann ESA Research Fellow at ESAC Exploring the giant planet - brown dwarf connection with astrometry ESA Research Fellow at ESAC Who s Who, Paris - 2 July 215 IS MASS A GOOD DEMOGRAPHIC INDICATOR? 2MASSWJ127334 393254 first image of a

More information

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute

How Common Are Planets Around Other Stars? Transiting Exoplanets. Kailash C. Sahu Space Tel. Sci. Institute How Common Are Planets Around Other Stars? Transiting Exoplanets Kailash C. Sahu Space Tel. Sci. Institute Earth as viewed by Voyager Zodiacal cloud "Pale blue dot" Look again at that dot. That's here.

More information

[25] Exoplanet Characterization (11/30/17)

[25] Exoplanet Characterization (11/30/17) 1 [25] Exoplanet Characterization (11/30/17) Upcoming Items APOD 12/2/16 1. Read chapters 24.1-24.3 for Tuesday 2. We will have a final exam review in the last discussion section (Friday, Dec 8) and also

More information

Planets & Life. Planets & Life PHYS 214. Please start all class related s with 214: 214: Dept of Physics (308A)

Planets & Life. Planets & Life PHYS 214. Please start all class related  s with 214: 214: Dept of Physics (308A) Planets & Life Planets & Life PHYS 214 Dr Rob Thacker Dept of Physics (308A) thacker@astro.queensu.ca Please start all class related emails with 214: 214: Today s s lecture Assignment 1 marked will hand

More information

Searching for Other Worlds: The Methods

Searching for Other Worlds: The Methods Searching for Other Worlds: The Methods John Bally 1 1 Center for Astrophysics and Space Astronomy Department of Astrophysical and Planetary Sciences University of Colorado, Boulder The Search Extra-Solar

More information

Synergies between E-ELT and space instrumentation for extrasolar planet science

Synergies between E-ELT and space instrumentation for extrasolar planet science Synergies between E-ELT and space instrumentation for extrasolar planet science Raffaele Gratton and Mariangela Bonavita INAF Osservatorio Astronomico di Padova - ITALY Main topics in exo-planetary science

More information

EXOPLANETS. Aurélien CRIDA

EXOPLANETS. Aurélien CRIDA EXOPLANETS Aurélien CRIDA EXOPLANETS Giordano Bruno said that the many stars are like our Sun, with planets like our Earth, inhabited as well (in de l'infinito universo e mondi (1574) ). He was burnt alive

More information

SPICA Science for Transiting Planetary Systems

SPICA Science for Transiting Planetary Systems SPICA Science for Transiting Planetary Systems Norio Narita Takuya Yamashita National Astronomical Observatory of Japan 2009/06/02 SPICA Science Workshop @ UT 1 Outline For Terrestrial/Jovian Planets 1.

More information

Design Reference Mission. DRM approach

Design Reference Mission. DRM approach Design Reference Mission The Design Reference Mission (DRM) is a set of observing programs which together provide a tool to assist with tradeoff decisions in the design of the E-ELT (examples of observing

More information

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology

Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology Extrasolar Planets: Ushering in the Era of Comparative Exoplanetology A. Sozzetti INAF Osservatorio Astrofisico di Torino Detection/Characterization Detection (Visible): - Doppler spectroscopy (95%) -

More information

Planet Detection. AST 105 Intro Astronomy The Solar System

Planet Detection. AST 105 Intro Astronomy The Solar System Review AST 105 Intro Astronomy The Solar System MIDTERM III this THURSDAY 04/8 covering LECT. 17 through We ve talked about the Terrestrial Planets and the Jovian Planets - What about planets around other

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

ASTB01 Exoplanets Lab

ASTB01 Exoplanets Lab ASTB01 Exoplanets Lab Author: Anders Johansen Revision date: $Date: 2015/08/28 14:55:59 $ Planets orbiting stars other than the Sun are called exoplanets. Stellar light reflected off

More information

Exoplanets and their Atmospheres. Josh Destree ATOC /22/2010

Exoplanets and their Atmospheres. Josh Destree ATOC /22/2010 Exoplanets and their Atmospheres Josh Destree ATOC 3500 4/22/2010 Outline What is an exoplanet? Why do we care? Detecting exoplanets Exoplanets compared to planets in the solar system Exoplanet atmospheres

More information

Direct imaging of extra-solar planets

Direct imaging of extra-solar planets Chapter 6 Direct imaging of extra-solar planets Direct imaging for extra-solar planets means that emission from the planet can be spatially resolved from the emission of the bright central star The two

More information

High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets

High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets High-contrast Coronagraph Development in China for Direct Imaging of Extra-solar Planets Jiangpei Dou 1, Deqing Ren 1,2, Yongtian Zhu 1, Xi Zhang 1 1 Astronomical Observatories/Nanjing Institute of Astronomical

More information

Extrasolar Planets = Exoplanets III.

Extrasolar Planets = Exoplanets III. Extrasolar Planets = Exoplanets III http://www.astro.keele.ac.uk/~rdj/planets/images/taugruishydra2.jpg Outline Gravitational microlensing Direct detection Exoplanet atmospheres Detecting planets by microlensing:

More information

Substellar objects: Brown dwarfs and extrasolar planets

Substellar objects: Brown dwarfs and extrasolar planets Substellar objects: Brown dwarfs and extrasolar planets Basic information Class web site: http://www.mpia-hd.mpg.de/homes/goldman/course/ Material: slides, bibliography, useful links Max-Planck-Institut

More information

The quest for exoplanets. Mauro Barbieri Università di Padova - Dipartimento di Fisica e Astronomia

The quest for exoplanets. Mauro Barbieri Università di Padova - Dipartimento di Fisica e Astronomia The quest for exoplanets Mauro Barbieri Università di Padova - Dipartimento di Fisica e Astronomia Are we alone in the Universe? The plurality of worlds In some worlds there is no Sun and Moon, in others

More information

Gemini NICI Planet-Finding Campaign: Statistical Constraints on Planet Populations

Gemini NICI Planet-Finding Campaign: Statistical Constraints on Planet Populations Gemini NICI Planet-Finding Campaign: Statistical Constraints on Planet Populations Eric L. Nielsen Institute for Astronomy University of Hawaii Michael Liu (IfA), Zahed Wahhaj (IfA), Beth A. Biller (MPIA),

More information

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations Lecture #36: Planets Around Other Stars Extrasolar Planets! Theory Observations Detection methods Results to date... Implications for "Habitable Zones" Reading: Chapter 13 Astro 102/104 1 The Main Point(s)

More information

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc. Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

More information

Planets in other Star Systems

Planets in other Star Systems Planets in other Star Systems test out how planets are formed with more examples first extrasolar planet observed in 1995. In Jan 2000, 28 observed and now >3700 confirmed (3/2018). Many systems with 2

More information

Why Search for Extrasolar Planets?

Why Search for Extrasolar Planets? Why Search for Extrasolar Planets? What is the diversity of habitats for life in the universe? Are Earth-like planets common or rare in our region of the galaxy? We have an elaborate and self-consistent

More information

Direct imaging characterisation of (exo-) planets with METIS

Direct imaging characterisation of (exo-) planets with METIS Direct imaging characterisation of (exo-) planets with METIS Jupiter HR8799 Saturn VLT/ISAAC VLT/NACO Cassini/VIMS Wolfgang Brandner (MPIA) with contributions by Ian Crossfield, Lisa Kaltenegger (MPIA),

More information

Extrasolar Planets. Dieter Schmitt Max Planck Institute for Solar System Research Katlenburg-Lindau

Extrasolar Planets. Dieter Schmitt Max Planck Institute for Solar System Research Katlenburg-Lindau Extrasolar Planets Dieter Schmitt Max Planck Institute for Solar System Research Katlenburg-Lindau Lecture Introduction to Solar System Physics Uni Göttingen, 8 June 2009 Outline Historical Overview Detection

More information

Extrasolar Planets. to appear in Encyclopedia of Time, Sage Publishing, in preparation, H.J. Birx (Ed.)

Extrasolar Planets. to appear in Encyclopedia of Time, Sage Publishing, in preparation, H.J. Birx (Ed.) Extrasolar Planets to appear in Encyclopedia of Time, Sage Publishing, in preparation, H.J. Birx (Ed.) The term extrasolar planets or exoplanets stands for planets outside our Solar System, i.e. not orbiting

More information

Finding Other Earths. Jason H. Steffen. Asset Earth Waubonsee Community College October 1, 2009

Finding Other Earths. Jason H. Steffen. Asset Earth Waubonsee Community College October 1, 2009 Finding Other Earths Jason H. Steffen Asset Earth Waubonsee Community College October 1, 2009 True Earth Analog Necessities: 1) Main Sequence Star 2) Within the Stellar Habitable Zone 3) Roughly Earth

More information

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

Can We See Them?! Planet Detection! Planet is Much Fainter than Star! Can We See Them?! Planet Detection! Estimating f p! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

More information

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002

The Potential of Ground Based Telescopes. Jerry Nelson UC Santa Cruz 5 April 2002 The Potential of Ground Based Telescopes Jerry Nelson UC Santa Cruz 5 April 2002 Contents Present and Future Telescopes Looking through the atmosphere Adaptive optics Extragalactic astronomy Planet searches

More information

Astronomy 111 Exam Review Problems (Real exam will be Tuesday Oct 25, 2016)

Astronomy 111 Exam Review Problems (Real exam will be Tuesday Oct 25, 2016) Astronomy 111 Exam Review Problems (Real exam will be Tuesday Oct 25, 2016) Actual Exam rules: you may consult only one page of formulas and constants and a calculator while taking this test. You may not

More information

Planets in other Star Systems

Planets in other Star Systems Planets in other Star Systems test out how planets are formed with more examples first extrasolar planet observed in 1995. In Jan 2000, 28 observed and now >3700 confirmed (10/2017). Many systems with

More information

Fundamental (Sub)stellar Parameters: Masses and Radii. PHY 688, Lecture 10

Fundamental (Sub)stellar Parameters: Masses and Radii. PHY 688, Lecture 10 Fundamental (Sub)stellar Parameters: Masses and Radii PHY 688, Lecture 10 Outline Review of previous lecture brown dwarf effective temperatures finding cool brown dwarfs current problem: what are the coolest

More information

» How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our

» How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our » How vast those Orbs must be, and how inconsiderable this Earth, the Theatre upon which all our mighty Designs, all our Navigations, and all our Wars are transacted, is when compared to them. A very fit

More information

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Resolving Power (review) The bigger the size of the telescope, the better it is at discerning fine details

More information

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question

The Hertzprung-Russell Diagram. The Hertzprung-Russell Diagram. Question Key Concepts: Lecture 21: Measuring the properties of stars (cont.) The Hertzsprung-Russell (HR) Diagram (L versus T) The Hertzprung-Russell Diagram The Stefan-Boltzmann Law: flux emitted by a black body

More information

Other planetary systems

Other planetary systems Exoplanets are faint! Other planetary systems Planets are seen only by reflected light at optical wavelengths At the distance of another star the faint light of a planet is lost in the glare of the star

More information

2010 Pearson Education, Inc.

2010 Pearson Education, Inc. Thought Question Suppose you found a star with the same mass as the Sun moving back and forth with a period of 16 months. What could you conclude? A. It has a planet orbiting at less than 1 AU. B. It has

More information

DIRECT PLANET DETECTION

DIRECT PLANET DETECTION DIRECT PLANET DETECTION James R. Graham (UCB) Bruce Macintosh (LLNL) & Mitchell Troy (JPL) 1 High Contrast Imaging? Broad new frontier enabled by large telescopes & AO Exoplanet detection Direct methods

More information

RV- method: disturbing oscilla8ons Example: F- star Procyon

RV- method: disturbing oscilla8ons Example: F- star Procyon Star spots RV- method: disturbing oscilla8ons Example: F- star Procyon In- class ac8vity (1) 1) You are working with the HARPS instrument and you want to unambiguously detect Jupiter-twins around nearby

More information

Astronomy 122 Midterm

Astronomy 122 Midterm Astronomy 122 Midterm This Class (Lecture 15): Stellar Evolution: The Main Sequence Next Class: Stellar Evolution: Post-Main Sequence Midterm on Thursday! Last week for Nightlabs 1 hour exam in this classroom

More information

Searching for extrasolar planets using microlensing

Searching for extrasolar planets using microlensing Searching for extrasolar planets using microlensing Dijana Dominis Prester 7.8.2007, Belgrade Extrasolar planets Planets outside of the Solar System (exoplanets) Various methods: mostly massive hot gaseous

More information

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Name: Seat Number: Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional

More information

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA Ay 1 Midterm Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA You have THREE HOURS to complete the exam, but it is about two hours long. The

More information

4 1 Extrasolar Planets

4 1 Extrasolar Planets Extrasolar Planets 4 1 Introduction 4 2 So far: have looked at planets around our Sun Physics question: Is our Solar System normal? = Are there planets around other stars? can then compare solar system

More information

Astronomy 111 Review Problems Solutions

Astronomy 111 Review Problems Solutions Astronomy 111 Review Problems Solutions Problem 1: Venus has an equatorial radius of 6052 km. Its semi-major axis is 0.72 AU. The Sun has a radius of cm. a) During a Venus transit (such as occurred June

More information

Indirect Methods: gravitational perturbation of the stellar motion. Exoplanets Doppler method

Indirect Methods: gravitational perturbation of the stellar motion. Exoplanets Doppler method Indirect Methods: gravitational perturbation of the stellar motion Exoplanets The reflex motion of the star is proportional to M p /M * This introduces an observational bias that favours the detection

More information

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc. Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

More information

Research paper assignment

Research paper assignment Research paper assignment Review of research that interests you, more focused than discussions in class Include references and figures Final format should be PDF (try LaTeX!) Concise! < 5000 words Steps:

More information

Exoplanets in the mid-ir with E-ELT & METIS

Exoplanets in the mid-ir with E-ELT & METIS Exoplanets in the mid-ir with E-ELT & METIS Wolfgang Brandner (MPIA), Eric Pantin (CEA Saclay), Ralf Siebenmorgen (ESO), Sebastian Daemgen (MPIA/ESO), Kerstin Geißler (MPIA/ESO), Markus Janson (MPIA/Univ.

More information

Finding terrestrial planets in the habitable zones of nearby stars

Finding terrestrial planets in the habitable zones of nearby stars Finding terrestrial planets in the habitable zones of nearby stars Part II Astrophysics Essay Simon Hodgkin & Mark Wyatt (on sabbatical) Terrestrial? 15 Exoplanets Solar system 5 4.5 g cm 3 Winn et al.

More information

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Collecting Area Light bucket : the bigger the area of the telescope s mirror or lens, the more photons

More information

Transiting Extrasolar Planets

Transiting Extrasolar Planets Transiting Extrasolar Planets Recent Progress, XO Survey, and the Future Christopher J. Burke Solar System Has Predominately Circular Orbits Top View Side View Planet Formation NASA/JPL-Caltech/R. Hurt

More information

Eric L. Nielsen, Steward Observatory Michelson Fellow

Eric L. Nielsen, Steward Observatory Michelson Fellow A Uniform Analysis of 118 Stars with High- Contrast Imaging: Long Period Extrasolar Giant Planets are Rare around Sun-like Stars (re-submitted to ApJ, Nielsen and Close 2009) Eric L. Nielsen, Steward Observatory

More information

Architecture and demographics of planetary systems

Architecture and demographics of planetary systems Architecture and demographics of planetary systems Struve (1952) The demography of the planets that we detect is strongly affected by detection methods psychology of the observer Understanding planet demography

More information

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3

More information

Astronomy 101 Lab: Hunt for Alien Worlds

Astronomy 101 Lab: Hunt for Alien Worlds Name: Astronomy 101 Lab: Hunt for Alien Worlds Be prepared to make calculations in today s lab. Laptops will also be used for part of the lab, but you aren t required to bring your own. Pre-Lab Assignment:

More information

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes

Astronomy. Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes Astronomy Chapter 15 Stellar Remnants: White Dwarfs, Neutron Stars, and Black Holes are hot, compact stars whose mass is comparable to the Sun's and size to the Earth's. A. White dwarfs B. Neutron stars

More information

Planet Detection! Estimating f p!

Planet Detection! Estimating f p! Planet Detection! Estimating f p! Can We See Them?! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

More information

Spectroscopy, the Doppler Shift and Masses of Binary Stars

Spectroscopy, the Doppler Shift and Masses of Binary Stars Doppler Shift At each point the emitter is at the center of a circular wavefront extending out from its present location. Spectroscopy, the Doppler Shift and Masses of Binary Stars http://apod.nasa.gov/apod/astropix.html

More information

! p. 1. Observations. 1.1 Parameters

! p. 1. Observations. 1.1 Parameters 1 Observations 11 Parameters - Distance d : measured by triangulation (parallax method), or the amount that the star has dimmed (if it s the same type of star as the Sun ) - Brightness or flux f : energy

More information

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges

Exoplanets Direct imaging. Direct method of exoplanet detection. Direct imaging: observational challenges Black body flux (in units 10-26 W m -2 Hz -1 ) of some Solar System bodies as seen from 10 pc. A putative hot Jupiter is also shown. The planets have two peaks in their spectra. The short-wavelength peak

More information

Gravitational microlensing. Exoplanets Microlensing and Transit methods

Gravitational microlensing. Exoplanets Microlensing and Transit methods Gravitational microlensing Exoplanets Microlensing and s Planets and Astrobiology (2016-2017) G. Vladilo May take place when a star-planet system crosses the visual of a background star, as a result of

More information

Revealing the Fundamental Properties of Exoplanets and their Host Stars with Alopeke

Revealing the Fundamental Properties of Exoplanets and their Host Stars with Alopeke Revealing the Fundamental Properties of Exoplanets and their Host Stars with Alopeke Steve B. Howell Chief, Space Science and Astrobiology Division NASA Ames Research Center Contributions by: Elliott Horch,

More information

The Doppler Method, or Radial Velocity Detection of Planets: I. Technique

The Doppler Method, or Radial Velocity Detection of Planets: I. Technique ASTs309L The Doppler Method, or Radial Velocity Detection of Planets: I. Technique 1. Keplerian Orbits 2. Spectrographs/Doppler shifts 3. Precise Radial Velocity measurements ASTs309L The Doppler Effect:

More information

Characterizing Exoplanets and Brown Dwarfs With JWST

Characterizing Exoplanets and Brown Dwarfs With JWST Characterizing Exoplanets and Brown Dwarfs With JWST C. Beichman NASA Exoplanet Science Institute, Jet Propulsion Laboratory, California Institute of Technology On Behalf of the NIRCam Exoplanet Team September

More information

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany

Planet formation in protoplanetary disks. Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Planet formation in protoplanetary disks Dmitry Semenov Max Planck Institute for Astronomy Heidelberg, Germany Suggested literature "Protoplanetary Dust" (2010), eds. D. Apai & D. Lauretta, CUP "Protostars

More information

Astronomy 421. Lecture 8: Binary stars

Astronomy 421. Lecture 8: Binary stars Astronomy 421 Lecture 8: Binary stars 1 Key concepts: Binary types How to use binaries to determine stellar parameters The mass-luminosity relation 2 Binary stars So far, we ve looked at the basic physics

More information

There are 4 x stars in the Galaxy

There are 4 x stars in the Galaxy ExtraSolar Planets Our solar system consists of 1 Star 4 Jovian planets (+ icy moons) 4 Terrestrial planets The asteroid belt (minor planets) The Kuiper belt (dwarf planets, plutinos and TNOs) The Oort

More information

Extrasolar Planet Science with High-Precision Astrometry Johannes Sahlmann

Extrasolar Planet Science with High-Precision Astrometry Johannes Sahlmann Extrasolar Planet Science with High-Precision Astrometry Johannes Sahlmann Geneva Observatory The First Years Of ESO, Garching, 4.9.212 high-precision astrometry is powerful yields complete information,

More information

Transiting Hot Jupiters near the Galactic Center

Transiting Hot Jupiters near the Galactic Center National Aeronautics and Space Administration Transiting Hot Jupiters near the Galactic Center Kailash C. Sahu Taken from: Hubble 2006 Science Year in Review The full contents of this book include more

More information