Young Solar-like Systems

Size: px
Start display at page:

Transcription

1 Young Solar-like Systems FIG.2. Panels(a),(b),and(c)show 2.9,1.3,and 0.87 mm ALMA continuum images of other panels, as well as an inset with an enlarged view of the inner 300 mas centered on the (f) show the image and spectral index maps resulting from the combination of the 1.3 and 0 α/α error < 4. The synthesized beams are shown in the lower left of each panel, also see Ta corresponds to 2 rms to 0.9 the image peak, using the values in Table 1. The colorscales rms and image peak corresponding to each respective wavelength in Table 1.

2 The evolution of a Solar-like system

3 Solar System Jovian Planets + Icy Moons KBOs Frost Line Terrestrial Planets Sun hot cold

4 Searching for Extrasolar Planets: Motivation To determine how common solar-like systems are To determine how typical our solar system is To ultimately find other Earth-like planets

5 Methods of Finding Extrasolar Planets 1) Direct imaging 2) Transits 3) Star s wobble 4) Radial velocity

6 1) Direct Imaging Difficult to do. Problem 1: Light contrast between planet (which shines via reflected star light) & its Star. Typically, Problem 2: small angular separation Remember that 1 AU at a distance of 1 parsec (approximate distance of nearest star) corresponds to 1

7 2008 (Kalas et al. 2008) 0.05 to 3.0 Jupiter mass planet detected around the A-type star Fomalhaut (25 light years away) The possible presence of the planet was inferred earlier by the sharp inner boundary of the dust lane

8 planets around the A-type star HR 8799 (130 light years away) planet star distances ~ 24, 38, 68 AU planet masses ~ 5-13 Jupiter Masses (Marois et al. 2008)

9 2) Transits I.e., the dimming of a star by eclipsing planets The size of the eclipsing object and its orbital period can be derived from these observations. (For Jupiters, size is < 1.4 Jupiter diameters) Problem 1 - unless the planet is large in size relative its star (as seen from our vantage point), this effect will not be significant

10 2) Transits Problem 2 - the orbital inclination relative to us must be such that we see the planet transiting the disk of the star

11 Transits - Solutions Look at lots of stars at once Look for a relatively long time Focus on low mass stars. The smaller the star, the stronger the signal from a transit event

12 Kepler Mission A 0.95 m diameter telescope which continuous observed a strip of size 10ox10o. Monitors the brightness of 100,000 stars brighter than 14th magnitude in the constellations of Cygnus and Lyrae

13 Example: Kepler-16: A transiting circumbinary planet Planet b Star A Star B The planet has a mass = 0.33 Jupiter masses and a radius 0.75 that of Jupiter The planet s density is g cm -3

14 Example: Kepler-16: A transiting circumbinary planet

15 Both the star & planet move around a center of mass. The location of the center of mass depends on the mass of the star and the planet. 3) Wobble

16 What does wobbling look like to us?

17 4) Radial Velocities Accuracy needed: ~10s of m s -1 or ~ 20 mph (Video)

19 The Keck 10m Telescope is presently being used to find extrasolar planets, but the initial discoveries were made with small telescopes Butler

20 First, properties of some of the solar system planets Planet Distance from Sun (AU) Orbital Period (Earth years) Eccentricity Mass (Earth = 1) Mass (Jupiter = 1) Earth x10-3 Mars x10-4 Jupiter Saturn Note: Eccentricity of a circular orbit = 0.0

21 Our inner solar system

22 & some extrasolar planet systems

23 Earth Jupiter Exoplanets.org

24 Earth Jupiter Exoplanets.org

25 Minimum Mass Distribution orbital plane host star planet Exoplanets.org

26 Earth Jupiter Exoplanets.org

27 Mercury Earth Jupiter Saturn Exoplanets.org

28 Exoplanets.org

29 There has been a reported Extrasolar Planet with Measured Atmosphere Planet about 220 times the mass of Earth In orbit around a 7 th magnitude star 150 light years away 20 times closer to star than Earth-Sun distance

30 (Video)

31 Planet Eclipses its Star Atmosphere can be detected via absorption towards star Light of specific wavelength absorbed by atmospheric gas

32 Sodium Absorption Line Detected Atmospheric absorption feature will shift as planet orbits star Why? The Doppler effect.

33 Extrasolar Planets The most successful methods of finding exoplanets to date: the radial velocity and transit techniques. The majority of extrasolar planets found to date are very massive & very close to the host star This is quite different from our solar system Note the observational bias the most successful techniques favor the identification of massive planets close to their host star But the techniques wouldn t be successful if massive planets orbiting near their host star weren t common!

34 How do we know they are gas giants? Sizes can be measured from transit events. E.g., the size of one was measured from an eclipse event to have a diameter 1.35 times that of Jupiter. (See also Kepler l6 example) Density ~ 0.6 Jupiter density If these are typical, then the extrasolar planets are gas giants

35 How do you get such massive gas giant planets to form near their stars? I.e., our gas giants formed beyond the frost line. The abundance of ices (I.e., of Hydrogen & Oxygen) + cold temperatures + cosmic proportions of Hydrogen & Helium = gas giants Most likely explanation for these planetary systems = planet migration The gravity of planets on the circumstellar disk can create waves that propagate through the disk. These waves can steal angular momentum from planets as they pass, causing them to spiral inward. This phenomenon must occur before the circumstellar material is cleared Infall may be halted when the planet is close enough to the star to be tidally locked (< 0.1 AU). What about those at intermediate star-planet distances??

36 What about terrestrial-like planets in these systems? It s unlikely that rocky planets could form within the frost line with gas giant planets so close to their star, especially if migration has occurred Disk material would be stirred by the gravity of the gas giant planet, thus disrupting accretion into rocky planets However, some of these gas giant planets could have moons that are rocky

37 How many Earths are there in the Milky Way that could be Inhabited? Best guess ~ between 1 & several hundred million Condition 1: Star must be a single star Condition 2: Star must be rich in heavy elements Condition 3: Star must reside in a place where there are few supernovae Condition 4: Star must spend ~ 4 billion years steadily burning fuel at constant luminosity (if Earth is a good example!!!!) 2 out of 34 stars close to the Sun meet these conditions Extrapolating, 15 billion stars qualify Probably 10% of Sun-like stars have giant planets (based on extrasolar planet searches) Unknown - the number that have gas giants only beyond the frost line.

38 Other factor - the Habitable Zone Habitable Zone: the region around a star where a planet (or moon) can maintain water in liquid form. The distance of the HZ from the host star depends on the temperature of the star too warm too cold just right

39 Fermi Paradox: So where is everybody? There are billions of stars in the Galaxy similar to our Sun. Many are billions of years older. Some of these stars have planets like the Earth, and thus some fraction must have had intelligent life develop on them Some of these older civilizations could have completely populated the Milky Way within a few million years (with ships traveling a few percent the speed of light) Thus, the Earth should have been visited by extraterrestrial life. Where are they??

40 Fermi Paradox: Possible Solutions 1. We are alone 2. Civilizations are common, but no one has colonized the galaxy due to The expense of such colonization A lack of desire to explore The inclination of technologically advanced civilizations to destroy themselves 3. These extraterrestrials have not yet revealed themselves to us.

41 Drake Equation Frank Drake (1961) - specific factors that play a role in the development of technologically advanced civilizations. I.e., how many are there? SETI - the Search for ExtraTerrestrial Intelligence

42 Drake Equation N = R f p n e f l f i f c L N = The number of civilizations in The Milky Way Galaxy whose electromagnetic emissions are detectable. R * =The rate of formation of stars suitable for the development of intelligent life. fp = The fraction of those stars with planetary systems. ne = The number of planets, per solar system, with an environment suitable for life. fl = The fraction of suitable planets on which life actually appears. fi = The fraction of life bearing planets on which intelligent life emerges. fc = The fraction of civilizations that develop a technology that releases detectable signs of their existence into space. L = The length of time such civilizations release detectable signals into space.

43 Breakthrough Listen 100m Green Bank Telescope 64m Parkes Telescope Automated Planet Finder Lick Observatory Program designed to examine 1 million stars in the galactic center and the galactic plane, as well as the nearest 100 galaxies, for radio or laser signals produced by extraterrestrials. The instruments used are 50 times more sensitive than those used in previous SETI searches, and the area searches is 10 times larger

The evolution of a Solar-like system. Young Solar-like Systems. Searching for Extrasolar Planets: Motivation

Young Solar-like Systems The evolution of a Solar-like system FIG.2. Panels(a),(b),and(c)show2.9,1.3,and0.87mmALMAcontinuum images of HL Tau. Panel (d) shows the 1.3 mm psf for the same FOV as the other

Extrasolar planets. Lecture 23, 4/22/14

Extrasolar planets Lecture 23, 4/22/14 Extrasolar planets Extrasolar planets: planets around other stars Also called exoplanets 1783 exoplanets discovered as of 4/21/14 Orbitting 1105 different stars Number

Search for Extra-Terrestrial Intelligence

Search for Extra-Terrestrial Intelligence Life in the Universe? What is life? (as we know it) Auto-regulation (ex. : sweating) Organization (A cell is more organized than a bunch of atoms) Metabolism :

Astronomy. physics.wm.edu/~hancock/171/ A. Dayle Hancock. Small 239. Office hours: MTWR 10-11am

Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Planetology II Key characteristics Chemical elements and planet size Radioactive dating Solar system formation Solar nebula

Other Planetary Systems (Chapter 13) Extrasolar Planets. Is our solar system the only collection of planets in the universe?

Other Planetary Systems (Chapter 13) Extrasolar Planets Is our solar system the only collection of planets in the universe? Based on Chapter 13 No subsequent chapters depend on the material in this lecture

What is it like? When did it form? How did it form. The Solar System. Fall, 2005 Astronomy 110 1

What is it like? When did it form? How did it form The Solar System Fall, 2005 Astronomy 110 1 Fall, 2005 Astronomy 110 2 The planets all orbit the sun in the same direction. The Sun spins in the same

The formation & evolution of solar systems

The formation & evolution of solar systems Content expectations Birth of the Solar System What did the material that eventually became the Sun and planets look like originally? Interstellar clouds like

Lecture Outlines. Chapter 15. Astronomy Today 7th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines Chapter 15 Astronomy Today 7th Edition Chaisson/McMillan Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Terrestrial and Jovian Planets

10/16/ Detecting Planets Around Other Stars. Chapter 10: Other Planetary Systems The New Science of Distant Worlds

10/16/17 Lecture Outline 10.1 Detecting Planets Around Other Stars Chapter 10: Other Planetary Systems The New Science of Distant Worlds Our goals for learning: How do we detect planets around other stars?

ASTR 380 The Drake Equation

ASTR 380 The Drake Equation 1 ASTR 380 The Drake Equation Drake Equation Methodology Reviewing Drake Equation factors that we know The star formation rate Estimating the number of Earth-like planets or

Activities: The transit method, exploring distant solar systems, the chemistry of life.

Kendall Planetarium Extreme Planets Planetarium Show Teacher s Guide PROGRAM OUTLINE Description: Extreme Planets immerses audiences in the cutting-edge science of finding planets orbit around stars other

Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation

1 Why Should We Expect to Find Other Planets? Planetary system formation is a natural by-product of star formation 2 Why Should We Expect to Find Other Planets? Observations show young stars are surrounded

Planets and Brown Dwarfs

Extra Solar Planets Extra Solar Planets We have estimated there may be 10 20 billion stars in Milky Way with Earth like planets, hospitable for life. But what evidence do we have that such planets even

ASTR 380 The Drake Equation

ASTR 380 The Drake Equation Aside: Rosetta Mission - Landing on a Comet! Aside: Rosetta Mission - Landing on a Comet! ASTR 380 The Drake Equation Drake Equation Methodology Reviewing Drake Equation factors

Simon P. Balm Astro 5 Test #3 Sample Questions

Simon P. Balm Astro 5 Test #3 Sample Questions 1. What do we mean by the general habitability of a planet? A. the suitability for Life on it surface B. the suitability for Life beneath its surface C. its

Other migration processes. New transiting hot Jupiters from last week. First success from CoRoT. Kozai mechanism

Other migration processes Previous lecture: Migration through planet-disk interactions Type I: low-mass planet (does not clear a gap in disk) Type II: high-mass panet (has cleared gap) Type III: runaway

Class 15 Formation of the Solar System

Class 16 Extra-solar planets The radial-velocity technique for finding extrasolar planets Other techniques for finding extrasolar planets Class 15 Formation of the Solar System What does a successful model

Astronomy 330 HW 2. Outline. Presentations. ! Kira Bonk ascension.html

Astronomy 330 This class (Lecture 11): What is f p? Eric Gobst Suharsh Sivakumar Next Class: Life in the Solar System HW 2 Kira Bonk http://www.ufodigest.com/news/0308/ ascension.html Matthew Tenpas http://morphman.hubpages.com/hub/alien-

Importance of the study of extrasolar planets. Exoplanets Introduction. Importance of the study of extrasolar planets

Importance of the study of extrasolar planets Exoplanets Introduction Planets and Astrobiology (2017-2018) G. Vladilo Technological and scientific spin-offs Exoplanet observations are driving huge technological

Cosmology Overview (so far): Cosmology Overview (so far): The Age of the Universe. The Big Bang. The Age of the Universe

Cosmology Overview (so far): The Universe: Everything Observable Universe: Everything we can The Universe has no special locations No If no, then no Cosmology Overview (so far): Oblers s Paradox: The sky

Astronomy December, 2016 Introduction to Astronomy: The Solar System. Final exam. Practice questions for Unit V. Name (written legibly):

Astronomy 101 12 December, 2016 Introduction to Astronomy: The Solar System Final exam Practice questions for Unit V Name (written legibly): Honor Pledge: On my honor, I have neither given nor received

What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets candidates (http://exoplanets.

Exoplanets. II What Have We Found? 1978 planets in 1488 systems as of 11/15/15 (http://exoplanet.eu/ ) 1642 planets + 3787 candidates (http://exoplanets.org) Detected by radial velocity/astrometry: 621

Science Olympiad Astronomy C Division Event National Exam

Science Olympiad Astronomy C Division Event National Exam University of Nebraska-Lincoln May 15-16, 2015 Team Number: Team Name: Instructions: 1) Please turn in all materials at the end of the event. 2)

Number of Stars: 100 billion (10 11 ) Mass : 5 x Solar masses. Size of Disk: 100,000 Light Years (30 kpc)

THE MILKY WAY GALAXY Type: Spiral galaxy composed of a highly flattened disk and a central elliptical bulge. The disk is about 100,000 light years (30kpc) in diameter. The term spiral arises from the external

Universe Celestial Object Galaxy Solar System

ASTRONOMY Universe- Includes all known matter (everything). Celestial Object Any object outside or above Earth s atmosphere. Galaxy- A large group (billions) of stars (held together by gravity). Our galaxy

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

Credit: NASA/Kepler Mission/Dana Berry. Exoplanets

Credit: NASA/Kepler Mission/Dana Berry Exoplanets Outline What is an exoplanet? Why are they interesting? How can we find them? Exolife?? The future... Jon Thaler Exoplanets 2 What is an Exoplanet? Most

Habitability Outside the Solar System. A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller

Habitability Outside the Solar System A discussion of Bennett & Shostak Chapter 11 HNRS 228 Dr. H. Geller 1 Chapter Overview Distant Suns (11.1) Life cycle of stars and their habitability zones Extrasolar

Astronomy 330 HW 2. Outline. Presentations. ! Alex Bara

Astronomy 330 This class (Lecture 10): Origin of the Moon Ilana Strauss Next Class: Our Planet Scott Huber Thomas Hymel HW 2! Alex Bara http://userpages.bright.net/~phobia/main.htm! Margaret Sharp http://hubpages.com/hub/proof-that-ufos-exist---

Chapter 15 The Formation of Planetary Systems

Chapter 15 The Formation of Planetary Systems Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Formation of the Solar System 15.3 Terrestrial and Jovian Planets 15.4 Interplanetary Debris 15.5 Solar

NSCI EXTRASOLAR PLANETS (CONTINUED) AND THE DRAKE EQUATION. Dr. Karen Kolehmainen Department of Physics, CSUSB

NSCI 314 LIFE IN THE COSMOS 14 - EXTRASOLAR PLANETS (CONTINUED) AND THE DRAKE EQUATION Dr. Karen Kolehmainen Department of Physics, CSUSB http://physics.csusb.edu/~karen/ METHODS FOR DETECTING EXTRASOLAR

Chapter 13 Lecture. The Cosmic Perspective. Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

The History of the Solar System. From cloud to Sun, planets, and smaller bodies

The History of the Solar System From cloud to Sun, planets, and smaller bodies The Birth of a Star Twenty years ago, we knew of only one star with planets the Sun and our understanding of the birth of

8. Solar System Origins

8. Solar System Origins Chemical composition of the galaxy The solar nebula Planetary accretion Extrasolar planets Our Galaxy s Chemical Composition es Big Bang produced hydrogen & helium Stellar processes

Why is it hard to detect planets around other stars?

Extrasolar planets Why is it hard to detect planets around other stars? Planets are small and low in mass Planets are faint The angular separation between planets and their stars is tiny Why is it hard

Why is it hard to find planets?

Admin. 11/28/17 1. Class website http://www.astro.ufl.edu/~jt/teaching/ast1002/ 2. Optional Discussion sections: Tue. ~11.30am in Bryant 3; Thur. ~12.35pm, start in Pugh 170, then Bryant 3 3. Office hr:

Planets & Life. Planets & Life PHYS 214. Please start all class related s with 214: 214: Dept of Physics (308A)

Planets & Life Planets & Life PHYS 214 Dr Rob Thacker Dept of Physics (308A) thacker@astro.queensu.ca Please start all class related emails with 214: 214: Today s s lecture Assignment 1 marked will hand

Solar System Formation

Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

Chapter 13 Lecture. The Cosmic Perspective Seventh Edition. Other Planetary Systems: The New Science of Distant Worlds Pearson Education, Inc.

Chapter 13 Lecture The Cosmic Perspective Seventh Edition Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Planets Around Other Stars Our goals for learning: Why is it so challenging

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Size Difference. Brightness Difference

Chapter 13 Other Planetary Systems Why is it so difficult to detect planets around other stars? Size Difference Planets are small compared to interstellar distances 10 billion to 1 scale Sun is size of

Solar System Formation

Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us.

Doppler Technique Measuring a star's Doppler shift can tell us its motion toward and away from us. Current techniques can measure motions as small as 1 m/s (walking speed!). Sun motion due to: Jupiter:

Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003

Name: Seat Number: Astronomy 102: Stars and Galaxies Examination 3 April 11, 2003 Do not open the test until instructed to begin. Instructions: Write your answers in the space provided. If you need additional

Our Galaxy. Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust. Held together by gravity! The Milky Way with the Naked Eye

Our Galaxy Milky Way Galaxy = Sun + ~100 billion other stars + gas and dust Held together by gravity! The Milky Way with the Naked Eye We get a special view of our own galaxy because we are part of it!

Chapter 13 Other Planetary Systems. Why is it so difficult to detect planets around other stars? Brightness Difference

Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning:! Why is it so difficult to detect planets around other stars?! How do we detect

ASTRONOMY 1 FINAL EXAM 1 Name

ASTRONOMY 1 FINAL EXAM 1 Name Multiple Choice (2 pts each) 1. Sullivan Star is an F spectral class star that is part of a binary star system. It has a MS lifetime of 5 billion years. Its life will eventually

Coriolis Effect - the apparent curved paths of projectiles, winds, and ocean currents

Regents Earth Science Unit 5: Astronomy Models of the Universe Earliest models of the universe were based on the idea that the Sun, Moon, and planets all orbit the Earth models needed to explain how the

13 - EXTRASOLAR PLANETS

NSCI 314 LIFE IN THE COSMOS 13 - EXTRASOLAR PLANETS Dr. Karen Kolehmainen Department of Physics, CSUSB http://physics.csusb.edu/~karen/ EXTRASOLAR PLANETS? DO PLANETS ORBIT AROUND OTHER STARS? WE WOULD

Other planetary systems

Exoplanets are faint! Other planetary systems Planets are seen only by reflected light at optical wavelengths At the distance of another star the faint light of a planet is lost in the glare of the star

The Problem. Until 1995, we only knew of one Solar System - our own

Extrasolar Planets Until 1995, we only knew of one Solar System - our own The Problem We had suspected for hundreds of years, and had confirmed as long ago as the 1800s that the stars were extremely distant

Searching for Life: Chapter 20: Life on Other Worlds. Life in the Universe. Earliest Fossils. Laboratory Experiments.

Chapter 20: Life on Other Worlds Searching for Life: What does life look like here? How did Earth get life? Is Earth ordinary or extraordinary? If Earth is ordinary, where is everyone else? Life in the

2010 Pearson Education, Inc.

Thought Question Suppose you found a star with the same mass as the Sun moving back and forth with a period of 16 months. What could you conclude? A. It has a planet orbiting at less than 1 AU. B. It has

LESSON topic: formation of the solar system Solar system formation Star formation Models of the solar system Planets in our solar system

Unit 2 Lesson 1 LESSON topic: formation of the solar system - Solar system formation - Star formation - Models of the solar system - Planets in our solar system Big bang theory Origin of the universe According

Can We See Them?! Planet Detection! Planet is Much Fainter than Star!

Can We See Them?! Planet Detection! Estimating f p! Not easily! Best cases were reported in late 2008! Will see these later! Problem is separating planet light from star light! Star is 10 9 times brighter

[25] Exoplanet Characterization (11/30/17)

1 [25] Exoplanet Characterization (11/30/17) Upcoming Items APOD 12/2/16 1. Read chapters 24.1-24.3 for Tuesday 2. We will have a final exam review in the last discussion section (Friday, Dec 8) and also

Which of the following planets are all made up of gas? When a planets orbit around the Sun looks like an oval, it s called a(n)

When a planets orbit around the Sun looks like an oval, it s called a(n) - ellipse - circle - axis - rotation Which of the following planets are all made up of gas? - Venus, Mars, Saturn and Pluto - Jupiter,

Solar System Formation

Solar System Formation Solar System Formation Question: How did our solar system and other planetary systems form? Comparative planetology has helped us understand Compare the differences and similarities

9. Formation of the Solar System

9. Formation of the Solar System The evolution of the world may be compared to a display of fireworks that has just ended: some few red wisps, ashes, and smoke. Standing on a cool cinder, we see the slow

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A

29:50 Stars, Galaxies, and the Universe Final Exam December 13, 2010 Form A There are 40 questions. Read each question and all of the choices before choosing. Budget your time. No whining. Walk with Ursus!

Planets are plentiful

Extra-Solar Planets Planets are plentiful The first planet orbiting another Sun-like star was discovered in 1995. We now know of 209 (Feb 07). Including several stars with more than one planet - true planetary

Extrasolar Planets: Molecules and Disks

Extrasolar Planets: Molecules and Disks The basic question: Is our solar system typical of what we should affect around other stars (inhabited or not), or is it an unusual freak? One approach is to look

Planets: Name Distance from Sun Satellites Year Day Mercury 0.4AU yr 60 days Venus yr 243 days* Earth 1 1 yr 1 day Mars 1.

The Solar System (Ch. 6 in text) We will skip from Ch. 6 to Ch. 15, only a survey of the solar system, the discovery of extrasolar planets (in more detail than the textbook), and the formation of planetary

Spectroscopy, the Doppler Shift and Masses of Binary Stars

Doppler Shift At each point the emitter is at the center of a circular wavefront extending out from its present location. Spectroscopy, the Doppler Shift and Masses of Binary Stars http://apod.nasa.gov/apod/astropix.html

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS

PLANETARY FORMATION THEORY EXPLORING EXOPLANETS This is what we call planets around OTHER stars! PLANETARY FORMATION THEORY EXPLORING EXOPLANETS This is only as of June 2012. We ve found at least double

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Resolving Power (review) The bigger the size of the telescope, the better it is at discerning fine details

Homework 13 (not graded; only some example ques!ons for the material from the last week or so of class)

Homework 13 (not graded; only some example ques!ons for the material from the last week or so of class)! This is a preview of the draft version of the quiz Started: Apr 28 at 9:27am Quiz Instruc!ons Question

The Ecology of Stars

The Ecology of Stars We have been considering stars as individuals; what they are doing and what will happen to them Now we want to look at their surroundings And their births 1 Interstellar Matter Space

AST 101 INTRODUCTION TO ASTRONOMY SPRING MIDTERM EXAM 2 TEST VERSION 1 ANSWERS

AST 101 INTRODUCTION TO ASTRONOMY SPRING 2008 - MIDTERM EXAM 2 TEST VERSION 1 ANSWERS Multiple Choice. In the blanks provided before each question write the letter for the phrase that best answers the

Measuring Distances to Galaxies. Galaxies in Motion. Hubble s Law. Galaxy Redshifts. Type Ia Supernovae. Supernovae are Good Standard Candles

Measuring Distances to Galaxies Too far for parallax! Standard Candles: Cepheid Variables (for Local Group) Type Ia Supernovae Redshifts Type Ia Supernovae These are another standard candle used to measure

Our Planetary System & the Formation of the Solar System

Our Planetary System & the Formation of the Solar System Chapters 7 & 8 Comparative Planetology We learn about the planets by comparing them and assessing their similarities and differences Similarities

Base your answers to questions 1 and 2 on the passage below and on your knowledge of Earth Science. Cosmic Microwave Background Radiation In the 1920s, Edwin Hubble's discovery of a pattern in the red

Stellar Astronomy Sample Questions for Exam 3

Stellar Astronomy Sample Questions for Exam 3 Chapter 7 1. A protostar is formed by a) the rapid expansion of gas from an exploding star. b) the gravitational collapse of a rotating interstellar cloud.

Astronomy Today. Eighth edition. Eric Chaisson Steve McMillan

Global edition Astronomy Today Eighth edition Eric Chaisson Steve McMillan The Distance Scale ~1 Gpc Velocity L Distance Hubble s law Supernovae ~200 Mpc Time Tully-Fisher ~25 Mpc ~10,000 pc Time Variable

Astronomy 122 Midterm

Astronomy 122 Midterm This Class (Lecture 15): Stellar Evolution: The Main Sequence Next Class: Stellar Evolution: Post-Main Sequence Midterm on Thursday! Last week for Nightlabs 1 hour exam in this classroom

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

Goals: The Birth Of Stars How do stars form from the interstellar medium Where does star formation take place How do we induce star formation Interstellar Medium Gas and dust between stars is the interstellar

Planet Detection. AST 105 Intro Astronomy The Solar System

Review AST 105 Intro Astronomy The Solar System MIDTERM III this THURSDAY 04/8 covering LECT. 17 through We ve talked about the Terrestrial Planets and the Jovian Planets - What about planets around other

Fusion in first few minutes after Big Bang form lightest elements

Fusion in first few minutes after Big Bang form lightest elements Stars build the rest of the elements up to Iron (Fe) through fusion The rest of the elements beyond Iron (Fe) are produced in the dying

Test 4 Final Review. 5/2/2018 Lecture 25

Test 4 Final Review 5/2/2018 Lecture 25 Apparent daily motion of celestial objects is due to earth s rotation Seasons are created due to the title of the Earth relative to the Sun Phases of the moon due

Lecture Outlines. Chapter 15. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines Chapter 15 Astronomy Today 8th Edition Chaisson/McMillan Chapter 15 Exoplanets Units of Chapter 15 15.1 Modeling Planet Formation 15.2 Solar System Regularities and Irregularities 15.3

Astronomy 1143 Final Exam Review Answers Prof. Pradhan April 24, 2015 What is Science? 1. Explain the difference between astronomy and astrology. 2. What number is the metric system based around? What

The Search for Extraterrestrial Intelligence (SETI)

The Search for Extraterrestrial Intelligence (SETI) Our goals for learning What is the Drake equation? How many habitable planets have life? How many civilizations are out there? How does SETI work? Can

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2

Edmonds Community College Astronomy 100 Winter Quarter 2007 Sample Exam # 2 Instructor: L. M. Khandro 1. Relatively speaking, objects with high temperatures emit their peak radiation in short wavelengths

Astronomy 230 Section 1 MWF B6 Eng Hall. Outline. Star Formation. The Protostar Stage. Gravity, Spin, & Magnetic Fields

Astronomy 230 Section 1 MWF 1400-1450 106 B6 Eng Hall This Class (Lecture 7): Planet Formation and Next Class: Extrasolar Planets Oral Presentation Decisions! Deadline is Feb 6 th. Outline Star formation

Chapter 13 Other Planetary Systems. The New Science of Distant Worlds

Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning Why is it so difficult to detect planets around other stars? How do we detect

Chapter 15: The Origin of the Solar System

Chapter 15: The Origin of the Solar System The Solar Nebula Hypothesis Basis of modern theory of planet formation: Planets form at the same time from the same cloud as the star. Planet formation sites

TEACHER BACKGROUND INFORMATION

TEACHER BACKGROUND INFORMATION (The Universe) A. THE UNIVERSE: The universe encompasses all matter in existence. According to the Big Bang Theory, the universe was formed 10-20 billion years ago from a

What makes a planet habitable?

What makes a planet habitable? By NASA.gov on 01.26.17 Word Count 977 TOP: This artist's concept depicts Kepler-186f, the first proven Earth-sized planet to orbit a distant star in the habitable zone,

Probing the Galactic Planetary Census

Probing the Galactic Planetary Census Greg Laughlin -- UCSC Astronomy Exoplanet News from the AAS meeting (New York Times) The finding was called exciting by Dr. Kenneth Franklin of the American Museum-Hayden

The Main Point(s) Lecture #36: Planets Around Other Stars. Extrasolar Planets! Reading: Chapter 13. Theory Observations

Lecture #36: Planets Around Other Stars Extrasolar Planets! Theory Observations Detection methods Results to date... Implications for "Habitable Zones" Reading: Chapter 13 Astro 102/104 1 The Main Point(s)

Lecture 20: Planet formation II. Clues from Exoplanets

Lecture 20: Planet formation II. Clues from Exoplanets 1 Outline Definition of a planet Properties of exoplanets Formation models for exoplanets gravitational instability model core accretion scenario

N = R * f p n e f l f i f c L

Astronomy 230 Section 1 MWF 1400-1450 106 B6 Eng Hall This Class (Lecture 10): Nature of Life Next Class: Nucleic Acids Some Oral Presentation on Feb 16 th and 18 th! Mike Somers Chris Kramer Sarah Goldrich

ASTRONOMY 202 Spring 2007: Solar System Exploration. Instructor: Dr. David Alexander Web-site:

ASTRONOMY 202 Spring 2007: Solar System Exploration Instructor: Dr. David Alexander Web-site: www.ruf.rice.edu/~dalex/astr202_s07 Class 37: Life in the Universe [4/18/07] Announcements Habitability of

18 An Eclipsing Extrasolar Planet

Name: Date: 18 An Eclipsing Extrasolar Planet 18.1 Introduction One of the more recent new fields in astronomy is the search for (and discovery of) planets orbiting around stars other than our Sun, or

Overview of the Solar System. Solar system contents one star, several planets, lots of debris.

Overview of the Solar System Solar system contents one star, several planets, lots of debris. Most of it is the Sun! 99.8% of the mass of the Solar System resides in the Sun. A hot ball of mostly hydrogen

Lecture 12: Extrasolar planets. Astronomy 111 Monday October 9, 2017

Lecture 12: Extrasolar planets Astronomy 111 Monday October 9, 2017 Reminders Star party Thursday night! Homework #6 due Monday The search for extrasolar planets The nature of life on earth and the quest

Lecture #15: Plan. Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets

Lecture #15: Plan Telescopes (cont d) Effects of Earth s Atmosphere Extrasolar planets = Exoplanets Collecting Area Light bucket : the bigger the area of the telescope s mirror or lens, the more photons

Astrobiology: The Semester in Review

A Universe of Life Astrobiology: The Semester in Review Honors 228 with Dr. Harold Geller Searching for life everywhere Planets, stars, galaxies, Big Bang Conception of size and distance Stars and the

( ) a3 (Newton s version of Kepler s 3rd Law) Units: sec, m, kg

Astronomy 18, UCSC Planets and Planetary Systems Generic Mid-Term Exam (A combination of exams from the past several times this class was taught) This exam consists of two parts: Part 1: Multiple Choice