Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.1/24. T. Paumard (MPE)

Size: px
Start display at page:

Download "Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.1/24. T. Paumard (MPE)"

Transcription

1 Scientific prospects for VLTI in the Galactic Centre: Getting to the Schwarzschild Radius T. Paumard (MPE) G. Perrin, A. Eckart, R. Genzel, P. Léna, R. Schödel, F. Eisenhauer, T. Müller, S. Gillessen Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.1/24

2 Scientific prospects for VLTI in the Galactic Centre: Getting to the Schwarzschild Radius T. Paumard (MPE) G. Perrin, A. Eckart, R. Genzel, P. Léna, R. Schödel, F. Eisenhauer, T. Müller, S. Gillessen Do black-holes really exist? Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.1/24

3 The Galactic Centre in H/K /L Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.2/24

4 Stars in the central 20 light days Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.3/24

5 3D structure of orbits Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.4/24

6 Fast precessing orbits At most 5% of the solar masses is extended,within the orbit of S2 (Mouawad et al. 2005); Is SgrA* still point like at the mas scale? binary system? contribution from a cluster of low-mass/intermediate mass BHs? Side questions: mass function and light/mass ratio of the cusp. Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.5/24

7 Down-sized S-cluster 100 mas Short orbital periods ( 1 yr); fast precession (validate GR); probe density profile closer to SgrA*; get the mass included within 100 R S. Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.6/24

8 Observing requirements 6 stars; m K 18 19; significant motion within 1 week. instantaneous imaging (within 6 hours). Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.7/24

9 PSF: 3 (V, ϕ) sets, K-band, 4 UTs 40 Assumed constraints: hours per obs.; 5 sp. elmnts from 2.0 to 2.4 microns; 20 dynamic range: 1 mag; 40 error on visibility: 1%; error on phase: 2. Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.8/24

10 Synthesised image Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.9/24

11 Synthesised image, cleaned Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.10/24

12 3 months proper motion May (2 (V, ϕ) sets) Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.11/24 40

13 3 months proper motion June (3 (V, ϕ) sets) Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.11/24 40

14 3 months proper motion July (2 (V, ϕ) sets) Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.11/24 40

15 2 seasons proper motion Crude measured astrometry + input orbits Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.12/24 40

16 2 seasons proper motion Crude measured astrometry + input orbits Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.12/24 10

17 Seeing the last stable orbit Probe the space-time; find the spin axis of the black hole. R S for 3.6 millions solar masses = 9 µas Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.13/24

18 SgrA* flares Genzel et al. 2003, Nature 425, Ghez et al ApJL Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.14/24

19 SgrA* flares Genzel et al. 2003, Nature 425, Ghez et al ApJL Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.14/24

20 SgrA* flares Genzel et al. 2003, Nature 425, Ghez et al ApJL Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.14/24

21 SgrA* flares Eisenhauer et al Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.14/24

22 3 models Star disk interaction Star at t 0 t 1 t 2 Accretion disk Black hole t 3 t 4 Flaring material t 5 Motion of the flare = motion of the star Star trajectory Nayakshin et al. (2004) Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.15/24

23 3 models Magnetic reconnection in a jet Motion of the flare = sequential motion of individual blobs going through the heated region Magnetic reconnection Individual blobs of ejected material Jet Accretion disk Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.15/24

24 3 models Hot spot on the last stable orbit Accretion disk t 0 Hot spot at t 0 t 1 t 3 t 1 t 3 t 2 t 2 Last stable orbit seen at high inclination Last stable orbit seen from above Motion of the flare = orbital motion of the clump on average = 0 Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.15/24

25 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

26 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

27 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

28 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

29 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

30 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

31 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

32 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

33 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

34 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

35 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

36 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

37 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

38 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

39 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

40 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

41 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

42 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

43 Rotating blob movie Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.16/24

44 Astrometric model A circle with an inclination of 45 o Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.17/24

45 Astrometric model Track of the primary image: the projected circle, Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.17/24

46 Astrometric model Track of the secondary image: a face-on circle Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.17/24

47 Astrometric model Global centroid, lensing effects only Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.17/24

48 Astrometric model Global centroid, lensing + beaming + doppler Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.17/24

49 Observing details Accuracy: 10, 20, 50 µas; one 2 min exposure every 5 min; flare duration = 1 hour 12 points per run; photometric data available: orbital phase; (orbital period). Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.18/24

50 Independant flares at 10 µas accuracy Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.19/24

51 Independant flares at 10 µas accuracy Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.19/24

52 Independant flares at 10 µas accuracy Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.19/24

53 Independant flares at 10 µas accuracy Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.19/24

54 Independant flares at 10 µas accuracy Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.19/24

55 10 observations together Blue = bright (blueshifted and beamed), red = faint. Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.20/24

56 10 observations together Blue = bright (blueshifted and beamed), red = faint. Can fit a circular orbit. Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.20/24

57 Improvement of fit parameters w/ number of flares (10 µas) Period Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.21/24

58 Improvement of fit parameters w/ number of flares (10 µas) Position angle of the line of nodes Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.21/24

59 Improvement of fit parameters w/ number of flares (10 µas) Radius Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.21/24

60 Improvement of fit parameters w/ number of flares (10 µas) Inclination Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.21/24

61 Improvement of fit parameters w/ number of flares (50 µas) (Period fixed) Still fine: Position angle of the line of nodes Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.22/24

62 Improvement of error bars w/ number of flares (10 µas) 1 observations Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.23/24

63 Improvement of error bars w/ number of flares (10 µas) 2 observations Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.23/24

64 Improvement of error bars w/ number of flares (10 µas) 3 observations Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.23/24

65 Improvement of error bars w/ number of flares (10 µas) 4 observations Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.23/24

66 Improvement of error bars w/ number of flares (10 µas) 5 observations Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.23/24

67 Improvement of error bars w/ number of flares (10 µas) 6 observations Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.23/24

68 Improvement of error bars w/ number of flares (10 µas) 7 observations Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.23/24

69 Improvement of error bars w/ number of flares (10 µas) 8 observations Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.23/24

70 Improvement of error bars w/ number of flares (10 µas) 9 observations Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.23/24

71 Improvement of error bars w/ number of flares (10 µas) 10 observations: not a circle... Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.23/24

72 Improvement of error bars w/ number of flares (10 µas) 10 observations: strong gravitational field effects obvious. Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.23/24

73 Conclusion 10-µas astrometry will allow us to: decide the nature of the flares; compare spin axis of the black hole and rotation axis of the galaxy (jet case and last stable orbit case); measure mass included within 3 R S and spin parameter; probe the space-time within a few R S. Scientific prospects for VLTI in the Galactic Centre:Getting to the Schwarzschild Radius p.24/24

Thibaut Paumard (MPE) F. Eisenhauer, R. Genzel, S. Rabien, S. Gillessen, F. Martins, T. Müller, G. Perrin, A. Eckart, W. Brandner, et al.

Thibaut Paumard (MPE) F. Eisenhauer, R. Genzel, S. Rabien, S. Gillessen, F. Martins, T. Müller, G. Perrin, A. Eckart, W. Brandner, et al. The Galactic Centre: from SINFONI to GRAVITY Thibaut Paumard (MPE) F. Eisenhauer, R. Genzel, S. Rabien, S. Gillessen, F. Martins, T. Müller, G. Perrin, A. Eckart, W. Brandner, et al. The Galactic Centre:

More information

The Galactic Center a unique laboratory for studying massive black holes

The Galactic Center a unique laboratory for studying massive black holes The Galactic Center a unique laboratory for studying massive black holes Reinhard Genzel MPE on behalf of the ESO Galactic Center community (MPE, MPIA, UCologne, Observatoire de Paris, Granada, MPIfR,

More information

Probing Sgr A* flares with VLTI/GRAVITY

Probing Sgr A* flares with VLTI/GRAVITY Probing Sgr A* flares with VLTI/GRAVITY Frédéric Vincent 1 T. Paumard, G. Perrin, P. Varniere, F. Casse, F. Eisenhauer, S. Gillessen, P. Armitage 1 Centrum Astronomiczne M. Kopernika, Warsaw, Poland 1/26

More information

General relativistic effects on the orbit of the S2 star with GRAVITY

General relativistic effects on the orbit of the S2 star with GRAVITY General relativistic effects on the orbit of the S2 star with GRAVITY Marion Grould Collaborators: Frédéric Vincent, Thibaut Paumard & Guy Perrin GPhys, June 19 th 2017 The Galactic center the S2 star

More information

Rainer Schödel & Andreas Eckart Universität zu Köln. Stellar Dynamics Star Formation/Young Stars

Rainer Schödel & Andreas Eckart Universität zu Köln. Stellar Dynamics Star Formation/Young Stars Rainer Schödel & Andreas Eckart Universität zu Köln The Center of the Milky Way Stellar Dynamics Star Formation/Young Stars Variable emission from Sgr A* e.g. Eckart & Genzel (1996); Ghez et al. (1998);

More information

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars

Distribution of X-ray binary stars in the Galaxy (RXTE) High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars High-Energy Astrophysics Lecture 8: Accretion and jets in binary stars Distribution of X-ray binary stars in the Galaxy (RXTE) Robert Laing Primary Compact accreting binary systems Compact star WD NS BH

More information

Structure of nuclei of extragalactic radio sources and the link with GAIA

Structure of nuclei of extragalactic radio sources and the link with GAIA Structure of nuclei of extragalactic radio sources and the link with GAIA J Roland, IAP & S Lambert, SYRTE I General properties of extragalactic radio sources Radio galaxies : associated with elliptical

More information

The Discovery of Quasars

The Discovery of Quasars Massive Black Holes Reinhard Genzel Max-Planck Institut für extraterrestrische Physik, Garching & Departments of Physics & Astronomy, University of California, Berkeley, USA Radio source 3C 273 The Discovery

More information

The Galactic Center a unique laboratory

The Galactic Center a unique laboratory The Galactic Center a unique laboratory Stefan Gillessen, Reinhard Genzel, Frank Eisenhauer, Thomas Ott, Katie Dodds-Eden, Oliver Pfuhl, Tobias Fritz The GC is highly obscured Radio IR X-ray Extremely

More information

In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes

In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes In a dense region all roads lead to a black Hole (Rees 1984 ARAA) Deriving the Mass of SuperMassive Black Holes Stellar velocity fields MW Distant galaxies Gas motions gas disks around nearby black holes

More information

G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA , USA

G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA , USA E-mail: shahzaman@ph1.uni-koeln.de A.Eckart E-mail: eckart@ph1.uni-koeln.de G.Witzel Physics and Astronomy Department, University of California, Los Angeles, CA 90095-1547, USA N. Sabha M. Zamaninasab

More information

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar Quasars ASTR 2120 Sarazin Quintuple Gravitational Lens Quasar Quasars Quasar = Quasi-stellar (radio) source Optical: faint, blue, star-like objects Radio: point radio sources, faint blue star-like optical

More information

Orbits and origins of the young stars in the central parsec of the Galaxy

Orbits and origins of the young stars in the central parsec of the Galaxy Orbits and origins of the young stars in the central parsec of the Galaxy J R Lu 1, A M Ghez 1,2, M Morris 1, S D Hornstein 1,3 and K Matthews 4 1 UCLA Department of Physics and Astronomy, Los Angeles,

More information

Testing a class of non-kerr metrics with hot spots orbiting SgrA

Testing a class of non-kerr metrics with hot spots orbiting SgrA Testing a class of non-kerr metrics with hot spots orbiting SgrA arxiv:4.2329v2 [gr-qc] 9 Dec 24 Dan Liu, Zilong Li and Cosimo Bambi Center for Field Theory and Particle Physics and Department of Physics,

More information

Supplementary Materials for

Supplementary Materials for Supplementary Materials for The Shortest Known Period Star Orbiting our Galaxy's Supermassive Black Hole L. Meyer, A. M. Ghez, R. Schödel, S. Yelda, A. Boehle, J. R. Lu, T. Do, M. R. Morris, E. E. Becklin,

More information

Sag A Mass.notebook. September 26, ' x 8' visual image of the exact center of the Milky Way

Sag A Mass.notebook. September 26, ' x 8' visual image of the exact center of the Milky Way 8' x 8' visual image of the exact center of the Milky Way The actual center is blocked by dust and is not visible. At the distance to the center (26,000 ly), this image would span 60 ly. This is the FOV

More information

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley)

The Black Hole in the Galactic Center. Eliot Quataert (UC Berkeley) The Black Hole in the Galactic Center Eliot Quataert (UC Berkeley) Why focus on the Galactic Center? The Best Evidence for a BH: M 3.6 10 6 M (M = mass of sun) It s s close! only ~ 10 55 Planck Lengths

More information

Physics 5I LECTURE 7 December 2, 2011

Physics 5I LECTURE 7 December 2, 2011 Physics 5I LECTURE 7 December 2, 2011 Midterm Exam More on Special Relativity Special Relativity with 4-vectors (again) Special Relativity + Quantum Mechanics Antiparticles, Spin General Relativity Black

More information

Centers of Galaxies. = Black Holes and Quasars

Centers of Galaxies. = Black Holes and Quasars Centers of Galaxies = Black Holes and Quasars Models of Nature: Kepler Newton Einstein (Special Relativity) Einstein (General Relativity) Motions under influence of gravity [23] Kepler The planets move

More information

Gravitational Potential Energy. The Gravitational Field. Grav. Potential Energy Work. Grav. Potential Energy Work

Gravitational Potential Energy. The Gravitational Field. Grav. Potential Energy Work. Grav. Potential Energy Work The Gravitational Field Exists at every point in space The gravitational force experienced by a test particle placed at that point divided by the mass of the test particle magnitude of the freefall acceleration

More information

AST207 F /29/2010. Black Holes in Galactic Center 29 Nov. Ast 207 F2010. Objectives

AST207 F /29/2010. Black Holes in Galactic Center 29 Nov. Ast 207 F2010. Objectives Black Holes in Galactic Center 29 Nov Schedule for the rest of the semester Recombination, Universe at 400,000 years Weighing the universe How much matter is there in a 1m box? Surprising answer: The gravity

More information

A. Thermal radiation from a massive star cluster. B. Emission lines from hot gas C. 21 cm from hydrogen D. Synchrotron radiation from a black hole

A. Thermal radiation from a massive star cluster. B. Emission lines from hot gas C. 21 cm from hydrogen D. Synchrotron radiation from a black hole ASTR 1040 Accel Astro: Stars & Galaxies Prof. Juri Toomre TA: Nicholas Nelson Lecture 26 Thur 14 Apr 2011 zeus.colorado.edu/astr1040-toomre toomre HST Abell 2218 Reading clicker what makes the light? What

More information

Black Holes in Hibernation

Black Holes in Hibernation Black Holes in Hibernation Black Holes in Hibernation Only about 1 in 100 galaxies contains an active nucleus. This however does not mean that most galaxies do no have SMBHs since activity also requires

More information

Classical Interferometric Arrays. Andreas Quirrenbach Landessternwarte Heidelberg

Classical Interferometric Arrays. Andreas Quirrenbach Landessternwarte Heidelberg Classical Interferometric Arrays Andreas Quirrenbach Landessternwarte Heidelberg The VLT Interferometer Tucson 11/14/2006 Andreas Quirrenbach 2 Optical / Infrared Interferometry Today Access to milliarcsecond-scale

More information

Astronomy 422! Lecture 7: The Milky Way Galaxy III!

Astronomy 422! Lecture 7: The Milky Way Galaxy III! Astronomy 422 Lecture 7: The Milky Way Galaxy III Key concepts: The supermassive black hole at the center of the Milky Way Radio and X-ray sources Announcements: Test next Tuesday, February 16 Chapters

More information

Today in Astronomy 102: the Galactic center

Today in Astronomy 102: the Galactic center Today in Astronomy 102: the Galactic center The center of the Milky Way Galaxy: compelling evidence for a 3.6- million-solar-mass black hole. Image: wide-angle photo and overlay key of the Sagittarius

More information

The Galactic Center with METIS

The Galactic Center with METIS The Galactic Center with METIS THE E-ELT E ELT DESIGN REFERENCE MISSION DRM & DRSP Workshop 26 28 May 2009 ESO Garching Andreas Eckart I.Physikalisches Institut der Universität zu Köln Max-Planck Planck-Institut

More information

Gravitation. Isaac Newton ( ) Johannes Kepler ( )

Gravitation. Isaac Newton ( ) Johannes Kepler ( ) Schwarze Löcher History I Gravitation Isaac Newton (1643-1727) Johannes Kepler (1571-1630) Isaac Newton (1643-1727) Escape Velocity V = 2GM R 1/2 Earth: 11.2 km/s (40 320 km/h) Moon: 2.3 km/s (8 300 km/h)

More information

10/25/2010. Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Lecture Outline. Reading Quiz #9 Wednesday (10/27)

10/25/2010. Stars, Galaxies & the Universe Announcements. Stars, Galaxies & the Universe Lecture Outline. Reading Quiz #9 Wednesday (10/27) Stars, Galaxies & the Universe Announcements Reading Quiz #9 Wednesday (10/27) HW#8 in ICON due Friday (10/29) by 5 pm - available Wednesday 1 Stars, Galaxies & the Universe Lecture Outline 1. Black Holes

More information

Plunging Plasma Blobs near the Marginally Stable Orbit of Sgr A*

Plunging Plasma Blobs near the Marginally Stable Orbit of Sgr A* International Journal of Astronomy 2015, 4(1): 5-11 DOI: 10.5923/j.astronomy.20150401.02 Plunging Plasma Blobs near the Marginally Stable Orbit of Sgr A* E. M. Howard Department of Physics and Astronomy,

More information

Photo credit: Ethan Tweedie

Photo credit: Ethan Tweedie Galactic Center Andrea Ghez (UCLA/Keck Galactic Center Group) Mark Morris, Eric Becklin, Tuan Do, Jessica Lu, Mike Fitzgerald, James Larkin, Keith Matthews, Peter Wizinowich, Anna Boehle, Randy Campbell,

More information

Sgr A : from 10 0 to m in 3000 seconds

Sgr A : from 10 0 to m in 3000 seconds Sgr A : from 10 0 to 10 18 m in 3000 seconds Mark Wardle Department of Physics Macquarie University Outline The Galactic centre and Sgr A Mass determination Accretion Spectrum: radio to x-ray TeV gamma

More information

Gas dynamics and accretion in the Galactic centre

Gas dynamics and accretion in the Galactic centre Gas dynamics and accretion in the Galactic centre Jorge Cuadra P. Universidad Católica (PUC) Chile JC acknowledges support from CONICYT- Chile through FONDECYT (1141175), Basal (PFB0609) and Anillo (ACT1101)

More information

1932: KARL JANSKY. 1935: noise is identified as coming from inner regions of Milky Way

1932: KARL JANSKY. 1935: noise is identified as coming from inner regions of Milky Way 1932: KARL JANSKY Is assigned the task of identifying the noise that plagued telephone calls to Europe 1935: noise is identified as coming from inner regions of Milky Way MANY YEARS GO BY. 1960: a strong

More information

Testing astrophysical black holes. Cosimo Bambi Fudan University

Testing astrophysical black holes. Cosimo Bambi Fudan University Testing astrophysical black holes Cosimo Bambi Fudan University http://www.physics.fudan.edu.cn/tps/people/bambi/ 29 October 2015 Interdisciplinary Center for Theoretical Studies (USTC, Hefei) Plan of

More information

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Lecture Outlines. Chapter 22. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc. Lecture Outlines Chapter 22 Astronomy Today 8th Edition Chaisson/McMillan Chapter 22 Neutron Stars and Black Holes Units of Chapter 22 22.1 Neutron Stars 22.2 Pulsars 22.3 Neutron-Star Binaries 22.4 Gamma-Ray

More information

Probing into the shadow of the galactic center black hole with sub-millimeter VLBI

Probing into the shadow of the galactic center black hole with sub-millimeter VLBI Probing into the shadow of the galactic center black hole with sub-millimeter VLBI Zhi-Qiang Shen (Shanghai Astronomical Observatory) In collaboration with: L. Huang, M. Cai, F. Yuan, S.-M. Liu K. Y. Lo,

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 6 Oct. 28, 2015 Today Wrap up of Einstein s General Relativity Curved Spacetime Gravitational Waves Black Holes Relativistic

More information

Binary black hole systems in nuclei of extragalactic radio sources. J Roland IAP

Binary black hole systems in nuclei of extragalactic radio sources. J Roland IAP Binary black hole systems in nuclei of extragalactic radio sources J Roland IAP Radio galaxy Cygnus A Nucleus Extended lobe Galaxy associated with Cygnus A : elliptical galaxy On the milli arc sec scale

More information

INTERSTELLAR BLACK HOLE.

INTERSTELLAR BLACK HOLE. INTERSTELLAR BLACK HOLE http://www.wired.com/2014/10/astrophysics-interstellar-black-hole/ outline 1.Introduction 2.Content 3.Conclusion http://www.hdwallpapers.in/interstellar-wallpapers.html Introduction

More information

Brightly Shining Black Holes. Julian Krolik Johns Hopkins University

Brightly Shining Black Holes. Julian Krolik Johns Hopkins University Brightly Shining Black Holes Julian Krolik Johns Hopkins University The Popular Picture of Black Holes The darkest objects in the Universe Popular View more Truthy than True The Closest Real Black Hole

More information

Performance of astrometric detection of a hotspot orbiting on the innermost stable circular orbit of the Galactic Centre black hole

Performance of astrometric detection of a hotspot orbiting on the innermost stable circular orbit of the Galactic Centre black hole Mon. Not. R. Astron. Soc. (11) doi:1.1111/j.1365-966.1.1884.x Performance of astrometric detection of a hotspot orbiting on the innermost stable circular orbit of the Galactic Centre black hole F. H. Vincent,

More information

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo

Chapter 19 Galaxies. Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past. halo Chapter 19 Galaxies Hubble Ultra Deep Field: Each dot is a galaxy of stars. More distant, further into the past halo disk bulge Barred Spiral Galaxy: Has a bar of stars across the bulge Spiral Galaxy 1

More information

Coversheet. Publication metadata

Coversheet. Publication metadata Coversheet This is the publisher s PDF (Version of Record) of the article. This is the final published version of the article. How to cite this publication: Jonas Helboe Jørgensen, Ole Eggers Bjælde, Steen

More information

The Centre of the Milky Way

The Centre of the Milky Way ESO in the 2020s, 20 January 2015, Garching, Germany The Centre of the Milky Way An easy one, for today: stars and star formation, ISM, galaxy evolution, accretion, supermassive black holes, fundamental

More information

Mathematical Modelling of a Gravitational Optical Phenomenon in the Milky Way Centre

Mathematical Modelling of a Gravitational Optical Phenomenon in the Milky Way Centre Applied Physics Research; Vol. 5, No. 5; 2013 ISSN 1916-9639 E-ISSN 1916-9647 Published by Canadian Center of Science and Education Mathematical Modelling of a Gravitational Optical Phenomenon in the Milky

More information

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as

Chapter 14. Outline. Neutron Stars and Black Holes. Note that the following lectures include. animations and PowerPoint effects such as Note that the following lectures include animations and PowerPoint effects such as fly ins and transitions that require you to be in PowerPoint's Slide Show mode (presentation mode). Chapter 14 Neutron

More information

Constraining the charge of the Galactic centre black hole

Constraining the charge of the Galactic centre black hole Constraining the charge of the Galactic centre black hole FISIPAC 18 Presenting author: Michal Zajac ek Co-authors: Arman Tursunov, Andreas Eckart, Silke Britzen Zajac ek+18, MNRAS, 480, 4408 (arxiv: 1808.07327)

More information

Recent Results and Perspectives for Precision Astrometry and Photometry with Adaptive Optics.

Recent Results and Perspectives for Precision Astrometry and Photometry with Adaptive Optics. Invited Paper Recent Results and Perspectives for Precision Astrometry and Photometry with Adaptive Optics. Jessica R. Lu a, Andrea M. Ghez b,c, Sylvana Yelda b, Tuan Do b, Will Clarkson b,nate McCrady

More information

CHARA Collaboration Year-Eight Science Review. VLTI update. F. Delplancke

CHARA Collaboration Year-Eight Science Review. VLTI update. F. Delplancke VLTI update F. Delplancke Summary Infrastructure Current instruments: MIDI, AMBER, PIONIER Under test & commissioning: PRIMA 2 nd generation instruments Long Range Plan Infrastructure Infrastructure 4

More information

Supermassive Black Hole Formation in Galactic Nuclei

Supermassive Black Hole Formation in Galactic Nuclei Supermassive Black Hole Formation in Galactic Nuclei Melvyn B. Davies Department of Astronomy and Theoretical Physics Lund University Ross Church (Lund), Cole Miller (Maryland), Serge Nzoke (Lund), Jillian

More information

Monster in the Middle The Milky Way s Central Black Hole

Monster in the Middle The Milky Way s Central Black Hole Monster in the Middle The Milky Way s Central Black Hole Charles F. Gammie University of Illinois at Urbana-Champaign Department of Astronomy and Department of Physics OLLI, 12 Oct 2017 NASA, ESA / Tepletz+

More information

Chapter 13 2/19/2014. Lecture Outline Neutron Stars. Neutron Stars and Black Holes Neutron Stars. Units of Chapter

Chapter 13 2/19/2014. Lecture Outline Neutron Stars. Neutron Stars and Black Holes Neutron Stars. Units of Chapter 13.1 Neutron Stars Lecture Outline Chapter 13 Neutron Stars and After a Type I supernova, little or nothing remains of the original star. After a Type II supernova, part of the core may survive. It is

More information

Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy

Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy Gravity: What s the big attraction? Dan Wilkins Institute of Astronomy Overview What is gravity? Newton and Einstein What does gravity do? Extreme gravity The true power of gravity Getting things moving

More information

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013

T-REX. Renato Falomo. T-REX meeting, Bologna 14 Jan 2013 T-REX Renato Falomo T-REX meeting, Bologna 14 Jan 2013 1 T-REX MICADO: Multi-AO Imaging Camera for Deep Observations The Consortium MPE Garching, Germany MPIA Heidelberg, Germany USM Munich, Germany OAPD

More information

Publ. Astron. Obs. Belgrade No. 96 (2017), CENTRAL SUPERMASSIVE BLACK HOLE OF THE MILKY WAY

Publ. Astron. Obs. Belgrade No. 96 (2017), CENTRAL SUPERMASSIVE BLACK HOLE OF THE MILKY WAY Publ. Astron. Obs. Belgrade No. 96 (2017), 193-201 Invited Lecture CENTRAL SUPERMASSIVE BLACK HOLE OF THE MILKY WAY P. JOVANOVIĆ Astronomical Observatory, Volgina 7, 11060 Belgrade, Serbia E mail: pjovanovic@aob.bg.ac.rs

More information

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA

The Universe o. Galaxies. The Universe of. Galaxies. Ajit Kembhavi IUCAA Hello! The Universe of Galaxies The Universe o Galaxies Ajit Kembhavi IUCAA Galaxies: Stars: ~10 11 Mass: ~10 11 M Sun Contain stars, gas and dust, possibly a supermassive black hole at the centre. Much

More information

Star systems like our Milky Way. Galaxies

Star systems like our Milky Way. Galaxies Galaxies Star systems like our Milky Way Galaxies Contain a few thousand to tens of billions of stars,as well as varying amounts of gas and dust Large variety of shapes and sizes Gas and Dust in

More information

Lecture 18 : Black holes. Astronomy 111

Lecture 18 : Black holes. Astronomy 111 Lecture 18 : Black holes Astronomy 111 Gravity's final victory A star more massive than about 18 M sun would leave behind a post-supernova core this is larger than 2-3 M sun :Neutron degeneracy pressure

More information

General Relativity. In GR, mass (or energy) warps the spacetime fabric of space.

General Relativity. In GR, mass (or energy) warps the spacetime fabric of space. General Relativity Einstein s theory of General Relativity is a theory of gravity The basic idea is to drop Newton s idea of a mysterious force between masses and replace it with the 4-dimensional SpaceTime

More information

Observed Properties of Stars - 2 ASTR 2110 Sarazin

Observed Properties of Stars - 2 ASTR 2110 Sarazin Observed Properties of Stars - 2 ASTR 2110 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Stellar Colors Stellar Colors Stellar Colors Stars

More information

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers?

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers? Elaine M. Sadler Black holes in massive galaxies Demographics of radio galaxies nearby and at z~0.55 Are radio galaxies signposts to black-hole mergers? Work done with Russell Cannon, Scott Croom, Helen

More information

Testing the nature of astrophysical black hole candidates. Cosimo Bambi (Fudan University, Shanghai)

Testing the nature of astrophysical black hole candidates. Cosimo Bambi (Fudan University, Shanghai) Testing the nature of astrophysical black hole candidates Cosimo Bambi (Fudan University, Shanghai) 8 June 2013, Annual Meeting of the Physics Department Fudan University, Shanghai Tests of General Relativity

More information

The Milky Way Galaxy

The Milky Way Galaxy The Milky Way Galaxy A. Expert - I have done a lot of reading in this area already. B. Above Average - I have learned some information about this topic. C. Moderate - I know a little about this topic.

More information

13 - EXTRASOLAR PLANETS

13 - EXTRASOLAR PLANETS NSCI 314 LIFE IN THE COSMOS 13 - EXTRASOLAR PLANETS Dr. Karen Kolehmainen Department of Physics, CSUSB http://physics.csusb.edu/~karen/ EXTRASOLAR PLANETS? DO PLANETS ORBIT AROUND OTHER STARS? WE WOULD

More information

arxiv: v1 [astro-ph.ga] 11 Aug 2017

arxiv: v1 [astro-ph.ga] 11 Aug 2017 Draft version September 4, 218 Typeset using LATEX twocolumn style in AASTeX61 INVESTIGATING THE RELATIVISTIC MOTION OF THE STARS NEAR THE SUPERMASSIVE BLACK HOLE IN THE GALACTIC CENTER M. Parsa, 1, 2

More information

An Archival Study of Our Galaxy s Central Stellar Cluster and the Implications for Measuring R 0

An Archival Study of Our Galaxy s Central Stellar Cluster and the Implications for Measuring R 0 An Archival Study of Our Galaxy s Central Stellar Cluster and the Implications for Measuring R 0 Lia Corrales 2 September 2005 Abstract This project seeks to incorporate an unused body of data from the

More information

4/18/17. Our Schedule. Revisit Quasar 3C273. Dark Matter in the Universe. ASTR 1040: Stars & Galaxies

4/18/17. Our Schedule. Revisit Quasar 3C273. Dark Matter in the Universe. ASTR 1040: Stars & Galaxies ASTR 1040: Stars & Galaxies HST Abell 2218 Prof. Juri Toomre TAs: Piyush Agrawal, Connor Bice Lecture 25 Tues 18 Apr 2017 zeus.colorado.edu/astr1040-toomre Our Schedule Observatory Night #8 + #9 (proj

More information

Gaia Revue des Exigences préliminaires 1

Gaia Revue des Exigences préliminaires 1 Gaia Revue des Exigences préliminaires 1 Global top questions 1. Which stars form and have been formed where? - Star formation history of the inner disk - Location and number of spiral arms - Extent of

More information

Astronomy 421. Lecture 24: Black Holes

Astronomy 421. Lecture 24: Black Holes Astronomy 421 Lecture 24: Black Holes 1 Outline General Relativity Equivalence Principle and its Consequences The Schwarzschild Metric The Kerr Metric for rotating black holes Black holes Black hole candidates

More information

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc.

Chapter 18 Reading Quiz Clickers. The Cosmic Perspective Seventh Edition. The Bizarre Stellar Graveyard Pearson Education, Inc. Reading Quiz Clickers The Cosmic Perspective Seventh Edition The Bizarre Stellar Graveyard 18.1 White Dwarfs What is a white dwarf? What can happen to a white dwarf in a close binary system? What supports

More information

Thom et al. (2008), ApJ

Thom et al. (2008), ApJ Star S674 along the same LOS as Complex C Star S441 along the same LOS as Complex C Thom et al. (2008), ApJ Distances to HVCs From spectroscopy of high Galactic latitude stars at small angular separations

More information

GR and Spacetime 3/20/14. Joys of Black Holes. Compact Companions in Binary Systems. What do we mean by the event horizon of a black hole?

GR and Spacetime 3/20/14. Joys of Black Holes. Compact Companions in Binary Systems. What do we mean by the event horizon of a black hole? ASTR 1040: Stars & Galaxies Prof. Juri Toomre TA: Ryan Orvedahl Lecture 20 Thur 20 Mar 2014 zeus.colorado.edu/astr1040-toomre Tycho Brahe SNR (1572) Joys of Black Holes Black holes, their general properties,

More information

Chapter 19 Lecture. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Lecture. The Cosmic Perspective Seventh Edition. Our Galaxy Pearson Education, Inc. Chapter 19 Lecture The Cosmic Perspective Seventh Edition Our Galaxy Our Galaxy 19.1 The Milky Way Revealed Our goals for learning: Where are we located within our galaxy? What does our galaxy look like?

More information

Feeding Sgr A*, the Supermassive Black Hole at the Center of our Galaxy

Feeding Sgr A*, the Supermassive Black Hole at the Center of our Galaxy Feeding Sgr A*, the Supermassive Black Hole at the Center of our Galaxy Thanks to James M. Moran Luis F. Rodríguez Centro de Radioastronomía y Astrofísica, UNAM and El Colegio Nacional Summary Astronomical

More information

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants

Accretion Disks. Review: Stellar Remnats. Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath 2/25/10. Review: Creating Stellar Remnants Lecture 12: Black Holes & the Milky Way A2020 Prof. Tom Megeath Review: Creating Stellar Remnants Binaries may be destroyed in white dwarf supernova Binaries be converted into black holes Review: Stellar

More information

Chapter 19 Lecture. The Cosmic Perspective. Seventh Edition. Our Galaxy Pearson Education, Inc.

Chapter 19 Lecture. The Cosmic Perspective. Seventh Edition. Our Galaxy Pearson Education, Inc. Chapter 19 Lecture The Cosmic Perspective Seventh Edition Our Galaxy 19.1 The Milky Way Revealed Our goals for learning: Where are we located within our galaxy? What does our galaxy look like? How do stars

More information

The Milky Way - Chapter 23

The Milky Way - Chapter 23 The Milky Way - Chapter 23 The Milky Way Galaxy A galaxy: huge collection of stars (10 7-10 13 ) and interstellar matter (gas & dust). Held together by gravity. Much bigger than any star cluster we have

More information

Astronomy 102: Stars and Galaxies Examination 3 Review Problems

Astronomy 102: Stars and Galaxies Examination 3 Review Problems Astronomy 102: Stars and Galaxies Examination 3 Review Problems Multiple Choice Questions: The first eight questions are multiple choice. Except where explicitly noted, only one answer is correct for each

More information

Observations of extrasolar planets

Observations of extrasolar planets Observations of extrasolar planets 1 Mercury 2 Venus radar image from Magellan (vertical scale exaggerated 10 X) 3 Mars 4 Jupiter 5 Saturn 6 Saturn 7 Uranus and Neptune 8 we need to look out about 10 parsecs

More information

arxiv:astro-ph/ v1 3 Jan 2002

arxiv:astro-ph/ v1 3 Jan 2002 Stellar Orbits Near Sagittarius A* A. Eckart.Physikalisches nstitut, Universität zu Köln, Zülpicher Str.77, 5937 Köln, Germany and arxiv:astro-ph/2131v1 3 Jan 22 R. Genzel, T. Ott, R. Schödel Max-Planck-nstitut

More information

The Milky Way Galaxy is Heading for a Major Cosmic Collision

The Milky Way Galaxy is Heading for a Major Cosmic Collision The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing

More information

The Event Horizon Telescope: A (sub)mm-vlbi Network. Shep Doeleman MIT Haystack Observatory for the EHT Collaboration

The Event Horizon Telescope: A (sub)mm-vlbi Network. Shep Doeleman MIT Haystack Observatory for the EHT Collaboration The Event Horizon Telescope: A (sub)mm-vlbi Network Shep Doeleman MIT Haystack Observatory for the EHT Collaboration Big Questions Is there an Event Horizon? Does GR hold near BH? How does matter accrete/outflow

More information

A100H Exploring the Universe: Quasars, Dark Matter, Dark Energy. Martin D. Weinberg UMass Astronomy

A100H Exploring the Universe: Quasars, Dark Matter, Dark Energy. Martin D. Weinberg UMass Astronomy A100H Exploring the :, Dark Matter, Dark Energy Martin D. Weinberg UMass Astronomy astron100h-mdw@courses.umass.edu April 19, 2016 Read: Chaps 20, 21 04/19/16 slide 1 BH in Final Exam: Friday 29 Apr at

More information

Binary black holes in nuclei of extragalactic radio sources 3C 345. VLBI component = radio blob superluminal motion = apparent motion

Binary black holes in nuclei of extragalactic radio sources 3C 345. VLBI component = radio blob superluminal motion = apparent motion Binary black holes in nuclei of extragalactic radio sources 3C 345 VLBI component = radio blob superluminal motion = apparent motion VLBI observations of compact radio sources show that the ejection of

More information

Observed Properties of Stars - 2 ASTR 2120 Sarazin

Observed Properties of Stars - 2 ASTR 2120 Sarazin Observed Properties of Stars - 2 ASTR 2120 Sarazin Properties Location Distance Speed Radial velocity Proper motion Luminosity, Flux Magnitudes Magnitudes Hipparchus 1) Classified stars by brightness,

More information

NEUTRON STARS, GAMMA RAY BURSTS, and BLACK HOLES (chap. 22 in textbook)

NEUTRON STARS, GAMMA RAY BURSTS, and BLACK HOLES (chap. 22 in textbook) NEUTRON STARS, GAMMA RAY BURSTS, and BLACK HOLES (chap. 22 in textbook) Neutron Stars For carbon detonation SN probably no remnant For core-collapse SN remnant is a neutron-degenerate core neutron star

More information

ESO Colloquium um (Santiago de Chile) An E-ELT DRM science case: in deeply embedded dense massive protoclusters

ESO Colloquium um (Santiago de Chile) An E-ELT DRM science case: in deeply embedded dense massive protoclusters ESO Colloquium um (Santiago de Chile) An E-ELT DRM science case: stellar population and stellar dynamics in deeply embedded dense massive protoclusters Hans Zinnecker (AIP and ESO visiting scientist) OR

More information

telescopes resolve it into many faint (i.e. distant) stars What does it tell us?

telescopes resolve it into many faint (i.e. distant) stars What does it tell us? The Milky Way From a dark site the Milky Way can be seen as a broad band across the sky What is it? telescopes resolve it into many faint (i.e. distant) stars What does it tell us? that we live in a spiral

More information

Chapter 17. Active Galaxies and Supermassive Black Holes

Chapter 17. Active Galaxies and Supermassive Black Holes Chapter 17 Active Galaxies and Supermassive Black Holes Guidepost In the last few chapters, you have explored our own and other galaxies, and you are ready to stretch your scientific imagination and study

More information

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar.

Neutron Stars. Neutron Stars and Black Holes. The Crab Pulsar. Discovery of Pulsars. The Crab Pulsar. Light curves of the Crab Pulsar. Chapter 11: Neutron Stars and Black Holes A supernova explosion of an M > 8 M sun star blows away its outer layers. Neutron Stars The central core will collapse into a compact object of ~ a few M sun.

More information

The Milky Way Galaxy

The Milky Way Galaxy 1/5/011 The Milky Way Galaxy Distribution of Globular Clusters around a Point in Sagittarius About 00 globular clusters are distributed in random directions around the center of our galaxy. 1 1/5/011 Structure

More information

Ay162, Spring 2006 Week 8 p. 1 of 15

Ay162, Spring 2006 Week 8 p. 1 of 15 Astronomy 162, Week 8 Milky Way Galaxy, continued Patrick S. Osmer Spring, 2006 Rotation of Galaxy How do we know the galaxy is rotating, and how do we measure its rotation? Measure radial velocities of

More information

arxiv: v1 [astro-ph.ga] 2 Mar 2009

arxiv: v1 [astro-ph.ga] 2 Mar 2009 The Galactic Center: A Laboratory for Fundamental Astrophysics and Galactic Nuclei An Astro2010 Science White Paper arxiv:0903.0383v1 [astro-ph.ga] 2 Mar 2009 Authors: Andrea Ghez (UCLA; ghez@astro.ucla.edu),

More information

Active Galactic Nuclei (AGNs): A type of AGNs: Quasars. Whatever is powering these QSO s must be very small!!

Active Galactic Nuclei (AGNs): A type of AGNs: Quasars. Whatever is powering these QSO s must be very small!! Active Galactic Nuclei (AGNs): Galaxies with lots of activity AST 101 General Astronomy: Stars & Galaxies Some galaxies at high redshift (large lookback times) have extremely active centers More than 1000

More information

arxiv: v1 [gr-qc] 28 Oct 2012

arxiv: v1 [gr-qc] 28 Oct 2012 Neutron Stars and Pulsars: Challenges and Opportunities after 80 years Proceedings IAU Symposium No. 291, 2012 c 2012 International Astronomical Union J. van Leeuwen, ed. DOI: 00.0000/X000000000000000X

More information

Astronomy 1 Fall 2016

Astronomy 1 Fall 2016 Astronomy 1 Fall 2016 Lecture 14; November 10, 2016 Previously on Astro 1 Late evolution and death of intermediate-mass stars (about 0.4 M to about 4 M ): red giant when shell hydrogen fusion begins, a

More information

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits.

HD Transits HST/STIS First Transiting Exo-Planet. Exoplanet Discovery Methods. Paper Due Tue, Feb 23. (4) Transits. Transits. Paper Due Tue, Feb 23 Exoplanet Discovery Methods (1) Direct imaging (2) Astrometry position (3) Radial velocity velocity Seager & Mallen-Ornelas 2003 ApJ 585, 1038. "A Unique Solution of Planet and Star

More information

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies

Other Galaxy Types. Active Galaxies. A diagram of an active galaxy, showing the primary components. Active Galaxies Other Galaxy Types Active Galaxies Active Galaxies Seyfert galaxies Radio galaxies Quasars Origin??? Different in appearance Produce huge amount of energy Similar mechanism a Galactic mass black hole at

More information

Active Galaxies & Quasars

Active Galaxies & Quasars Active Galaxies & Quasars Normal Galaxy Active Galaxy Galactic Nuclei Bright Active Galaxy NGC 5548 Galaxy Nucleus: Exact center of a galaxy and its immediate surroundings. If a spiral galaxy, it is the

More information