Parametric Estimation and Model Selection based on Amplitude-only Data in PS-Interferometry. (How Many Lines or Points are There?)

Size: px
Start display at page:

Download "Parametric Estimation and Model Selection based on Amplitude-only Data in PS-Interferometry. (How Many Lines or Points are There?)"

Transcription

1 Parametric Estimation and Model Selection based on Amplitude-only Data in PS-Interferometry (How Many Lines or Points are There?), Richard Bamler, Michael Eineder and Bert Kampes

2 DLR s PSIC4 results: Marseille average displacement rate mm/y

3 DLR s PSIC4 results: Gardanne PSI technique is well established mm/y

4 single dominant point scatterer simple estimation optimal estimator: periodogram 8 m LOS

5 single dominant nearly point scatterer simple estimation optimal estimator: periodogram 8 m LOS

6 two dominant point scatterers standard PS estimation fails PS density reduces 100 m 8 m 256 m LOS

7 tomography is a frequency estimation problem phase needs to be corrected for displacement and APS B eff x resolution: ca. 10 m parametrically difficult if number of PS is unknown model selection problem r = 2 m R + x Rm R ( x h) m h x 2 R m R m LOS h

8 PS: two dominant scatterers model x intensity only i = a = a a + a a + 2 a 0 0 a 1 a 1 cos cos ( B ( h0 h1 ) + ( ϕ0 ϕ1) ) ( B h + ϕ) B eff a 1 h a 0 no phase information required only two dominant scatterers other scatterers contribute to clutter resolution: (4m).. 30 m R m a 0 LOS h

9 single plate scatterer model = 2m =1m = 3m i = 2 sin( B + ϕ) 2 a B + ϕ a=const a =1.0 : width of sinc() a: scale φ: shift

10 two dominant scatterers model a0 = 2.0 a1 = 0.5 a = 1.0 a1 0 = 1.5 a0 = 1.0 a1 = 1.0 ( B + ϕ) 2 2 i = a + a + a a cos h h=const=12m h: periodocity and shape a: scale and shape/offset

11 two dominant scatterers model h = 2m h = 0. 5m h = 10m ( B + ϕ) 2 2 i = a + a + a a cos h a=const: a0 = 1.0 a1 = 1.5 h: periodocity and shape a: scale and shape/offset

12 two scatterers better model than single obvious example (1) with real data sinc is not periodic but the data are single scatterer assumption -> wrong sinc-fit two scatterers assumption -> cos-fit better describes the data

13 two scatterers better model than single single scatterer assumption obvious example (2) with real data sinc always goes to zero but the data don t -> wrong sinc-fit two scatterers assumption -> cos-fit better describes the data

14 two scatterers better model than single obvious example (3) with real data better LMS fit single scatterer assumption -> good sinc-fit two scatterers assumption -> cos-fit better describes the data

15 limits in h estimation lower limit: (4m) but often better 4 similar sinc and cos fit sinc(.) a=1 =2.3m cos(.) a 0 =0.7 a 1 =0.3 =3m upper limit: ~30m 4 caused by the limited number of observations 4 the limited sampling frequency (along the baseline) 4 the influence of clutter cos(.) a 0 =0.7 a 1 =0.7 h=2m cos(.) a 0 =0.7 a 1 =0.3 h=1m sinc(.)

16 model selection problem sinc-fit: 3 parameters cos-fit: 4 parameters theory by D.S. Sivia ( Data Analysis, A Bayesian Tutorial ) two hypotheses: 4 A: flat panel (sinc-fit) 4 B: two dominant scatterers (cos-fit)

17 Bayesian theory on model selection posterior ratio = prob prob ( A D) > 1: A preferred ( B D) < 1: B preferred A, B: scatterer configuration model D: data (radar amplitude) prob prob ( A D) ( B D) = = prob prob ( D A) prob( A) prob( D) ( D B) prob( B) prob( D) a priory knowledge (=1) likelihood function prob(d) cancels prob prob ( D A) ( D B) = prob prob ( D A, a, h, ϕ) ( D B, a, a, h, ϕ) 0 0 goodness-of-fit Ockham factor f B min max max f A( a, a, h, σ a, σ h ) min max min max max ( a, a, a, a, h, σ, σ, σ ) 0 0 best predictions parameter range a, h, a, a 0 1,ϕ uncertainty permitted by the data σ,,, a σ h σ a σ 0 a1 1 1 a min max max, a, h a 0 a 1 h

18 simple model selection goodness-of-fit ratio: 2 count: 63 out of per cent of PS candidates

19 simple model selection goodness-of-fit ratio: 1.5 count: 2267 out of per cent of PS candidates

20 simple model selection goodness-of-fit ratio: 1.3 count: out of per cent of PS candidates

21 simple model selection goodness-of-fit ratio: 1.2 x count: out of per cent of PS candidates

22 application: reference network by hypotheses testing: inconsistent points and arcs are rejected quite expensive due to iterative processing now reference net takes advantage from scatterer configuration prediction

23 applications continued complements classical tomography 4 classical ca. 10m resolution 4 ampl. parametric: (4)-30m 4 no APS and displacement influence 4 number of scatterers (1 or 2) SCR estimation and PS detection 4 more accurate: SCR(time) 4 better PS density estimation 4 scatterer configuration 4 model selection for PS estimation high precision calibration based on natural scatterers (no CR) SCR max SCR min clutter

24 summary parametric estimation and detection of scatterer configuration 4 single dominant scatterer: const or sinc-fit 4 two dominant point scatterers: cos-fit complements full tomography 4 uses amplitude data only 4 no correction of APS and displacement necessary 4 therefore usable before estimation 4 complements resolution: (4)-30m (~10m for classical spectral methods) 4 number of scatterers (1 or 2) theoretically optimal, computationally effective and robust algorithm 4 Bayesian theory for model selection 4 robust: Least Median Squares

Terrafirma Persistent Scatterer Processing Validation

Terrafirma Persistent Scatterer Processing Validation Terrafirma Persistent Scatterer Processing Validation Nico Adam (1), Alessandro Parizzi (1), Michael Eineder (1), Michele Crosetto () (1) Remote Sensing Technology Institute () Institute of Geomatics Signal

More information

PROVENCE INTER-COMPARISON. Marta Agudo, Michele Crosetto Institute of Geomatics

PROVENCE INTER-COMPARISON. Marta Agudo, Michele Crosetto Institute of Geomatics PROVENCE INTER-COMPARISON Marta Agudo, Michele Crosetto Institute of Geomatics Final version Castelldefels, 16 March 2007 INDEX INDEX... 2 1. INTRODUCTION... 3 2. PRE-PROCESSING STEPS... 5 2.1 Input data...

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics Lecture 11 January 7, 2013 Silvia Masciocchi, GSI Darmstadt s.masciocchi@gsi.de Winter Semester 2012 / 13 Outline How to communicate the statistical uncertainty

More information

Tools for Parameter Estimation and Propagation of Uncertainty

Tools for Parameter Estimation and Propagation of Uncertainty Tools for Parameter Estimation and Propagation of Uncertainty Brian Borchers Department of Mathematics New Mexico Tech Socorro, NM 87801 borchers@nmt.edu Outline Models, parameters, parameter estimation,

More information

APPEARANCE OF PERSISTENT SCATTERERS FOR DIFFERENT TERRASAR-X ACQUISITION MODES

APPEARANCE OF PERSISTENT SCATTERERS FOR DIFFERENT TERRASAR-X ACQUISITION MODES APPEARANCE OF PERSISTENT SCATTERERS FOR DIFFERENT TERRASAR-X ACQUISITION MODES Stefan Gernhardt a, Nico Adam b, Stefan Hinz c, Richard Bamler a,b a Remote Sensing Technology, TU München, Germany b Remote

More information

Lecture 5. G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1

Lecture 5. G. Cowan Lectures on Statistical Data Analysis Lecture 5 page 1 Lecture 5 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

Miscellany : Long Run Behavior of Bayesian Methods; Bayesian Experimental Design (Lecture 4)

Miscellany : Long Run Behavior of Bayesian Methods; Bayesian Experimental Design (Lecture 4) Miscellany : Long Run Behavior of Bayesian Methods; Bayesian Experimental Design (Lecture 4) Tom Loredo Dept. of Astronomy, Cornell University http://www.astro.cornell.edu/staff/loredo/bayes/ Bayesian

More information

Statistical Methods in Particle Physics Lecture 1: Bayesian methods

Statistical Methods in Particle Physics Lecture 1: Bayesian methods Statistical Methods in Particle Physics Lecture 1: Bayesian methods SUSSP65 St Andrews 16 29 August 2009 Glen Cowan Physics Department Royal Holloway, University of London g.cowan@rhul.ac.uk www.pp.rhul.ac.uk/~cowan

More information

Central image detection with VLBI

Central image detection with VLBI Central image detection with VLBI Zhang Ming Xinjiang Astronomical Observatory, Chinese Academy of Sciences RTS meeting, Manchester, 2012.04.19 Strong lensing nomenclature Structure formation at subgalactic

More information

Quantifying the Price of Uncertainty in Bayesian Models

Quantifying the Price of Uncertainty in Bayesian Models Provided by the author(s) and NUI Galway in accordance with publisher policies. Please cite the published version when available. Title Quantifying the Price of Uncertainty in Bayesian Models Author(s)

More information

arxiv:astro-ph/ v1 14 Sep 2005

arxiv:astro-ph/ v1 14 Sep 2005 For publication in Bayesian Inference and Maximum Entropy Methods, San Jose 25, K. H. Knuth, A. E. Abbas, R. D. Morris, J. P. Castle (eds.), AIP Conference Proceeding A Bayesian Analysis of Extrasolar

More information

Answers and expectations

Answers and expectations Answers and expectations For a function f(x) and distribution P(x), the expectation of f with respect to P is The expectation is the average of f, when x is drawn from the probability distribution P E

More information

Bayesian Methods for Machine Learning

Bayesian Methods for Machine Learning Bayesian Methods for Machine Learning CS 584: Big Data Analytics Material adapted from Radford Neal s tutorial (http://ftp.cs.utoronto.ca/pub/radford/bayes-tut.pdf), Zoubin Ghahramni (http://hunch.net/~coms-4771/zoubin_ghahramani_bayesian_learning.pdf),

More information

E. Santovetti lesson 4 Maximum likelihood Interval estimation

E. Santovetti lesson 4 Maximum likelihood Interval estimation E. Santovetti lesson 4 Maximum likelihood Interval estimation 1 Extended Maximum Likelihood Sometimes the number of total events measurements of the experiment n is not fixed, but, for example, is a Poisson

More information

Physics 509: Propagating Systematic Uncertainties. Scott Oser Lecture #12

Physics 509: Propagating Systematic Uncertainties. Scott Oser Lecture #12 Physics 509: Propagating Systematic Uncertainties Scott Oser Lecture #1 1 Additive offset model Suppose we take N measurements from a distribution, and wish to estimate the true mean of the underlying

More information

Robotics 2 Data Association. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard

Robotics 2 Data Association. Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Robotics 2 Data Association Giorgio Grisetti, Cyrill Stachniss, Kai Arras, Wolfram Burgard Data Association Data association is the process of associating uncertain measurements to known tracks. Problem

More information

Integrated Bayesian Experimental Design

Integrated Bayesian Experimental Design Integrated Bayesian Experimental Design R. Fischer, H. Dreier, A. Dinklage, B. Kurzan and E. Pasch Max-Planck-Institut für Plasmaphysik, EURATOM Association, Boltzmannstr. 2, 85 748 Garching, Germany Max-Planck-Institut

More information

Bayesian Updating: Discrete Priors: Spring

Bayesian Updating: Discrete Priors: Spring Bayesian Updating: Discrete Priors: 18.05 Spring 2017 http://xkcd.com/1236/ Learning from experience Which treatment would you choose? 1. Treatment 1: cured 100% of patients in a trial. 2. Treatment 2:

More information

Gradient-Based Learning. Sargur N. Srihari

Gradient-Based Learning. Sargur N. Srihari Gradient-Based Learning Sargur N. srihari@cedar.buffalo.edu 1 Topics Overview 1. Example: Learning XOR 2. Gradient-Based Learning 3. Hidden Units 4. Architecture Design 5. Backpropagation and Other Differentiation

More information

Some Preliminary Market Research: A Googoloscopy. Parametric Links for Binary Response. Some Preliminary Market Research: A Googoloscopy

Some Preliminary Market Research: A Googoloscopy. Parametric Links for Binary Response. Some Preliminary Market Research: A Googoloscopy Some Preliminary Market Research: A Googoloscopy Parametric Links for Binary Response Roger Koenker and Jungmo Yoon University of Illinois, Urbana-Champaign UseR! 2006 Link GoogleHits Logit 2,800,000 Probit

More information

Atmospheric Phase Screen (APS) estimation and modeling for radar interferometry

Atmospheric Phase Screen (APS) estimation and modeling for radar interferometry Atmospheric Phase Screen (APS) estimation and modeling for radar interferometry Ramon Hanssen¹, Alessandro Ferretti², Marco Bianchi², Rossen Grebenitcharsky¹, Frank Kleijer¹, Ayman Elawar¹ ¹ Delft University

More information

An introduction to Bayesian reasoning in particle physics

An introduction to Bayesian reasoning in particle physics An introduction to Bayesian reasoning in particle physics Graduiertenkolleg seminar, May 15th 2013 Overview Overview A concrete example Scientific reasoning Probability and the Bayesian interpretation

More information

The problem of base rates

The problem of base rates Psychology 205: Research Methods in Psychology William Revelle Department of Psychology Northwestern University Evanston, Illinois USA October, 2015 1 / 14 Outline Inferential statistics 2 / 14 Hypothesis

More information

Bayesian Data Analysis

Bayesian Data Analysis An Introduction to Bayesian Data Analysis Lecture 1 D. S. Sivia St. John s College Oxford, England April 29, 2012 Some recommended books........................................................ 2 Outline.......................................................................

More information

STATISTICS OF OBSERVATIONS & SAMPLING THEORY. Parent Distributions

STATISTICS OF OBSERVATIONS & SAMPLING THEORY. Parent Distributions ASTR 511/O Connell Lec 6 1 STATISTICS OF OBSERVATIONS & SAMPLING THEORY References: Bevington Data Reduction & Error Analysis for the Physical Sciences LLM: Appendix B Warning: the introductory literature

More information

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics

DS-GA 1002 Lecture notes 11 Fall Bayesian statistics DS-GA 100 Lecture notes 11 Fall 016 Bayesian statistics In the frequentist paradigm we model the data as realizations from a distribution that depends on deterministic parameters. In contrast, in Bayesian

More information

Strategies for Measuring Large Scale Ground Surface Deformations: PSI Wide Area Product Approaches

Strategies for Measuring Large Scale Ground Surface Deformations: PSI Wide Area Product Approaches Strategies for Measuring Large Scale Ground Surface Deformations: PSI Wide Area Product Approaches J. Duro (1), R. Iglesias (1), P. Blanco-Sánchez (1), D. Albiol (1), T. Wright (2), N. Adam (3), F. Rodríguez

More information

CSCE 478/878 Lecture 6: Bayesian Learning

CSCE 478/878 Lecture 6: Bayesian Learning Bayesian Methods Not all hypotheses are created equal (even if they are all consistent with the training data) Outline CSCE 478/878 Lecture 6: Bayesian Learning Stephen D. Scott (Adapted from Tom Mitchell

More information

Do students sleep the recommended 8 hours a night on average?

Do students sleep the recommended 8 hours a night on average? BIEB100. Professor Rifkin. Notes on Section 2.2, lecture of 27 January 2014. Do students sleep the recommended 8 hours a night on average? We first set up our null and alternative hypotheses: H0: μ= 8

More information

Optimizing Gaia s Photometric System: Thoughts on distance measure and figure of merit

Optimizing Gaia s Photometric System: Thoughts on distance measure and figure of merit Optimizing Gaia s Photometric System: Thoughts on distance measure and figure of merit L. Lindegren GAIA LL 047 (11 October 2003) Abstract. This note summarizes my considerations on certain aspects of

More information

Constructing high-resolution, absolute maps of atmospheric water vapor by combining InSAR and GNSS observations

Constructing high-resolution, absolute maps of atmospheric water vapor by combining InSAR and GNSS observations Constructing high-resolution, absolute maps of atmospheric water vapor by combining InSAR and GNSS observations Fadwa Alshawaf, Stefan Hinz, Michael Mayer, Franz J. Meyer fadwa.alshawaf@kit.edu INSTITUTE

More information

Learning in Bayesian Networks

Learning in Bayesian Networks Learning in Bayesian Networks Florian Markowetz Max-Planck-Institute for Molecular Genetics Computational Molecular Biology Berlin Berlin: 20.06.2002 1 Overview 1. Bayesian Networks Stochastic Networks

More information

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1

Parameter Estimation. William H. Jefferys University of Texas at Austin Parameter Estimation 7/26/05 1 Parameter Estimation William H. Jefferys University of Texas at Austin bill@bayesrules.net Parameter Estimation 7/26/05 1 Elements of Inference Inference problems contain two indispensable elements: Data

More information

LECTURE NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO

LECTURE NOTES FYS 4550/FYS EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO LECTURE NOTES FYS 4550/FYS9550 - EXPERIMENTAL HIGH ENERGY PHYSICS AUTUMN 2013 PART I PROBABILITY AND STATISTICS A. STRANDLIE GJØVIK UNIVERSITY COLLEGE AND UNIVERSITY OF OSLO Before embarking on the concept

More information

Model Averaging (Bayesian Learning)

Model Averaging (Bayesian Learning) Model Averaging (Bayesian Learning) We want to predict the output Y of a new case that has input X = x given the training examples e: p(y x e) = m M P(Y m x e) = m M P(Y m x e)p(m x e) = m M P(Y m x)p(m

More information

Bayesian Uncertainty: Pluses and Minuses

Bayesian Uncertainty: Pluses and Minuses Bayesian Uncertainty: Pluses and Minuses Rod White Thanks to Rob Willink, Blair Hall, Dave LeBlond Measurement Standards Laboratory New Zealand Outline: A simple statistical experiment (coin toss) Confidence

More information

Bayesian Inference in Astronomy & Astrophysics A Short Course

Bayesian Inference in Astronomy & Astrophysics A Short Course Bayesian Inference in Astronomy & Astrophysics A Short Course Tom Loredo Dept. of Astronomy, Cornell University p.1/37 Five Lectures Overview of Bayesian Inference From Gaussians to Periodograms Learning

More information

Comparison of Bayesian and Frequentist Inference

Comparison of Bayesian and Frequentist Inference Comparison of Bayesian and Frequentist Inference 18.05 Spring 2014 First discuss last class 19 board question, January 1, 2017 1 /10 Compare Bayesian inference Uses priors Logically impeccable Probabilities

More information

Bayesian search for other Earths

Bayesian search for other Earths Bayesian search for other Earths Low-mass planets orbiting nearby M dwarfs Mikko Tuomi University of Hertfordshire, Centre for Astrophysics Research Email: mikko.tuomi@utu.fi Presentation, 19.4.2013 1

More information

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester

Physics 403. Segev BenZvi. Propagation of Uncertainties. Department of Physics and Astronomy University of Rochester Physics 403 Propagation of Uncertainties Segev BenZvi Department of Physics and Astronomy University of Rochester Table of Contents 1 Maximum Likelihood and Minimum Least Squares Uncertainty Intervals

More information

pyblocxs Bayesian Low-Counts X-ray Spectral Analysis in Sherpa

pyblocxs Bayesian Low-Counts X-ray Spectral Analysis in Sherpa pyblocxs Bayesian Low-Counts X-ray Spectral Analysis in Sherpa Aneta Siemiginowska Harvard-Smithsonian Center for Astrophysics Vinay Kashyap (CfA), David Van Dyk (UCI), Alanna Connors (Eureka), T.Park(Korea)+CHASC

More information

Doing Bayesian Integrals

Doing Bayesian Integrals ASTR509-13 Doing Bayesian Integrals The Reverend Thomas Bayes (c.1702 1761) Philosopher, theologian, mathematician Presbyterian (non-conformist) minister Tunbridge Wells, UK Elected FRS, perhaps due to

More information

Journeys of an Accidental Statistician

Journeys of an Accidental Statistician Journeys of an Accidental Statistician A partially anecdotal account of A Unified Approach to the Classical Statistical Analysis of Small Signals, GJF and Robert D. Cousins, Phys. Rev. D 57, 3873 (1998)

More information

Cromwell's principle idealized under the theory of large deviations

Cromwell's principle idealized under the theory of large deviations Cromwell's principle idealized under the theory of large deviations Seminar, Statistics and Probability Research Group, University of Ottawa Ottawa, Ontario April 27, 2018 David Bickel University of Ottawa

More information

Confidence Distribution

Confidence Distribution Confidence Distribution Xie and Singh (2013): Confidence distribution, the frequentist distribution estimator of a parameter: A Review Céline Cunen, 15/09/2014 Outline of Article Introduction The concept

More information

What have we learned from coalescing Black Hole binary GW150914

What have we learned from coalescing Black Hole binary GW150914 Stas Babak ( for LIGO and VIRGO collaboration). Albert Einstein Institute (Potsdam-Golm) What have we learned from coalescing Black Hole binary GW150914 LIGO_DCC:G1600346 PRL 116, 061102 (2016) Principles

More information

is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input x at x = b.

is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input x at x = b. Uses of differentials to estimate errors. Recall the derivative notation df d is the intuition: the derivative tells us the change in output y (from f(b)) in response to a change of input at = b. Eamples.

More information

Background to Statistics

Background to Statistics FACT SHEET Background to Statistics Introduction Statistics include a broad range of methods for manipulating, presenting and interpreting data. Professional scientists of all kinds need to be proficient

More information

Introduction to Bayes

Introduction to Bayes Introduction to Bayes Alan Heavens September 3, 2018 ICIC Data Analysis Workshop Alan Heavens Introduction to Bayes September 3, 2018 1 / 35 Overview 1 Inverse Problems 2 The meaning of probability Probability

More information

Informatics 2D Reasoning and Agents Semester 2,

Informatics 2D Reasoning and Agents Semester 2, Informatics 2D Reasoning and Agents Semester 2, 2018 2019 Alex Lascarides alex@inf.ed.ac.uk Lecture 25 Approximate Inference in Bayesian Networks 19th March 2019 Informatics UoE Informatics 2D 1 Where

More information

Use of Bayesian multivariate prediction models to optimize chromatographic methods

Use of Bayesian multivariate prediction models to optimize chromatographic methods Use of Bayesian multivariate prediction models to optimize chromatographic methods UCB Pharma! Braine lʼalleud (Belgium)! May 2010 Pierre Lebrun, ULg & Arlenda Bruno Boulanger, ULg & Arlenda Philippe Lambert,

More information

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review

STATS 200: Introduction to Statistical Inference. Lecture 29: Course review STATS 200: Introduction to Statistical Inference Lecture 29: Course review Course review We started in Lecture 1 with a fundamental assumption: Data is a realization of a random process. The goal throughout

More information

Testing Restrictions and Comparing Models

Testing Restrictions and Comparing Models Econ. 513, Time Series Econometrics Fall 00 Chris Sims Testing Restrictions and Comparing Models 1. THE PROBLEM We consider here the problem of comparing two parametric models for the data X, defined by

More information

Hypothesis Testing - Frequentist

Hypothesis Testing - Frequentist Frequentist Hypothesis Testing - Frequentist Compare two hypotheses to see which one better explains the data. Or, alternatively, what is the best way to separate events into two classes, those originating

More information

PSI Precision, accuracy and validation aspects

PSI Precision, accuracy and validation aspects PSI Precision, accuracy and validation aspects Urs Wegmüller Gamma Remote Sensing AG, Gümligen, Switzerland, wegmuller@gamma-rs.ch Contents - Precision - Accuracy - Systematic errors - Atmospheric effects

More information

Business Statistics MEDIAN: NON- PARAMETRIC TESTS

Business Statistics MEDIAN: NON- PARAMETRIC TESTS Business Statistics MEDIAN: NON- PARAMETRIC TESTS CONTENTS Hypotheses on the median The sign test The Wilcoxon signed ranks test Old exam question HYPOTHESES ON THE MEDIAN The median is a central value

More information

Lecture 6: Markov Chain Monte Carlo

Lecture 6: Markov Chain Monte Carlo Lecture 6: Markov Chain Monte Carlo D. Jason Koskinen koskinen@nbi.ku.dk Photo by Howard Jackman University of Copenhagen Advanced Methods in Applied Statistics Feb - Apr 2016 Niels Bohr Institute 2 Outline

More information

A8824: Statistics Notes David Weinberg, Astronomy 8824: Statistics Notes 6 Estimating Errors From Data

A8824: Statistics Notes David Weinberg, Astronomy 8824: Statistics Notes 6 Estimating Errors From Data Where does the error bar go? Astronomy 8824: Statistics otes 6 Estimating Errors From Data Suppose you measure the average depression of flux in a quasar caused by absorption from the Lyman-alpha forest.

More information

Using what we know: Inference with Physical Constraints

Using what we know: Inference with Physical Constraints Using what we know: Inference with Physical Constraints Chad M. Schafer & Philip B. Stark Department of Statistics University of California, Berkeley {cschafer,stark}@stat.berkeley.edu PhyStat 2003 8 September

More information

Neutron inverse kinetics via Gaussian Processes

Neutron inverse kinetics via Gaussian Processes Neutron inverse kinetics via Gaussian Processes P. Picca Politecnico di Torino, Torino, Italy R. Furfaro University of Arizona, Tucson, Arizona Outline Introduction Review of inverse kinetics techniques

More information

Harmonic Regression in the Biological Setting. Michael Gaffney, Ph.D., Pfizer Inc

Harmonic Regression in the Biological Setting. Michael Gaffney, Ph.D., Pfizer Inc Harmonic Regression in the Biological Setting Michael Gaffney, Ph.D., Pfizer Inc Two primary aims of harmonic regression 1. To describe the timing (phase) or degree of the diurnal variation (amplitude)

More information

Identifiability of 3D Attributed. Sparse Nonlinear Apertures. Julie Jackson Randy Moses

Identifiability of 3D Attributed. Sparse Nonlinear Apertures. Julie Jackson Randy Moses Identifiability of 3D Attributed Scattering Center Features from Sparse Nonlinear Apertures Julie Jackson Randy Moses Research Overview Goal: Study identifiability of 3D canonical features from complex

More information

New Results of Fully Bayesian

New Results of Fully Bayesian UCI April 3, 2012 Calibration Samples Principle Component Analysis Model Building Three source parameter sampling schemes Simulation Quasar data sets Speed Up Pragmatic Bayesian Method Frequency Analysis

More information

Augmented Reality VU numerical optimization algorithms. Prof. Vincent Lepetit

Augmented Reality VU numerical optimization algorithms. Prof. Vincent Lepetit Augmented Reality VU numerical optimization algorithms Prof. Vincent Lepetit P3P: can exploit only 3 correspondences; DLT: difficult to exploit the knowledge of the internal parameters correctly, and the

More information

A STATISTICAL APPROACH TO OPERATIONAL ATTRIBUTION

A STATISTICAL APPROACH TO OPERATIONAL ATTRIBUTION A STATISTICAL APPROACH TO OPERATIONAL ATTRIBUTION Richard L. Smith Department of Statistics and Operations Research University of North Carolina Chapel Hill, NC 27599-3260, USA rls@email.unc.edu IDAG Meeting

More information

Inconsistency of Bayesian inference when the model is wrong, and how to repair it

Inconsistency of Bayesian inference when the model is wrong, and how to repair it Inconsistency of Bayesian inference when the model is wrong, and how to repair it Peter Grünwald Thijs van Ommen Centrum Wiskunde & Informatica, Amsterdam Universiteit Leiden June 3, 2015 Outline 1 Introduction

More information

Sub-kilometer-scale space-time stochastic rainfall simulation

Sub-kilometer-scale space-time stochastic rainfall simulation Picture: Huw Alexander Ogilvie Sub-kilometer-scale space-time stochastic rainfall simulation Lionel Benoit (University of Lausanne) Gregoire Mariethoz (University of Lausanne) Denis Allard (INRA Avignon)

More information

Error analysis in biology

Error analysis in biology Error analysis in biology Marek Gierliński Division of Computational Biology Hand-outs available at http://is.gd/statlec Errors, like straws, upon the surface flow; He who would search for pearls must

More information

Digital Transmission Methods S

Digital Transmission Methods S Digital ransmission ethods S-7.5 Second Exercise Session Hypothesis esting Decision aking Gram-Schmidt method Detection.K.K. Communication Laboratory 5//6 Konstantinos.koufos@tkk.fi Exercise We assume

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2014 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2014 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Algorithmisches Lernen/Machine Learning

Algorithmisches Lernen/Machine Learning Algorithmisches Lernen/Machine Learning Part 1: Stefan Wermter Introduction Connectionist Learning (e.g. Neural Networks) Decision-Trees, Genetic Algorithms Part 2: Norman Hendrich Support-Vector Machines

More information

Planck 2015 parameter constraints

Planck 2015 parameter constraints Planck 2015 parameter constraints Antony Lewis On behalf of the Planck Collaboration http://cosmologist.info/ CMB temperature End of inflation Last scattering surface gravity+ pressure+ diffusion Observed

More information

Logistic Regression Analysis

Logistic Regression Analysis Logistic Regression Analysis Predicting whether an event will or will not occur, as well as identifying the variables useful in making the prediction, is important in most academic disciplines as well

More information

Bayesian Models in Machine Learning

Bayesian Models in Machine Learning Bayesian Models in Machine Learning Lukáš Burget Escuela de Ciencias Informáticas 2017 Buenos Aires, July 24-29 2017 Frequentist vs. Bayesian Frequentist point of view: Probability is the frequency of

More information

An Empirical-Bayes Score for Discrete Bayesian Networks

An Empirical-Bayes Score for Discrete Bayesian Networks An Empirical-Bayes Score for Discrete Bayesian Networks scutari@stats.ox.ac.uk Department of Statistics September 8, 2016 Bayesian Network Structure Learning Learning a BN B = (G, Θ) from a data set D

More information

Delicious Diameters of Dwarfs (in particular, the juicy red ones)

Delicious Diameters of Dwarfs (in particular, the juicy red ones) Delicious Diameters of Dwarfs (in particular, the juicy red ones) Tabetha Boyajian GSU / Hubble Fellow In collaboration with a whole bunch of y all Radical Radii of Red Stars Tabetha Boyajian GSU / Hubble

More information

Probing the covariance matrix

Probing the covariance matrix Probing the covariance matrix Kenneth M. Hanson Los Alamos National Laboratory (ret.) BIE Users Group Meeting, September 24, 2013 This presentation available at http://kmh-lanl.hansonhub.com/ LA-UR-06-5241

More information

Efficient Aircraft Design Using Bayesian History Matching. Institute for Risk and Uncertainty

Efficient Aircraft Design Using Bayesian History Matching. Institute for Risk and Uncertainty Efficient Aircraft Design Using Bayesian History Matching F.A. DiazDelaO, A. Garbuno, Z. Gong Institute for Risk and Uncertainty DiazDelaO (U. of Liverpool) DiPaRT 2017 November 22, 2017 1 / 32 Outline

More information

Physics 509: Error Propagation, and the Meaning of Error Bars. Scott Oser Lecture #10

Physics 509: Error Propagation, and the Meaning of Error Bars. Scott Oser Lecture #10 Physics 509: Error Propagation, and the Meaning of Error Bars Scott Oser Lecture #10 1 What is an error bar? Someone hands you a plot like this. What do the error bars indicate? Answer: you can never be

More information

Signal Modeling, Statistical Inference and Data Mining in Astrophysics

Signal Modeling, Statistical Inference and Data Mining in Astrophysics ASTRONOMY 6523 Spring 2013 Signal Modeling, Statistical Inference and Data Mining in Astrophysics Course Approach The philosophy of the course reflects that of the instructor, who takes a dualistic view

More information

Bayesian Statistics: An Introduction

Bayesian Statistics: An Introduction : An Introduction Tim Frasier Copyright Tim Frasier This work is licensed under the Creative Commons Attribution 4.0 International license. Click here for more information. Outline 1. Bayesian statistics,

More information

SAMSI Astrostatistics Tutorial. Models with Gaussian Uncertainties (lecture 2)

SAMSI Astrostatistics Tutorial. Models with Gaussian Uncertainties (lecture 2) SAMSI Astrostatistics Tutorial Models with Gaussian Uncertainties (lecture 2) Phil Gregory University of British Columbia 2006 The rewards of data analysis: 'The universe is full of magical things, patiently

More information

A Calculator for Confidence Intervals

A Calculator for Confidence Intervals A Calculator for Confidence Intervals Roger Barlow Department of Physics Manchester University England Abstract A calculator program has been written to give confidence intervals on branching ratios for

More information

Permutation Tests. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods

Permutation Tests. Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods Permutation Tests Noa Haas Statistics M.Sc. Seminar, Spring 2017 Bootstrap and Resampling Methods The Two-Sample Problem We observe two independent random samples: F z = z 1, z 2,, z n independently of

More information

Line Broadening. φ(ν) = Γ/4π 2 (ν ν 0 ) 2 + (Γ/4π) 2, (3) where now Γ = γ +2ν col includes contributions from both natural broadening and collisions.

Line Broadening. φ(ν) = Γ/4π 2 (ν ν 0 ) 2 + (Γ/4π) 2, (3) where now Γ = γ +2ν col includes contributions from both natural broadening and collisions. Line Broadening Spectral lines are not arbitrarily sharp. There are a variety of mechanisms that give them finite width, and some of those mechanisms contain significant information. We ll consider a few

More information

Physics 509: Bootstrap and Robust Parameter Estimation

Physics 509: Bootstrap and Robust Parameter Estimation Physics 509: Bootstrap and Robust Parameter Estimation Scott Oser Lecture #20 Physics 509 1 Nonparametric parameter estimation Question: what error estimate should you assign to the slope and intercept

More information

The microwave sky as seen by Planck

The microwave sky as seen by Planck The microwave sky as seen by Planck Ingunn Kathrine Wehus Jet Propulsion Laboratory California Institute of Technology on behalf of the Planck Collaboration Bayesian component separation We adopt a parametric

More information

Resampling Methods. Lukas Meier

Resampling Methods. Lukas Meier Resampling Methods Lukas Meier 20.01.2014 Introduction: Example Hail prevention (early 80s) Is a vaccination of clouds really reducing total energy? Data: Hail energy for n clouds (via radar image) Y i

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

Markov chain Monte Carlo methods in atmospheric remote sensing

Markov chain Monte Carlo methods in atmospheric remote sensing 1 / 45 Markov chain Monte Carlo methods in atmospheric remote sensing Johanna Tamminen johanna.tamminen@fmi.fi ESA Summer School on Earth System Monitoring and Modeling July 3 Aug 11, 212, Frascati July,

More information

Bayesian vs frequentist techniques for the analysis of binary outcome data

Bayesian vs frequentist techniques for the analysis of binary outcome data 1 Bayesian vs frequentist techniques for the analysis of binary outcome data By M. Stapleton Abstract We compare Bayesian and frequentist techniques for analysing binary outcome data. Such data are commonly

More information

Bayesian Gaussian Process Regression

Bayesian Gaussian Process Regression Bayesian Gaussian Process Regression STAT8810, Fall 2017 M.T. Pratola October 7, 2017 Today Bayesian Gaussian Process Regression Bayesian GP Regression Recall we had observations from our expensive simulator,

More information

SAR interferometry Status and future directions. Rüdiger Gens

SAR interferometry Status and future directions. Rüdiger Gens SAR interferometry Status and future directions Rüdiger Gens Polarimetric InSAR Polarimetric InSAR InSAR - Status and future directions sensitivity to changes in surface scattering, even in the presence

More information

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha

Neural Networks for Protein Structure Prediction Brown, JMB CS 466 Saurabh Sinha Neural Networks for Protein Structure Prediction Brown, JMB 1999 CS 466 Saurabh Sinha Outline Goal is to predict secondary structure of a protein from its sequence Artificial Neural Network used for this

More information

Things you always wanted to know about statistics but were afraid to ask

Things you always wanted to know about statistics but were afraid to ask Things you always wanted to know about statistics but were afraid to ask Christoph Amma Felix Putze Design and Evaluation of Innovative User Interfaces 6.12.13 1/43 Overview In the last lecture, we learned

More information

CS6220: DATA MINING TECHNIQUES

CS6220: DATA MINING TECHNIQUES CS6220: DATA MINING TECHNIQUES Chapter 8&9: Classification: Part 3 Instructor: Yizhou Sun yzsun@ccs.neu.edu March 12, 2013 Midterm Report Grade Distribution 90-100 10 80-89 16 70-79 8 60-69 4

More information

Bayesian Lithology-Fluid Prediction and Simulation based. on a Markov Chain Prior Model

Bayesian Lithology-Fluid Prediction and Simulation based. on a Markov Chain Prior Model Bayesian Lithology-Fluid Prediction and Simulation based on a Markov Chain Prior Model Anne Louise Larsen Formerly Norwegian University of Science and Technology, N-7491 Trondheim, Norway; presently Schlumberger

More information

Topics in Statistical Data Analysis for HEP Lecture 1: Bayesian Methods CERN-JINR European School of High Energy Physics Bautzen, June 2009

Topics in Statistical Data Analysis for HEP Lecture 1: Bayesian Methods CERN-JINR European School of High Energy Physics Bautzen, June 2009 Topics in Statistical Data Analysis for HEP Lecture 1: Bayesian Methods CERN-JINR European School of High Energy Physics Bautzen, 14 27 June 2009 Glen Cowan Physics Department Royal Holloway, University

More information

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics

PART I INTRODUCTION The meaning of probability Basic definitions for frequentist statistics and Bayesian inference Bayesian inference Combinatorics Table of Preface page xi PART I INTRODUCTION 1 1 The meaning of probability 3 1.1 Classical definition of probability 3 1.2 Statistical definition of probability 9 1.3 Bayesian understanding of probability

More information

MODULE -4 BAYEIAN LEARNING

MODULE -4 BAYEIAN LEARNING MODULE -4 BAYEIAN LEARNING CONTENT Introduction Bayes theorem Bayes theorem and concept learning Maximum likelihood and Least Squared Error Hypothesis Maximum likelihood Hypotheses for predicting probabilities

More information