12.6 Polar Coordinates

Size: px
Start display at page:

Download "12.6 Polar Coordinates"

Transcription

1 1.6 Polar Coordinates Consider Poisson s equation on the unit disk. ( 1 r u ) + 1 u r r r r = f(r, θ) θ with 0 r 1, and 0 θ π. We approximate the equation by ( 1 u i+1j u ij r i+ 1 r r i u ij u i 1j r i 1 r + 1 u ij+1 u ij + u ij 1 r i θ = f ij ) 1 r where u ij and f ij are the grid functions at (r i, θ j ) = (i r, j θ). The grid functions are periodic in j with period J = π θ, and u 0j is independent of the value of j. The main new feature of polar coordinates is the condition that must be imposed at the origin.(since r = 0 at origin) Rmk : It s important to realize that any difficulties that arise at the origin are only a result of the choice of coordinate system and are not reflected in the continuous function u(r, θ).

2 Let D = Disc(0, ε) [ 1 frdr dθ = r r D D = π 0 ( r u )] + 1 u r r rdr dθ θ u r εdθ Now choose ε = r and approximate it by f(0)( r ) π = J j=1 u 1j u 0 r r θ. i.e. u 0 = 1 J J j=1 u 1j f(0)( r ), θ = π J

3 1.7 Coordinates Changes and Finite Differences Frequently we must solve a system of partial differential equations on a domain that is not a rectangle, disk, or other nice shape. It is then desirable to change coordinates so that a convenient coordinate system can be used. To illustrate the techniques and the difficulties, we will work through a relatively simple example. It is not hard to come up with much more difficult examples. We consider Poisson s equation on the trapezoidal domain given by 0 x 1 and 0 y 1+x. We take the new coordinate system ξ = x, η = y 1 + x so that (ξ, η) in the unit square maps one-to-one with (x, y) in the trapezoid. To change coordinates we use the differentiation formulas x = ξ y (1 + x) η = ξ η 1 + ξ η = y 1 + x η = 1 + ξ η 3

4 * add here Using these relations, Poisson s equation becomes u ξξ η ( ) η 1 + ξ u ξη 1 + ξ u η η + (1 + ξ) (ηu η) η 4 + (1 + ξ) u ηη = f(ξ, η) (1.7.1) If we were to discretize (1.7.1) in this form using secondorder accurate central differences, the matrix arising from the matrix representation would not be symmetric. Since the iterative solution methods we will study in the next two chapters will work if the matrix symmetric, we will show how to modify the equation (1.7.1) to obtain a symmetric, positive definite matrix. To do this we must get the equation in divergence form, that is, in the form ( ) u a x ij = i x f j i,j where (x 1, x ) = (ξ, η) and a ij is a symmetric matrix at each point (x 1, x ). If we multiply (1.7.1) by (1+ξ), we can collect terms such that (1.7.1) is equivalent to ( 4 + η ) [(1+ξ)u ξ ] ξ (ηu ξ ) η (ηu η ) ξ ξ u η = (1+ξ)f 4 ξ η

5 This equation may be discretized on a uniform grid in ξ and η as (1 + ξ i+ 1)(u i+1j u ij ) (1 + ξ i 1)(u ij u i 1j ) ξ η j+1(u i+1j+1 u i 1j+1 ) η j 1 (u i+1j 1 u i 1j 1 ) 4 ξ η η j(u i+1j+1 u i+1j 1 ) η j (u i 1j+1 u i 1j 1 ) 4 ξ η + η j+ +(4 )(u 1 ij+1 u ij ) (4 + η j )(u 1 ij u ij 1 ) (1 + ξ i ) η = (1 + ξ i )f ij (1.7.) The matrix corresponding to this discretization is symmetric. To show that the matrix is symmetric, we notice that the coefficient of u i+1j+1 in the equation at (i, j) is η j+1+η j 4 ξ η, and this is also the coefficient of u ij in the equation at (i + 1, j + 1). The same is true for all the other nonzero coefficients. Thus the matrix is symmetric. To show that the matrix of the equations in (1.7.) is negative definite, we consider the operator on the left-hand side of (1.7.) applied to a grid function φ ij that is zero 5

6 on the boundaries of the unit (ξ, η) square. Multiplying the operator applied to φ at (i, j) by φ ij and summing over all (i, j) gives a long expression that we will consider in three parts. Denote these sums by ξξ, ηη, and ξη. The terms from the second difference in ξ are ξξ = ξ φ ij [(1 + ξ i+ 1)(φ i+1j φ ij ) (1 + ξ i 1)(φ ij φ i 1j )] = ξ (1 + ξ i+ 1)(φ i+1j φ ij ) by summation by parts. Similarly, the terms form the second differences in η are ηη = η 4 + η j ξ i (φ ij+1 φ ij ) The sums are over all interior (i, j) values. The sums from the mixed differences are also treated by summation by parts and become ξη = ( ξ η) 1 η j (φ i+1j φ i 1j )(φ ij+1 φ ij 1 ) To show that the matrix is negative definite, we must show 6

7 that ξξ + ξη + ηη C ξξ + ηη 0 for some positive number c. This is easily done, as follows (φ i+1j φ i 1j )(φ ij+1 φ ij 1 ) η j ξ η ( ) φi+1j φ i 1j a(1 + ξ i ) + 1 η ( j φij+1 φ ij 1 ξ a 1 + ξ i η [ (φi+1j a ) (1 + ξ φ ( ) ] ij φij φ i 1j i) + ξ ξ + 1 η [ (φij+1 ) j φ ( ) ] ij φij φ ij 1 + a 1 + ξ i η η ) Therefore, + ξξ ξη + ηη (1 a) ξ (1+ξ i+ 1)(φ i+1j φ ij ) If we choose a = 1 + η 4 η j+ 1 /a+η j+ 1 1+ξ i (φ ij+1 φ ij )., say, then both sums are nonnegative. Thus the system of difference equation (1.7.) has a matrix that is symmetric and negative definite. This system of equations can be solved by the methods discussed in Chapters 13 and 14. 7

Week 7: Integration: Special Coordinates

Week 7: Integration: Special Coordinates Week 7: Integration: Special Coordinates Introduction Many problems naturally involve symmetry. One should exploit it where possible and this often means using coordinate systems other than Cartesian coordinates.

More information

Grid Generation and Applications

Grid Generation and Applications Grid Generation and Applications Acoustic Scattering from Arbitrary Shape Obstacles.5 Fictitous infinite boundary.5 C.5.5 Ω δ.5.5.5.5 Boundary Value Problem: Acoustic Scattering (p sc ) tt = c p sc, x

More information

Grid Generation and Applications

Grid Generation and Applications Department of Mathematics Vianey Villamizar Math 511 Grid Generation and Applications Villamizar Vianey Colloquium 2004 BYU Department of Mathematics Transformation of a Simply Connected Domain η Prototypical

More information

Method of Green s Functions

Method of Green s Functions Method of Green s Functions 18.33 Linear Partial ifferential Equations Matthew J. Hancock Fall 24 Ref: Haberman, h 9, 11 We introduce another powerful method of solving PEs. First, we need to consider

More information

Self-similar solutions for the diffraction of weak shocks

Self-similar solutions for the diffraction of weak shocks Self-similar solutions for the diffraction of weak shocks Allen M. Tesdall John K. Hunter Abstract. We numerically solve a problem for the unsteady transonic small disturbance equations that describes

More information

Wave Equations: Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space:

Wave Equations: Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space: Math 57 Fall 009 Lecture 7 Sep. 8, 009) Wave Equations: Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space: u u t t u = 0, R n 0, ) ; u x,

More information

LINEAR SECOND-ORDER EQUATIONS

LINEAR SECOND-ORDER EQUATIONS LINEAR SECON-ORER EQUATIONS Classification In two independent variables x and y, the general form is Au xx + 2Bu xy + Cu yy + u x + Eu y + Fu + G = 0. The coefficients are continuous functions of (x, y)

More information

Elliptic Equations. Chapter Definitions. Contents. 4.2 Properties of Laplace s and Poisson s Equations

Elliptic Equations. Chapter Definitions. Contents. 4.2 Properties of Laplace s and Poisson s Equations 5 4. Properties of Laplace s and Poisson s Equations Chapter 4 Elliptic Equations Contents. Neumann conditions the normal derivative, / = n u is prescribed on the boundar second BP. In this case we have

More information

SELF-SIMILAR SOLUTIONS FOR THE 2-D BURGERS SYSTEM IN INFINITE SUBSONIC CHANNELS

SELF-SIMILAR SOLUTIONS FOR THE 2-D BURGERS SYSTEM IN INFINITE SUBSONIC CHANNELS Bull. Korean Math. oc. 47 010, No. 1, pp. 9 37 DOI 10.4134/BKM.010.47.1.09 ELF-IMILAR OLUTION FOR THE -D BURGER YTEM IN INFINITE UBONIC CHANNEL Kyungwoo ong Abstract. We establish the existence of weak

More information

Math 124A October 11, 2011

Math 124A October 11, 2011 Math 14A October 11, 11 Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This corresponds to a string of infinite length. Although

More information

Homework 7-8 Solutions. Problems

Homework 7-8 Solutions. Problems Homework 7-8 Solutions Problems 26 A rhombus is a parallelogram with opposite sides of equal length Let us form a rhombus using vectors v 1 and v 2 as two adjacent sides, with v 1 = v 2 The diagonals of

More information

Wave Equations Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space:

Wave Equations Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space: Nov. 07 Wave Equations Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space: u u t t u = 0, R n 0, ) ; u x, 0) = g x), u t x, 0) = h x). ) It

More information

Strauss PDEs 2e: Section Exercise 1 Page 1 of 6

Strauss PDEs 2e: Section Exercise 1 Page 1 of 6 Strauss PDEs e: Setion.1 - Exerise 1 Page 1 of 6 Exerise 1 Solve u tt = u xx, u(x, 0) = e x, u t (x, 0) = sin x. Solution Solution by Operator Fatorization By fatoring the wave equation and making a substitution,

More information

Introduction to Boundary Value Problems

Introduction to Boundary Value Problems Chapter 5 Introduction to Boundary Value Problems When we studied IVPs we saw that we were given the initial value of a function and a differential equation which governed its behavior for subsequent times.

More information

u xx + u yy = 0. (5.1)

u xx + u yy = 0. (5.1) Chapter 5 Laplace Equation The following equation is called Laplace equation in two independent variables x, y: The non-homogeneous problem u xx + u yy =. (5.1) u xx + u yy = F, (5.) where F is a function

More information

Math Double Integrals in Polar Coordinates

Math Double Integrals in Polar Coordinates Math 213 - Double Integrals in Polar Coordinates Peter A. Perry University of Kentucky October 22, 2018 Homework Re-read section 15.3 Begin work on 1-4, 5-31 (odd), 35, 37 from 15.3 Read section 15.4 for

More information

Boundary Layers: Stratified Fluids

Boundary Layers: Stratified Fluids Boundary Layers: Stratified Fluids Lecture 3 by Jeroen Hazewinkel continued from lecture 2 Using w I = /(2σS) 2 T I, the interior of the cylinder is be described by 2σS 2 T I + 1/2 4 2 This result can

More information

Department of mathematics MA201 Mathematics III

Department of mathematics MA201 Mathematics III Department of mathematics MA201 Mathematics III Academic Year 2015-2016 Model Solutions: Quiz-II (Set - B) 1. Obtain the bilinear transformation which maps the points z 0, 1, onto the points w i, 1, i

More information

There are two things that are particularly nice about the first basis

There are two things that are particularly nice about the first basis Orthogonality and the Gram-Schmidt Process In Chapter 4, we spent a great deal of time studying the problem of finding a basis for a vector space We know that a basis for a vector space can potentially

More information

Horizontal buoyancy-driven flow along a differentially cooled underlying surface

Horizontal buoyancy-driven flow along a differentially cooled underlying surface Horizontal buoyancy-driven flow along a differentially cooled underlying surface By Alan Shapiro and Evgeni Fedorovich School of Meteorology, University of Oklahoma, Norman, OK, USA 6th Baltic Heat Transfer

More information

Learning MN Parameters with Approximation. Sargur Srihari

Learning MN Parameters with Approximation. Sargur Srihari Learning MN Parameters with Approximation Sargur srihari@cedar.buffalo.edu 1 Topics Iterative exact learning of MN parameters Difficulty with exact methods Approximate methods Approximate Inference Belief

More information

Bachelor Thesis. General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution

Bachelor Thesis. General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution Bachelor Thesis General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution Author: Samo Jordan Supervisor: Prof. Markus Heusler Institute of Theoretical Physics, University of

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Numerical Methods for Partial Differential Equations Finite Difference Methods

More information

Analytical Mechanics: Elastic Deformation

Analytical Mechanics: Elastic Deformation Analytical Mechanics: Elastic Deformation Shinichi Hirai Dept. Robotics, Ritsumeikan Univ. Shinichi Hirai (Dept. Robotics, Ritsumeikan Univ.) Analytical Mechanics: Elastic Deformation / 59 Agenda Agenda

More information

Synopsis of Complex Analysis. Ryan D. Reece

Synopsis of Complex Analysis. Ryan D. Reece Synopsis of Complex Analysis Ryan D. Reece December 7, 2006 Chapter Complex Numbers. The Parts of a Complex Number A complex number, z, is an ordered pair of real numbers similar to the points in the real

More information

Oblique derivative problems for elliptic and parabolic equations, Lecture II

Oblique derivative problems for elliptic and parabolic equations, Lecture II of the for elliptic and parabolic equations, Lecture II Iowa State University July 22, 2011 of the 1 2 of the of the As a preliminary step in our further we now look at a special situation for elliptic.

More information

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1 hapter 6 Integrals In this chapter we will look at integrals in more detail. We will look at integrals along a curve, and multi-dimensional integrals in 2 or more dimensions. In physics we use these integrals

More information

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0

This ODE arises in many physical systems that we shall investigate. + ( + 1)u = 0. (λ + s)x λ + s + ( + 1) a λ. (s + 1)(s + 2) a 0 Legendre equation This ODE arises in many physical systems that we shall investigate We choose We then have Substitution gives ( x 2 ) d 2 u du 2x 2 dx dx + ( + )u u x s a λ x λ a du dx λ a λ (λ + s)x

More information

ANALYSIS AND NUMERICAL METHODS FOR SOME CRACK PROBLEMS

ANALYSIS AND NUMERICAL METHODS FOR SOME CRACK PROBLEMS INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, SERIES B Volume 2, Number 2-3, Pages 155 166 c 2011 Institute for Scientific Computing and Information ANALYSIS AND NUMERICAL METHODS FOR SOME

More information

Advanced Monte Carlo Methods - Computational Challenges

Advanced Monte Carlo Methods - Computational Challenges Advanced Monte Carlo Methods - Computational Challenges Ivan Dimov IICT, Bulgarian Academy of Sciences Sofia, February, 2012 Aims To cover important topics from probability theory and statistics. To present

More information

Distance Between Ellipses in 2D

Distance Between Ellipses in 2D Distance Between Ellipses in 2D David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License. To

More information

Spotlight on Laplace s Equation

Spotlight on Laplace s Equation 16 Spotlight on Laplace s Equation Reference: Sections 1.1,1.2, and 1.5. Laplace s equation is the undriven, linear, second-order PDE 2 u = (1) We defined diffusivity on page 587. where 2 is the Laplacian

More information

FOURIER METHODS AND DISTRIBUTIONS: SOLUTIONS

FOURIER METHODS AND DISTRIBUTIONS: SOLUTIONS Centre for Mathematical Sciences Mathematics, Faculty of Science FOURIER METHODS AND DISTRIBUTIONS: SOLUTIONS. We make the Ansatz u(x, y) = ϕ(x)ψ(y) and look for a solution which satisfies the boundary

More information

MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20

MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20 MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20 MA 201 (2016), PDE 2 / 20 Vibrating string and the wave equation Consider a stretched string of length

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 15 Heat with a source So far we considered homogeneous wave and heat equations and the associated initial value problems on the whole line, as

More information

About a gauge-invariant description of some 2+1-dimensional integrable nonlinear evolution equations

About a gauge-invariant description of some 2+1-dimensional integrable nonlinear evolution equations About a gauge-invariant description of some +-dimensional integrable nonlinear evolution equations V.G. Dubrovsky, M. Nahrgang Novosibirsk State Technical University, Novosibirsk, prosp. Karl Marx 0, 63009,

More information

1. Fisher Information

1. Fisher Information 1. Fisher Information Let f(x θ) be a density function with the property that log f(x θ) is differentiable in θ throughout the open p-dimensional parameter set Θ R p ; then the score statistic (or score

More information

In particular, if A is a square matrix and λ is one of its eigenvalues, then we can find a non-zero column vector X with

In particular, if A is a square matrix and λ is one of its eigenvalues, then we can find a non-zero column vector X with Appendix: Matrix Estimates and the Perron-Frobenius Theorem. This Appendix will first present some well known estimates. For any m n matrix A = [a ij ] over the real or complex numbers, it will be convenient

More information

Mathematics of Physics and Engineering II: Homework problems

Mathematics of Physics and Engineering II: Homework problems Mathematics of Physics and Engineering II: Homework problems Homework. Problem. Consider four points in R 3 : P (,, ), Q(,, 2), R(,, ), S( + a,, 2a), where a is a real number. () Compute the coordinates

More information

The Convergence of Mimetic Discretization

The Convergence of Mimetic Discretization The Convergence of Mimetic Discretization for Rough Grids James M. Hyman Los Alamos National Laboratory T-7, MS-B84 Los Alamos NM 87545 and Stanly Steinberg Department of Mathematics and Statistics University

More information

carries the circle w 1 onto the circle z R and sends w = 0 to z = a. The function u(s(w)) is harmonic in the unit circle w 1 and we obtain

carries the circle w 1 onto the circle z R and sends w = 0 to z = a. The function u(s(w)) is harmonic in the unit circle w 1 and we obtain 4. Poisson formula In fact we can write down a formula for the values of u in the interior using only the values on the boundary, in the case when E is a closed disk. First note that (3.5) determines the

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Spring Exam 3 Review Solutions Exercise. We utilize the general solution to the Dirichlet problem in rectangle given in the textbook on page 68. In the notation used there

More information

LECTURE NOTES IN PARTIAL DIFFERENTIAL EQUATIONS. Fourth Edition, February by Tadeusz STYŠ. University of Botswana

LECTURE NOTES IN PARTIAL DIFFERENTIAL EQUATIONS. Fourth Edition, February by Tadeusz STYŠ. University of Botswana i LECTURE NOTES IN PARTIAL DIFFERENTIAL EQUATIONS Fourth Edition, February 2011 by Tadeusz STYŠ University of Botswana ii Contents 1 Solution of Partial Differential Equations 1 1.1 The General Solution

More information

ANALYTICAL METHOD FOR SOLVING THE ONE-DIMENSIONAL WAVE EQUATION WITH MOVING BOUNDARY

ANALYTICAL METHOD FOR SOLVING THE ONE-DIMENSIONAL WAVE EQUATION WITH MOVING BOUNDARY Progress In Electromagnetics Research, PIER 20, 63 73, 1998 ANALYTICAL METHOD FOR SOLVING THE ONE-DIMENSIONAL WAVE EQUATION WITH MOVING BOUNDARY L. Gaffour Ecole National Superieure De Physique De Strasbourg

More information

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck

MATH COURSE NOTES - CLASS MEETING # Introduction to PDEs, Spring 2018 Professor: Jared Speck MATH 8.52 COURSE NOTES - CLASS MEETING # 6 8.52 Introduction to PDEs, Spring 208 Professor: Jared Speck Class Meeting # 6: Laplace s and Poisson s Equations We will now study the Laplace and Poisson equations

More information

CHAPTER SEVEN THE GALLEY METHOD. Galley method 2. Exercises 8

CHAPTER SEVEN THE GALLEY METHOD. Galley method 2. Exercises 8 THE GALLEY METHOD Galley method Exercises 8 THE GALLEY METHOD Although the x dots-and-boxes model provides a conceptually easy framework for understanding the process of long division of polynimials, it

More information

Strauss PDEs 2e: Section Exercise 3 Page 1 of 13. u tt c 2 u xx = cos x. ( 2 t c 2 2 x)u = cos x. v = ( t c x )u

Strauss PDEs 2e: Section Exercise 3 Page 1 of 13. u tt c 2 u xx = cos x. ( 2 t c 2 2 x)u = cos x. v = ( t c x )u Strauss PDEs e: Setion 3.4 - Exerise 3 Page 1 of 13 Exerise 3 Solve u tt = u xx + os x, u(x, ) = sin x, u t (x, ) = 1 + x. Solution Solution by Operator Fatorization Bring u xx to the other side. Write

More information

ON THE CHEBYSHEV POLYNOMIALS. Contents. 2. A Result on Linear Functionals on P n 4 Acknowledgments 7 References 7

ON THE CHEBYSHEV POLYNOMIALS. Contents. 2. A Result on Linear Functionals on P n 4 Acknowledgments 7 References 7 ON THE CHEBYSHEV POLYNOMIALS JOSEPH DICAPUA Abstract. This paper is a short exposition of several magnificent properties of the Chebyshev polynomials. The author illustrates how the Chebyshev polynomials

More information

5 Linear Algebra and Inverse Problem

5 Linear Algebra and Inverse Problem 5 Linear Algebra and Inverse Problem 5.1 Introduction Direct problem ( Forward problem) is to find field quantities satisfying Governing equations, Boundary conditions, Initial conditions. The direct problem

More information

Suggested Solution to Assignment 6

Suggested Solution to Assignment 6 MATH 4 (6-7) partial diferential equations Suggested Solution to Assignment 6 Exercise 6.. Note that in the spherical coordinates (r, θ, φ), Thus, Let u = v/r, we get 3 = r + r r + r sin θ θ sin θ θ +

More information

Chapter 17: Double and Triple Integrals

Chapter 17: Double and Triple Integrals Chapter 17: Double and Triple Integrals Section 17.1 Multiple Sigma Notation a. Double Sigma Notation b. Properties Section 17.2 Double Integrals a. Double Integral Over a Rectangle b. Partitions c. More

More information

CHAPTER II MATHEMATICAL BACKGROUND OF THE BOUNDARY ELEMENT METHOD

CHAPTER II MATHEMATICAL BACKGROUND OF THE BOUNDARY ELEMENT METHOD CHAPTER II MATHEMATICAL BACKGROUND OF THE BOUNDARY ELEMENT METHOD For the second chapter in the thesis, we start with surveying the mathematical background which is used directly in the Boundary Element

More information

Simple derivation of the parameter formulas for motions and transfers

Simple derivation of the parameter formulas for motions and transfers Einfache Ableitung der Parameterformeln für Bewegungen and Umlegungen Rend. del Circ. mat. di Palermo (1) 9 (1910) 39-339. Simple derivation of the parameter formulas for motions and transfers By A. Schoenflies

More information

Two dimensional oscillator and central forces

Two dimensional oscillator and central forces Two dimensional oscillator and central forces September 4, 04 Hooke s law in two dimensions Consider a radial Hooke s law force in -dimensions, F = kr where the force is along the radial unit vector and

More information

Complex Analysis. Chapter IV. Complex Integration IV.8. Goursat s Theorem Proofs of Theorems. August 6, () Complex Analysis August 6, / 8

Complex Analysis. Chapter IV. Complex Integration IV.8. Goursat s Theorem Proofs of Theorems. August 6, () Complex Analysis August 6, / 8 Complex Analysis Chapter IV. Complex Integration IV.8. Proofs of heorems August 6, 017 () Complex Analysis August 6, 017 1 / 8 able of contents 1 () Complex Analysis August 6, 017 / 8 . Let G be an open

More information

Complex Series. Chapter 20

Complex Series. Chapter 20 hapter 20 omplex Series As in the real case, representation of functions by infinite series of simpler functions is an endeavor worthy of our serious consideration. We start with an examination of the

More information

The Limits to Partial Banking Unions: A Political Economy Approach Dana Foarta. Online Appendix. Appendix A Proofs (For Online Publication)

The Limits to Partial Banking Unions: A Political Economy Approach Dana Foarta. Online Appendix. Appendix A Proofs (For Online Publication) The Limits to Partial Banking Unions: A Political Economy Approach ana Foarta Online Appendix A Appendix A Proofs For Online Publication A.1 Proof of Proposition 1 Consider the problem for the policymaker

More information

18 Green s function for the Poisson equation

18 Green s function for the Poisson equation 8 Green s function for the Poisson equation Now we have some experience working with Green s functions in dimension, therefore, we are ready to see how Green s functions can be obtained in dimensions 2

More information

Stability analysis of graphite crystal lattice with moment interactions

Stability analysis of graphite crystal lattice with moment interactions Proc. of XXXIV Summer School "Advanced Problems in Mechanics", St.-Petersburg, Russia. 2007. (Accepted) Stability analysis of graphite crystal lattice with moment interactions Igor E. Berinskiy berigor@mail.ru

More information

Final: Solutions Math 118A, Fall 2013

Final: Solutions Math 118A, Fall 2013 Final: Solutions Math 118A, Fall 2013 1. [20 pts] For each of the following PDEs for u(x, y), give their order and say if they are nonlinear or linear. If they are linear, say if they are homogeneous or

More information

MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions. December 6, 2017, Wednesday 10:40-12:30, SA-Z02

MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions. December 6, 2017, Wednesday 10:40-12:30, SA-Z02 1 MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions December 6 2017 Wednesday 10:40-12:30 SA-Z02 QUESTIONS: Solve any four of the following five problems [25]1. Solve the initial and

More information

Summer 2017 MATH Solution to Exercise 5

Summer 2017 MATH Solution to Exercise 5 Summer 07 MATH00 Solution to Exercise 5. Find the partial derivatives of the following functions: (a (xy 5z/( + x, (b x/ x + y, (c arctan y/x, (d log((t + 3 + ts, (e sin(xy z 3, (f x α, x = (x,, x n. (a

More information

MATHEMATICS 200 December 2014 Final Exam Solutions

MATHEMATICS 200 December 2014 Final Exam Solutions MATHEMATICS 2 December 214 Final Eam Solutions 1. Suppose that f,, z) is a function of three variables and let u 1 6 1, 1, 2 and v 1 3 1, 1, 1 and w 1 3 1, 1, 1. Suppose that at a point a, b, c), Find

More information

Two weight estimates, Clark measures and rank one perturbations of unitary operators

Two weight estimates, Clark measures and rank one perturbations of unitary operators 1 wo weight estimates, Clark measures and rank one perturbations of unitary operators Sergei reil 1 (joint work with C. Liaw 2 ) 1 Department of Mathematics Brown University 2 Department of Mathematics

More information

x n+1 = x n f(x n) f (x n ), n 0.

x n+1 = x n f(x n) f (x n ), n 0. 1. Nonlinear Equations Given scalar equation, f(x) = 0, (a) Describe I) Newtons Method, II) Secant Method for approximating the solution. (b) State sufficient conditions for Newton and Secant to converge.

More information

Gradient estimates and global existence of smooth solutions to a system of reaction-diffusion equations with cross-diffusion

Gradient estimates and global existence of smooth solutions to a system of reaction-diffusion equations with cross-diffusion Gradient estimates and global existence of smooth solutions to a system of reaction-diffusion equations with cross-diffusion Tuoc V. Phan University of Tennessee - Knoxville, TN Workshop in nonlinear PDES

More information

2:1:1 Resonance in the Quasi-Periodic Mathieu Equation

2:1:1 Resonance in the Quasi-Periodic Mathieu Equation Nonlinear Dynamics 005) 40: 95 03 c pringer 005 :: Resonance in the Quasi-Periodic Mathieu Equation RICHARD RAND and TINA MORRION Department of Theoretical & Applied Mechanics, Cornell University, Ithaca,

More information

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative,

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, Integral Theorems eptember 14, 215 1 Integral of the gradient We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, F (b F (a f (x provided f (x

More information

Given a sequence a 1, a 2,...of numbers, the finite sum a 1 + a 2 + +a n,wheren is an nonnegative integer, can be written

Given a sequence a 1, a 2,...of numbers, the finite sum a 1 + a 2 + +a n,wheren is an nonnegative integer, can be written A Summations When an algorithm contains an iterative control construct such as a while or for loop, its running time can be expressed as the sum of the times spent on each execution of the body of the

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

Solving the Generalized Poisson Equation Using the Finite-Difference Method (FDM)

Solving the Generalized Poisson Equation Using the Finite-Difference Method (FDM) Solving the Generalized Poisson Equation Using the Finite-Difference Method (FDM) James R. Nagel September 30, 2009 1 Introduction Numerical simulation is an extremely valuable tool for those who wish

More information

Derivations for order reduction of the chemical master equation

Derivations for order reduction of the chemical master equation 2 TWMCC Texas-Wisconsin Modeling and Control Consortium 1 Technical report number 2006-02 Derivations for order reduction of the chemical master equation Ethan A. Mastny, Eric L. Haseltine, and James B.

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Discretization of Boundary Conditions Discretization of Boundary Conditions On

More information

2 A Model, Harmonic Map, Problem

2 A Model, Harmonic Map, Problem ELLIPTIC SYSTEMS JOHN E. HUTCHINSON Department of Mathematics School of Mathematical Sciences, A.N.U. 1 Introduction Elliptic equations model the behaviour of scalar quantities u, such as temperature or

More information

CS6220 Data Mining Techniques Hidden Markov Models, Exponential Families, and the Forward-backward Algorithm

CS6220 Data Mining Techniques Hidden Markov Models, Exponential Families, and the Forward-backward Algorithm CS6220 Data Mining Techniques Hidden Markov Models, Exponential Families, and the Forward-backward Algorithm Jan-Willem van de Meent, 19 November 2016 1 Hidden Markov Models A hidden Markov model (HMM)

More information

Gradient Descent and Implementation Solving the Euler-Lagrange Equations in Practice

Gradient Descent and Implementation Solving the Euler-Lagrange Equations in Practice 1 Lecture Notes, HCI, 4.1.211 Chapter 2 Gradient Descent and Implementation Solving the Euler-Lagrange Equations in Practice Bastian Goldlücke Computer Vision Group Technical University of Munich 2 Bastian

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

Conservation Laws & Applications

Conservation Laws & Applications Rocky Mountain Mathematics Consortium Summer School Conservation Laws & Applications Lecture V: Discontinuous Galerkin Methods James A. Rossmanith Department of Mathematics University of Wisconsin Madison

More information

Math 113 Fall 2005 key Departmental Final Exam

Math 113 Fall 2005 key Departmental Final Exam Math 3 Fall 5 key Departmental Final Exam Part I: Short Answer and Multiple Choice Questions Do not show your work for problems in this part.. Fill in the blanks with the correct answer. (a) The integral

More information

APPENDIX 2.1 LINE AND SURFACE INTEGRALS

APPENDIX 2.1 LINE AND SURFACE INTEGRALS 2 APPENDIX 2. LINE AND URFACE INTEGRAL Consider a path connecting points (a) and (b) as shown in Fig. A.2.. Assume that a vector field A(r) exists in the space in which the path is situated. Then the line

More information

DIMENSION OF SLICES THROUGH THE SIERPINSKI CARPET

DIMENSION OF SLICES THROUGH THE SIERPINSKI CARPET DIMENSION OF SLICES THROUGH THE SIERPINSKI CARPET ANTHONY MANNING AND KÁROLY SIMON Abstract For Lebesgue typical (θ, a), the intersection of the Sierpinski carpet F with a line y = x tan θ + a has (if

More information

Random Vectors, Random Matrices, and Matrix Expected Value

Random Vectors, Random Matrices, and Matrix Expected Value Random Vectors, Random Matrices, and Matrix Expected Value James H. Steiger Department of Psychology and Human Development Vanderbilt University James H. Steiger (Vanderbilt University) 1 / 16 Random Vectors,

More information

On divergence-free reconstruction schemes for CED and MHD

On divergence-free reconstruction schemes for CED and MHD On divergence-free reconstruction schemes for CED and MHD Praveen Chandrashekar praveen@math.tifrbng.res.in Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore-560065, India

More information

McGill University April 16, Advanced Calculus for Engineers

McGill University April 16, Advanced Calculus for Engineers McGill University April 16, 2014 Faculty of cience Final examination Advanced Calculus for Engineers Math 264 April 16, 2014 Time: 6PM-9PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Laplacian-Centered Poisson Solvers and Multilevel Summation Algorithms

Laplacian-Centered Poisson Solvers and Multilevel Summation Algorithms Laplacian-Centered Poisson Solvers and Multilevel Summation Algorithms Dmitry Yershov 1 Stephen Bond 1 Robert Skeel 2 1 University of Illinois at Urbana-Champaign 2 Purdue University 2009 SIAM Annual Meeting

More information

Chapter II. Complex Variables

Chapter II. Complex Variables hapter II. omplex Variables Dates: October 2, 4, 7, 2002. These three lectures will cover the following sections of the text book by Keener. 6.1. omplex valued functions and branch cuts; 6.2.1. Differentiation

More information

Ph.D. Qualifying Exam: Algebra I

Ph.D. Qualifying Exam: Algebra I Ph.D. Qualifying Exam: Algebra I 1. Let F q be the finite field of order q. Let G = GL n (F q ), which is the group of n n invertible matrices with the entries in F q. Compute the order of the group G

More information

Gravitational Field of a Stationary Homogeneous Oblate Spheroidal Massive Body

Gravitational Field of a Stationary Homogeneous Oblate Spheroidal Massive Body International Journal of Theoretical Mathematical Physics 08, 8(3): 6-70 DOI: 0.593/j.ijtmp.080803.0 Gravitational Field of a Stationary Homogeneous Oblate Spheroidal Massive Body Nura Yakubu,*, S. X.

More information

MA8502 Numerical solution of partial differential equations. The Poisson problem: Mixed Dirichlet/Neumann boundary conditions along curved boundaries

MA8502 Numerical solution of partial differential equations. The Poisson problem: Mixed Dirichlet/Neumann boundary conditions along curved boundaries MA85 Numerical solution of partial differential equations The Poisson problem: Mied Dirichlet/Neumann boundar conditions along curved boundaries Fall c Einar M. Rønquist Department of Mathematical Sciences

More information

Coordinate Systems and Canonical Forms

Coordinate Systems and Canonical Forms Appendix D Coordinate Systems and Canonical Forms D.1. Local Coordinates Let O be an open set in R n. We say that an n-tuple of smooth realvalued functions defined in O, (φ 1,...,φ n ), forms a local coordinate

More information

Chapter 7 Network Flow Problems, I

Chapter 7 Network Flow Problems, I Chapter 7 Network Flow Problems, I Network flow problems are the most frequently solved linear programming problems. They include as special cases, the assignment, transportation, maximum flow, and shortest

More information

Figure 21:The polar and Cartesian coordinate systems.

Figure 21:The polar and Cartesian coordinate systems. Figure 21:The polar and Cartesian coordinate systems. Coordinate systems in R There are three standard coordinate systems which are used to describe points in -dimensional space. These coordinate systems

More information

Math 6802 Algebraic Topology II

Math 6802 Algebraic Topology II Math 6802 Algebraic Topology II Nathan Broaddus Ohio State University February 9, 2015 Theorem 1 (The Künneth Formula) If X and Y are spaces then there is a natural exact sequence 0 i H i (X ) H n i (Y

More information

In what follows, we examine the two-dimensional wave equation, since it leads to some interesting and quite visualizable solutions.

In what follows, we examine the two-dimensional wave equation, since it leads to some interesting and quite visualizable solutions. ecture 22 igher-dimensional PDEs Relevant section of text: Chapter 7 We now examine some PDEs in higher dimensions, i.e., R 2 and R 3. In general, the heat and wave equations in higher dimensions are given

More information

Fig. 1. Circular fiber and interphase between the fiber and the matrix.

Fig. 1. Circular fiber and interphase between the fiber and the matrix. Finite element unit cell model based on ABAQUS for fiber reinforced composites Tian Tang Composites Manufacturing & Simulation Center, Purdue University West Lafayette, IN 47906 1. Problem Statement In

More information

Norm of the Backward Shift and Related Operators in Hardy and Bergman Spaces

Norm of the Backward Shift and Related Operators in Hardy and Bergman Spaces Norm of the Backward Shift and Related Operators in Hardy and Bergman Spaces Tim Ferguson University of Alabama SEAM, University of Tennessee, 2017 Ferguson (UA) Backward Shift SEAM 2017 1 / 16 Suppose

More information

The Dirac Propagator From Pseudoclassical Mechanics

The Dirac Propagator From Pseudoclassical Mechanics CALT-68-1485 DOE RESEARCH AND DEVELOPMENT REPORT The Dirac Propagator From Pseudoclassical Mechanics Theodore J. Allen California Institute of Technology, Pasadena, CA 9115 Abstract In this note it is

More information