MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20

Size: px
Start display at page:

Download "MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20"

Transcription

1 MA 201: Partial Differential Equations D Alembert s Solution Lecture - 7 MA 201 (2016), PDE 1 / 20

2 MA 201 (2016), PDE 2 / 20

3 Vibrating string and the wave equation Consider a stretched string of length π with the ends fastened to the ends x = 0 and x = π. Suppose that the string is set to vibrate by displacing it from its equilibrium position and then releasing it. Let u(x,t) denote the transverse displacement at time t 0 of the point on the string at position x. In particular, u(x,0) denotes the initial shape of the string and u t (x,0) denotes the initial velocity. MA 201 (2016), PDE 3 / 20

4 Vibrating string and the wave equation (Contd.) Under some physical assumptions, which are not far from being realistic: We arrive at an equation known as the one-dimensional wave equation, which governs the entire process. The equation under consideration is u tt = c 2 u xx, (1) which is a linear second-order homogeneous equation. Here c represents the velocity of the wave. Note: the above equation is derived without considering any external force acting on the string. MA 201 (2016), PDE 4 / 20

5 Vibrating string and the wave equation (Contd.) If additional transverse forces are acting on the string (due to its weight or other impressed exterior forces), let F(x,t) denote the amount of force per unit length acting in the u-direction. Then the equation of forced vibrations of the string is u tt = c 2 u xx +F(x,t). (2) Two special cases of (2) particularly generate interest: When the external force is due to the gravitational acceleration g only (consider a string oriented horizontally), the equation becomes u tt = c 2 u xx g. (3) When the external force is due to the resistance which is proportional to the instantaneous velocity (a string vibrating in a fluid), the equation becomes u tt +2ku t = c 2 u xx, k is a positive constant. (4) MA 201 (2016), PDE 5 / 20

6 The D Alembert s solution of the wave equation The PDE describing the vibration of a string (one-dimensional wave equation) is probably the most easily recognized hyperbolic equation. Method of characteristics is very useful for hyperbolic equations. Two families of characteristics of hyperbolic equations, being real and distinct, are of considerable practical value. In one-dimensional progressive wave propagation, consideration of characteristics can give us a good deal of information about the propagation of the wave fronts. This solution of one-dimensional wave equation, known as D Alembert s solution, was discovered by a French mathematician named Jean Le Rond D Alembert. MA 201 (2016), PDE 6 / 20

7 The D Alembert solution of the wave equation (Contd.) Consider the one-dimensional wave equation: Here B 2 4AC = 4c 2 > 0. u tt = c 2 u xx. (5) The characteristics are given by Under this transformation ξ = x ct, η = x+ct. u x = u ξ ξ x +u η η x = u ξ +u η, u t = u ξ ξ t +u η η t = cu ξ +cu η, u xx = (u ξξ ξ x +u ξη η x )+(u ηξ ξ x +u ηη η x ) = u ξξ +2u ξη +u ηη, u tt = c(u ξξ ξ t +u ξη η t )+c(u ηξ ξ t +u ηη η t ), = c 2 (u ξξ 2u ξη +u ηη ). MA 201 (2016), PDE 7 / 20

8 The D Alembert solution of the wave equation (Contd.) Substituting these into the given equation u ξη = 0. (6) Integrating partially with respect to η: u ξ = F (ξ). Integrating partially w.r.t. ξ u = F(ξ)+G(η). The solution in physical variables: u(x,t) = F(x ct)+g(x+ct) (7) where F and G are arbitrary functions. MA 201 (2016), PDE 8 / 20

9 The D Alembert solution of the wave equation (Contd.) The physical interpretation of these functions is quite interesting. The functions F and G represent two progressive waves travelling in opposite directions with the speed c. To see this let us first consider the solution u = F(x ct). At t = 0, it defines the curve u = F(x), and after time t = t 1, it defines the curve u = F(x ct 1 ). But these curves are identical except that the latter is translated to the right a distance equal to ct 1. MA 201 (2016), PDE 9 / 20

10 Method of Characteristics (Contd.) Figure : A Progressive Wave MA 201 (2016), PDE 10 / 20

11 The D Alembert solution of the wave equation (Contd.) Thus the entire configuration moves along the positive direction of x-axis a distance of ct 1 in time t 1. The velocity with which the wave is propagated is, therefore, v = ct 1 t 1 = c Similarly the function G(x + ct) defines a wave progressing in the negative direction of x-axis with constant velocity c. The total solution is, therefore, the algebraic sum of these two travelling waves. Solution (7) is a very convenient representation for progressive waves which travel large distances through a uniform medium. MA 201 (2016), PDE 11 / 20

12 The D Alembert solution of the wave equation (Contd.) It is to be noted that the use of string problem to demonstrate the solution of the wave problem is a matter of convenience. However, any variables satisfying the wave equation possess the mathematical properties developed for the string. For instance, u(x,t) = sin(x±ct) represent sinusoidal waves traveling with speed c in the positive and negative directions respectively without change of shape. MA 201 (2016), PDE 12 / 20

13 The D Alembert solution of the wave equation (Contd.) MA 201 (2016), PDE 13 / 20

14 The D Alembert solution of the wave equation (Contd.) Let us consider the following two initial conditions for a uniform medium < x <. Displacement: u(x, 0) = φ(x), (8) Velocity: u t (x,0) = ψ(x), (9) that is we consider the vibration of a thin string of infinite length with some initial displacement and initial velocity. From the solution (7) we find that F(x)+G(x) = φ(x), (10) cf (x)+c G (x) = ψ(x), (11) for all values of x. MA 201 (2016), PDE 14 / 20

15 The D Alembert solution of the wave equation (Contd.) Integrating the second equation with respect to x F(x)+G(x) = 1 c x where A is an integration constant and τ is a dummy variable. From (10) and (12) F(x) = 1 2 G(x) = 1 2 Substituting these expressions into (7) [ φ(x) 1 x c [ φ(x)+ 1 x c x 0 ψ(τ)dτ +A. (12) x 0 ψ(τ)dτ x 0 ψ(τ)dτ u(x,t) = 1 2 [φ(x ct)+φ(x+ct)]+ 1 2c ] A/2, (13) ] +A/2, (14) x+ct x ct This is D Alembert s solution of one-dimensional wave equation. ψ(τ)dτ. (15) MA 201 (2016), PDE 15 / 20

16 The D Alembert solution of the wave equation (Contd.) Thus for a given initial displacement and velocity in the vertical direction, the wave equation is completely solved and this solution is usually called the progressive wave solution. It is easy to verify by direct substitution that u(x,t), represented by (15), is the unique solution of the wave equation (5) provided φ is twice continuously differentiable and ψ is continuously differentiable. It is important to note that the solution u(x,t) depends only on the initial values of φ at points x ct and x+ct and values of ψ between these two points. In other words, the solution does not depend at all on initial values outside this interval, x ct x x+ct. This interval is called the domain of dependence of the variables (x,t). MA 201 (2016), PDE 16 / 20

17 Special cases of D Alembert solution CASE I (Initial velocity zero). Suppose the string has IC u(x,0) = φ(x), < x <, u t (x,0) = 0, < x <. Then D Alembert s solution is u(x,t) = 1 2 [φ(x ct)+φ(x+ct)]. MA 201 (2016), PDE 17 / 20

18 Special cases of D Alembert solution (Contd.) CASE 2. (Initial displacement zero) Suppose the string has the following IC: u(x,0) = 0, < x < u t (x,0) = ψ(x), < x <. In this case, the solution is u(x,t) = 1 2c x+ct x ct ψ(τ)dτ. The solution u at (x, t) may be interpreted as integrating the initial velocity between x ct and x+ct on the initial line t = 0. MA 201 (2016), PDE 18 / 20

19 Special cases of D Alembert solution (Contd.) Example (Zero initial velocity) Solve the IVP: PDE: u tt = c 2 u xx, < x <, t > 0 IC: u(x, 0) = sin(x), u t (x,0) = 0. Solution: Using D Alembert s formula with φ(x) = sin(x) and ψ(x) = 0, we obtain u(x,t) = 1 2 [sin(x ct)+sin(x+ct)]. MA 201 (2016), PDE 19 / 20

20 Special cases of D Alembert solution (Contd.) Example (Zero initial displacement) Consider the IVP: PDE: u tt = c 2 u xx, < x <, t > 0 I.C. u(x,0) = 0, u t (x,0) = sin(x). Solution: Here the string is initially straight (u(x,0) = 0), but has a variable velocity at t = 0 (u t (x,0) = sin(x)). Thus, using D Alembert s formula with φ(x) = 0 and ψ(x) = sin(x), we obtain u(x,t) = 1 2c x+ct x ct sin(τ)dτ = 1 2c [cos(x+ct) cos(x ct)]. MA 201 (2016), PDE 20 / 20

PDE and Boundary-Value Problems Winter Term 2014/2015

PDE and Boundary-Value Problems Winter Term 2014/2015 PDE and Boundary-Value Problems Winter Term 2014/2015 Lecture 13 Saarland University 5. Januar 2015 c Daria Apushkinskaya (UdS) PDE and BVP lecture 13 5. Januar 2015 1 / 35 Purpose of Lesson To interpretate

More information

PDE and Boundary-Value Problems Winter Term 2014/2015

PDE and Boundary-Value Problems Winter Term 2014/2015 PDE and Boundary-Value Problems Winter Term 2014/2015 Lecture 12 Saarland University 15. Dezember 2014 c Daria Apushkinskaya (UdS) PDE and BVP lecture 12 15. Dezember 2014 1 / 24 Purpose of Lesson To introduce

More information

Math 124A October 11, 2011

Math 124A October 11, 2011 Math 14A October 11, 11 Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This corresponds to a string of infinite length. Although

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

Introduction to the Wave Equation

Introduction to the Wave Equation Introduction to the Ryan C. Trinity University Partial Differential Equations ecture 4 Modeling the Motion of an Ideal Elastic String Idealizing Assumptions: The only force acting on the string is (constant

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 15 Heat with a source So far we considered homogeneous wave and heat equations and the associated initial value problems on the whole line, as

More information

The second-order 1D wave equation

The second-order 1D wave equation C The second-order D wave equation C. Homogeneous wave equation with constant speed The simplest form of the second-order wave equation is given by: x 2 = Like the first-order wave equation, it responds

More information

A Motivation for Fourier Analysis in Physics

A Motivation for Fourier Analysis in Physics A Motivation for Fourier Analysis in Physics PHYS 500 - Southern Illinois University November 8, 2016 PHYS 500 - Southern Illinois University A Motivation for Fourier Analysis in Physics November 8, 2016

More information

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine Lecture 2 The wave equation Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine V1.0 28/09/2018 1 Learning objectives of this lecture Understand the fundamental properties of the wave equation

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This correspons to a string of infinite

More information

THE WAVE EQUATION. F = T (x, t) j + T (x + x, t) j = T (sin(θ(x, t)) + sin(θ(x + x, t)))

THE WAVE EQUATION. F = T (x, t) j + T (x + x, t) j = T (sin(θ(x, t)) + sin(θ(x + x, t))) THE WAVE EQUATION The aim is to derive a mathematical model that describes small vibrations of a tightly stretched flexible string for the one-dimensional case, or of a tightly stretched membrane for the

More information

Lecture 21: The one dimensional Wave Equation: D Alembert s Solution

Lecture 21: The one dimensional Wave Equation: D Alembert s Solution Introductory lecture notes on Partial Differential Equations - c Anthony Peirce. Not to be copied, used, or revised without explicit written permission from the copyright owner. 1 Lecture 21: The one dimensional

More information

MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation

MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation MA 201, Mathematics III, July-November 2016, Partial Differential Equations: 1D wave equation (contd.) and 1D heat conduction equation Lecture 12 Lecture 12 MA 201, PDE (2016) 1 / 24 Formal Solution of

More information

MATH 220: Problem Set 3 Solutions

MATH 220: Problem Set 3 Solutions MATH 220: Problem Set 3 Solutions Problem 1. Let ψ C() be given by: 0, x < 1, 1 + x, 1 < x < 0, ψ(x) = 1 x, 0 < x < 1, 0, x > 1, so that it verifies ψ 0, ψ(x) = 0 if x 1 and ψ(x)dx = 1. Consider (ψ j )

More information

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE

MA 201: Method of Separation of Variables Finite Vibrating String Problem Lecture - 11 MA201(2016): PDE MA 201: Method of Separation of Variables Finite Vibrating String Problem ecture - 11 IBVP for Vibrating string with no external forces We consider the problem in a computational domain (x,t) [0,] [0,

More information

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <.

First order wave equations. Transport equation is conservation law with J = cu, u t + cu x = 0, < x <. First order wave equations Transport equation is conservation law with J = cu, u t + cu x = 0, < x

More information

Homework 3 solutions Math 136 Gyu Eun Lee 2016 April 15. R = b a

Homework 3 solutions Math 136 Gyu Eun Lee 2016 April 15. R = b a Homework 3 solutions Math 136 Gyu Eun Lee 2016 April 15 A problem may have more than one valid method of solution. Here we present just one. Arbitrary functions are assumed to have whatever regularity

More information

Final: Solutions Math 118A, Fall 2013

Final: Solutions Math 118A, Fall 2013 Final: Solutions Math 118A, Fall 2013 1. [20 pts] For each of the following PDEs for u(x, y), give their order and say if they are nonlinear or linear. If they are linear, say if they are homogeneous or

More information

Chapter 12 Partial Differential Equations

Chapter 12 Partial Differential Equations Chapter 12 Partial Differential Equations Advanced Engineering Mathematics Wei-Ta Chu National Chung Cheng University wtchu@cs.ccu.edu.tw 1 2 12.1 Basic Concepts of PDEs Partial Differential Equation A

More information

Vibrating-string problem

Vibrating-string problem EE-2020, Spring 2009 p. 1/30 Vibrating-string problem Newton s equation of motion, m u tt = applied forces to the segment (x, x, + x), Net force due to the tension of the string, T Sinθ 2 T Sinθ 1 T[u

More information

ENGI 4430 PDEs - d Alembert Solutions Page 11.01

ENGI 4430 PDEs - d Alembert Solutions Page 11.01 ENGI 4430 PDEs - d Alembert Solutions Page 11.01 11. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

Mathematical Methods - Lecture 9

Mathematical Methods - Lecture 9 Mathematical Methods - Lecture 9 Yuliya Tarabalka Inria Sophia-Antipolis Méditerranée, Titane team, http://www-sop.inria.fr/members/yuliya.tarabalka/ Tel.: +33 (0)4 92 38 77 09 email: yuliya.tarabalka@inria.fr

More information

In this lecture we shall learn how to solve the inhomogeneous heat equation. u t α 2 u xx = h(x, t)

In this lecture we shall learn how to solve the inhomogeneous heat equation. u t α 2 u xx = h(x, t) MODULE 5: HEAT EQUATION 2 Lecture 5 Time-Dependent BC In this lecture we shall learn how to solve the inhomogeneous heat equation u t α 2 u xx = h(x, t) with time-dependent BC. To begin with, let us consider

More information

Born of the Wave Equation

Born of the Wave Equation Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA Born of the Wave Equation FABIO ROMANELLI Department of Mathematics & Geosciences Universit of Trieste romanel@units.it http://moodle.units.it/course/view.php?id=887

More information

Strauss PDEs 2e: Section Exercise 3 Page 1 of 13. u tt c 2 u xx = cos x. ( 2 t c 2 2 x)u = cos x. v = ( t c x )u

Strauss PDEs 2e: Section Exercise 3 Page 1 of 13. u tt c 2 u xx = cos x. ( 2 t c 2 2 x)u = cos x. v = ( t c x )u Strauss PDEs e: Setion 3.4 - Exerise 3 Page 1 of 13 Exerise 3 Solve u tt = u xx + os x, u(x, ) = sin x, u t (x, ) = 1 + x. Solution Solution by Operator Fatorization Bring u xx to the other side. Write

More information

Math 2930 Worksheet Wave Equation

Math 2930 Worksheet Wave Equation Math 930 Worksheet Wave Equation Week 13 November 16th, 017 Question 1. Consider the wave equation a u xx = u tt in an infinite one-dimensional medium subject to the initial conditions u(x, 0) = 0 u t

More information

1.1 The classical partial differential equations

1.1 The classical partial differential equations 1 Introduction 1.1 The classical partial differential equations In this introductory chapter, we give a brief survey of three main types of partial differential equations that occur in classical physics.

More information

Reading: P1-P20 of Durran, Chapter 1 of Lapidus and Pinder (Numerical solution of Partial Differential Equations in Science and Engineering)

Reading: P1-P20 of Durran, Chapter 1 of Lapidus and Pinder (Numerical solution of Partial Differential Equations in Science and Engineering) Chapter 1. Partial Differential Equations Reading: P1-P0 of Durran, Chapter 1 of Lapidus and Pinder (Numerical solution of Partial Differential Equations in Science and Engineering) Before even looking

More information

Math 220A - Fall 2002 Homework 5 Solutions

Math 220A - Fall 2002 Homework 5 Solutions Math 0A - Fall 00 Homework 5 Solutions. Consider the initial-value problem for the hyperbolic equation u tt + u xt 0u xx 0 < x 0 u t (x, 0) ψ(x). Use energy methods to show that the domain of dependence

More information

Summer 2017 MATH Solution to Exercise 5

Summer 2017 MATH Solution to Exercise 5 Summer 07 MATH00 Solution to Exercise 5. Find the partial derivatives of the following functions: (a (xy 5z/( + x, (b x/ x + y, (c arctan y/x, (d log((t + 3 + ts, (e sin(xy z 3, (f x α, x = (x,, x n. (a

More information

Week 4 Lectures, Math 6451, Tanveer

Week 4 Lectures, Math 6451, Tanveer 1 Diffusion in n ecall that for scalar x, Week 4 Lectures, Math 6451, Tanveer S(x,t) = 1 exp [ x2 4πκt is a special solution to 1-D heat equation with properties S(x,t)dx = 1 for t >, and yet lim t +S(x,t)

More information

MA 201: Partial Differential Equations Lecture - 10

MA 201: Partial Differential Equations Lecture - 10 MA 201: Partia Differentia Equations Lecture - 10 Separation of Variabes, One dimensiona Wave Equation Initia Boundary Vaue Probem (IBVP) Reca: A physica probem governed by a PDE may contain both boundary

More information

1 What is a wave? MATHEMATICS 7302 (Analytical Dynamics) YEAR , TERM 2 HANDOUT #9: INTRODUCTION TO WAVES

1 What is a wave? MATHEMATICS 7302 (Analytical Dynamics) YEAR , TERM 2 HANDOUT #9: INTRODUCTION TO WAVES MATHEMATICS 730 (Analytical Dynamics) YEAR 017 018, TERM HANDOUT #9: INTRODUCTION TO WAVES 1 What is a wave? In everyday life we are familiar with lots of examples of waves: ripples on the surface of a

More information

The first order quasi-linear PDEs

The first order quasi-linear PDEs Chapter 2 The first order quasi-linear PDEs The first order quasi-linear PDEs have the following general form: F (x, u, Du) = 0, (2.1) where x = (x 1, x 2,, x 3 ) R n, u = u(x), Du is the gradient of u.

More information

Math 311, Partial Differential Equations, Winter 2015, Midterm

Math 311, Partial Differential Equations, Winter 2015, Midterm Score: Name: Math 3, Partial Differential Equations, Winter 205, Midterm Instructions. Write all solutions in the space provided, and use the back pages if you have to. 2. The test is out of 60. There

More information

9 More on the 1D Heat Equation

9 More on the 1D Heat Equation 9 More on the D Heat Equation 9. Heat equation on the line with sources: Duhamel s principle Theorem: Consider the Cauchy problem = D 2 u + F (x, t), on x t x 2 u(x, ) = f(x) for x < () where f

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

x ct x + t , and the characteristics for the associated transport equation would be given by the solution of the ode dx dt = 1 4. ξ = x + t 4.

x ct x + t , and the characteristics for the associated transport equation would be given by the solution of the ode dx dt = 1 4. ξ = x + t 4. . The solution is ( 2 e x+ct + e x ct) + 2c x+ct x ct sin(s)dx ( e x+ct + e x ct) + ( cos(x + ct) + cos(x ct)) 2 2c 2. To solve the PDE u xx 3u xt 4u tt =, you can first fact the differential operat to

More information

Boundary-value Problems in Rectangular Coordinates

Boundary-value Problems in Rectangular Coordinates Boundary-value Problems in Rectangular Coordinates 2009 Outline Separation of Variables: Heat Equation on a Slab Separation of Variables: Vibrating String Separation of Variables: Laplace Equation Review

More information

MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions. December 6, 2017, Wednesday 10:40-12:30, SA-Z02

MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions. December 6, 2017, Wednesday 10:40-12:30, SA-Z02 1 MATH443 PARTIAL DIFFERENTIAL EQUATIONS Second Midterm Exam-Solutions December 6 2017 Wednesday 10:40-12:30 SA-Z02 QUESTIONS: Solve any four of the following five problems [25]1. Solve the initial and

More information

An Introduction to Numerical Methods for Differential Equations. Janet Peterson

An Introduction to Numerical Methods for Differential Equations. Janet Peterson An Introduction to Numerical Methods for Differential Equations Janet Peterson Fall 2015 2 Chapter 1 Introduction Differential equations arise in many disciplines such as engineering, mathematics, sciences

More information

There are five problems. Solve four of the five problems. Each problem is worth 25 points. A sheet of convenient formulae is provided.

There are five problems. Solve four of the five problems. Each problem is worth 25 points. A sheet of convenient formulae is provided. Preliminary Examination (Solutions): Partial Differential Equations, 1 AM - 1 PM, Jan. 18, 16, oom Discovery Learning Center (DLC) Bechtel Collaboratory. Student ID: There are five problems. Solve four

More information

Extra Problems and Examples

Extra Problems and Examples Extra Problems and Examples Steven Bellenot October 11, 2007 1 Separation of Variables Find the solution u(x, y) to the following equations by separating variables. 1. u x + u y = 0 2. u x u y = 0 answer:

More information

LINEAR SECOND-ORDER EQUATIONS

LINEAR SECOND-ORDER EQUATIONS LINEAR SECON-ORER EQUATIONS Classification In two independent variables x and y, the general form is Au xx + 2Bu xy + Cu yy + u x + Eu y + Fu + G = 0. The coefficients are continuous functions of (x, y)

More information

Name: Math Homework Set # 5. March 12, 2010

Name: Math Homework Set # 5. March 12, 2010 Name: Math 4567. Homework Set # 5 March 12, 2010 Chapter 3 (page 79, problems 1,2), (page 82, problems 1,2), (page 86, problems 2,3), Chapter 4 (page 93, problems 2,3), (page 98, problems 1,2), (page 102,

More information

Solving linear and nonlinear partial differential equations by the method of characteristics

Solving linear and nonlinear partial differential equations by the method of characteristics Chapter IV Solving linear and nonlinear partial differential equations by the method of characteristics Chapter III has brought to light the notion of characteristic curves and their significance in the

More information

Introduction of Partial Differential Equations and Boundary Value Problems

Introduction of Partial Differential Equations and Boundary Value Problems Introduction of Partial Differential Equations and Boundary Value Problems 2009 Outline Definition Classification Where PDEs come from? Well-posed problem, solutions Initial Conditions and Boundary Conditions

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1

More information

Salmon: Lectures on partial differential equations

Salmon: Lectures on partial differential equations 6. The wave equation Of the 3 basic equations derived in the previous section, we have already discussed the heat equation, (1) θ t = κθ xx + Q( x,t). In this section we discuss the wave equation, () θ

More information

Strauss PDEs 2e: Section Exercise 1 Page 1 of 6

Strauss PDEs 2e: Section Exercise 1 Page 1 of 6 Strauss PDEs e: Setion.1 - Exerise 1 Page 1 of 6 Exerise 1 Solve u tt = u xx, u(x, 0) = e x, u t (x, 0) = sin x. Solution Solution by Operator Fatorization By fatoring the wave equation and making a substitution,

More information

(The) Three Linear Partial Differential Equations

(The) Three Linear Partial Differential Equations (The) Three Linear Partial Differential Equations 1 Introduction A partial differential equation (PDE) is an equation of a function of 2 or more variables, involving 2 or more partial derivatives in different

More information

LECTURE NOTES IN PARTIAL DIFFERENTIAL EQUATIONS. Fourth Edition, February by Tadeusz STYŠ. University of Botswana

LECTURE NOTES IN PARTIAL DIFFERENTIAL EQUATIONS. Fourth Edition, February by Tadeusz STYŠ. University of Botswana i LECTURE NOTES IN PARTIAL DIFFERENTIAL EQUATIONS Fourth Edition, February 2011 by Tadeusz STYŠ University of Botswana ii Contents 1 Solution of Partial Differential Equations 1 1.1 The General Solution

More information

M.Sc. in Meteorology. Numerical Weather Prediction

M.Sc. in Meteorology. Numerical Weather Prediction M.Sc. in Meteorology UCD Numerical Weather Prediction Prof Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Second Semester, 2005 2006. In this section

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

6 Non-homogeneous Heat Problems

6 Non-homogeneous Heat Problems 6 Non-homogeneous Heat Problems Up to this point all the problems we have considered for the heat or wave equation we what we call homogeneous problems. This means that for an interval < x < l the problems

More information

PDE (Math 4163) Spring 2016

PDE (Math 4163) Spring 2016 PDE (Math 4163) Spring 2016 Some historical notes. PDE arose in the context of the development of models in the physics of continuous media, e.g. vibrating strings, elasticity, the Newtonian gravitational

More information

A TLM model of a heavy gantry crane system

A TLM model of a heavy gantry crane system A TLM model of a heavy gantry crane system William J O'Connor * Abstract The 1-D wave equation model of a vibrating string is first adjusted to allow for variable tension. The response is verified by comparison

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

MATH 124A Solution Key HW 05

MATH 124A Solution Key HW 05 3. DIFFUSION ON THE HALF-LINE Solutions prepared by Jon Tjun Seng Lo Kim Lin, TA Math 24A MATH 24A Solution Key HW 5 3. DIFFUSION ON THE HALF-LINE. Solve u t ku x x ; u(x, ) e x ; u(, t) on the half-line

More information

Wave Equations: Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space:

Wave Equations: Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space: Math 57 Fall 009 Lecture 7 Sep. 8, 009) Wave Equations: Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space: u u t t u = 0, R n 0, ) ; u x,

More information

Travelling waves. Chapter 8. 1 Introduction

Travelling waves. Chapter 8. 1 Introduction Chapter 8 Travelling waves 1 Introduction One of the cornerstones in the study of both linear and nonlinear PDEs is the wave propagation. A wave is a recognizable signal which is transferred from one part

More information

Wave Equation Modelling Solutions

Wave Equation Modelling Solutions Wave Equation Modelling Solutions SEECS-NUST December 19, 2017 Wave Phenomenon Waves propagate in a pond when we gently touch water in it. Wave Phenomenon Our ear drums are very sensitive to small vibrations

More information

A Guided Tour of the Wave Equation

A Guided Tour of the Wave Equation A Guided Tour of the Wave Equation Background: In order to solve this problem we need to review some facts about ordinary differential equations: Some Common ODEs and their solutions: f (x) = 0 f(x) =

More information

Method of Separation of Variables

Method of Separation of Variables MODUE 5: HEAT EQUATION 11 ecture 3 Method of Separation of Variables Separation of variables is one of the oldest technique for solving initial-boundary value problems (IBVP) and applies to problems, where

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 Lecture Notes 8 - PDEs Page 8.01 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives with respect to those variables. Most (but

More information

Hyperbolic PDEs. Chapter 6

Hyperbolic PDEs. Chapter 6 Chapter 6 Hyperbolic PDEs In this chapter we will prove existence, uniqueness, and continuous dependence of solutions to hyperbolic PDEs in a variety of domains. To get a feel for what we might expect,

More information

[Engineering Mathematics]

[Engineering Mathematics] [MATHS IV] [Engineering Mathematics] [Partial Differential Equations] [Partial Differentiation and formation of Partial Differential Equations has already been covered in Maths II syllabus. Present chapter

More information

Wave Equations Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space:

Wave Equations Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space: Nov. 07 Wave Equations Explicit Formulas In this lecture we derive the representation formulas for the wave equation in the whole space: u u t t u = 0, R n 0, ) ; u x, 0) = g x), u t x, 0) = h x). ) It

More information

Math 220a - Fall 2002 Homework 6 Solutions

Math 220a - Fall 2002 Homework 6 Solutions Math a - Fall Homework 6 Solutions. Use the method of reflection to solve the initial-boundary value problem on the interval < x < l, u tt c u xx = < x < l u(x, = < x < l u t (x, = x < x < l u(, t = =

More information

Differential equations, comprehensive exam topics and sample questions

Differential equations, comprehensive exam topics and sample questions Differential equations, comprehensive exam topics and sample questions Topics covered ODE s: Chapters -5, 7, from Elementary Differential Equations by Edwards and Penney, 6th edition.. Exact solutions

More information

Chapter 16 Waves in One Dimension

Chapter 16 Waves in One Dimension Chapter 16 Waves in One Dimension Slide 16-1 Reading Quiz 16.05 f = c Slide 16-2 Reading Quiz 16.06 Slide 16-3 Reading Quiz 16.07 Heavier portion looks like a fixed end, pulse is inverted on reflection.

More information

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE 1. Linear Partial Differential Equations A partial differential equation (PDE) is an equation, for an unknown function u, that

More information

Introduction to Partial Differential Equation - I. Quick overview

Introduction to Partial Differential Equation - I. Quick overview Introduction to Partial Differential Equation - I. Quick overview To help explain the correspondence between a PDE and a real world phenomenon, we will use t to denote time and (x, y, z) to denote the

More information

Antiderivatives. DEFINITION: A function F is called an antiderivative of f on an (open) interval I if F (x) = f(x) for all x in I EXAMPLES:

Antiderivatives. DEFINITION: A function F is called an antiderivative of f on an (open) interval I if F (x) = f(x) for all x in I EXAMPLES: Antiderivatives 00 Kiryl Tsishchanka DEFINITION: A function F is called an antiderivative of f on an (open) interval I if F (x) = f(x) for all x in I EXAMPLES:. If f(x) = x, then F(x) = 3 x3, since ( )

More information

Lecture Notes 4: Fourier Series and PDE s

Lecture Notes 4: Fourier Series and PDE s Lecture Notes 4: Fourier Series and PDE s 1. Periodic Functions A function fx defined on R is caed a periodic function if there exists a number T > such that fx + T = fx, x R. 1.1 The smaest number T for

More information

Math 5587 Lecture 2. Jeff Calder. August 31, Initial/boundary conditions and well-posedness

Math 5587 Lecture 2. Jeff Calder. August 31, Initial/boundary conditions and well-posedness Math 5587 Lecture 2 Jeff Calder August 31, 2016 1 Initial/boundary conditions and well-posedness 1.1 ODE vs PDE Recall that the general solutions of ODEs involve a number of arbitrary constants. Example

More information

Partial Differential Equations, Winter 2015

Partial Differential Equations, Winter 2015 Partial Differential Equations, Winter 215 Homework #2 Due: Thursday, February 12th, 215 1. (Chapter 2.1) Solve u xx + u xt 2u tt =, u(x, ) = φ(x), u t (x, ) = ψ(x). Hint: Factor the operator as we did

More information

HOMEWORK 5. Proof. This is the diffusion equation (1) with the function φ(x) = e x. By the solution formula (6), 1. e (x y)2.

HOMEWORK 5. Proof. This is the diffusion equation (1) with the function φ(x) = e x. By the solution formula (6), 1. e (x y)2. HOMEWORK 5 SHUANGLIN SHAO. Section 3.. #. Proof. This is the diffusion equation with the function φx e x. By the solution formula 6, vx, t e x y e x+y φydy e x y e x+y e x y y dy e y dy e x+y y dy To compute

More information

MATHEMATICAL MODELS FOR SMALL DEFORMATIONS OF STRINGS

MATHEMATICAL MODELS FOR SMALL DEFORMATIONS OF STRINGS MATHEMATICAL MODELS FOR SMALL DEFORMATIONS OF STRINGS by Luis Adauto Medeiros Lecture given at Faculdade de Matemáticas UFPA (Belém March 2008) FIXED ENDS Let us consider a stretched string which in rest

More information

Separation of Variables. A. Three Famous PDE s

Separation of Variables. A. Three Famous PDE s Separation of Variables c 14, Philip D. Loewen A. Three Famous PDE s 1. Wave Equation. Displacement u depends on position and time: u = u(x, t. Concavity drives acceleration: u tt = c u xx.. Heat Equation.

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 ecture Notes 8 - PDEs Page 8.0 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

The Maximum and Minimum Principle

The Maximum and Minimum Principle MODULE 5: HEAT EQUATION 5 Lecture 2 The Maximum and Minimum Principle In this lecture, we shall prove the maximum and minimum properties of the heat equation. These properties can be used to prove uniqueness

More information

MATH 819 FALL We considered solutions of this equation on the domain Ū, where

MATH 819 FALL We considered solutions of this equation on the domain Ū, where MATH 89 FALL. The D linear wave equation weak solutions We have considered the initial value problem for the wave equation in one space dimension: (a) (b) (c) u tt u xx = f(x, t) u(x, ) = g(x), u t (x,

More information

Chapter 15. Mechanical Waves

Chapter 15. Mechanical Waves Chapter 15 Mechanical Waves A wave is any disturbance from an equilibrium condition, which travels or propagates with time from one region of space to another. A harmonic wave is a periodic wave in which

More information

MIT (Spring 2014)

MIT (Spring 2014) 18.311 MIT (Spring 014) Rodolfo R. Rosales February 13, 014. Problem Set # 01. Due: Mon. February 4. IMPORTANT: Turn in the regular and the special problems stapled in two SEPARATE packages. Print your

More information

CHAPTER 4. Introduction to the. Heat Conduction Model

CHAPTER 4. Introduction to the. Heat Conduction Model A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS

More information

BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES 1 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES 1.1 Separable Partial Differential Equations 1. Classical PDEs and Boundary-Value Problems 1.3 Heat Equation 1.4 Wave Equation 1.5 Laplace s Equation

More information

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 24 Oscillating Systems Fall 2016 Semester Prof. Matthew Jones 1 2 Oscillating Motion We have studied linear motion objects moving in straight lines at either constant

More information

A symmetry analysis of Richard s equation describing flow in porous media. Ron Wiltshire

A symmetry analysis of Richard s equation describing flow in porous media. Ron Wiltshire BULLETIN OF THE GREEK MATHEMATICAL SOCIETY Volume 51, 005 93 103) A symmetry analysis of Richard s equation describing flow in porous media Ron Wiltshire Abstract A summary of the classical Lie method

More information

Virbations and Waves

Virbations and Waves Virbations and Waves 1.1 Observe and find a pattern Try the following simple experiments and describe common patterns concerning the behavior of the block. (a) Fill in the table that follows. Experiment

More information

Chapter 4 The Wave Equation

Chapter 4 The Wave Equation Chapter 4 The Wave Equaton Another classcal example of a hyperbolc PDE s a wave equaton. The wave equaton s a second-order lnear hyperbolc PDE that descrbes the propagaton of a varety of waves, such as

More information

Vibrating Strings and Heat Flow

Vibrating Strings and Heat Flow Vibrating Strings and Heat Flow Consider an infinite vibrating string Assume that the -ais is the equilibrium position of the string and that the tension in the string at rest in equilibrium is τ Let u(,

More information

CSE 260 Introduction to Parallel Computation. Class 4 October 2, PDE s for Dummies. 10/2/01 CSE Class #4

CSE 260 Introduction to Parallel Computation. Class 4 October 2, PDE s for Dummies. 10/2/01 CSE Class #4 CSE 260 Introduction to Parallel Computation Class 4 October 2, 2001 PDE s for Dummies 10/2/01 Disclaimer! This methods and opinions expressed in this lecture are solely mine, and do not reflect the collective

More information

Strauss PDEs 2e: Section Exercise 2 Page 1 of 6. Solve the completely inhomogeneous diffusion problem on the half-line

Strauss PDEs 2e: Section Exercise 2 Page 1 of 6. Solve the completely inhomogeneous diffusion problem on the half-line Strauss PDEs 2e: Section 3.3 - Exercise 2 Page of 6 Exercise 2 Solve the completely inhomogeneous diffusion problem on the half-line v t kv xx = f(x, t) for < x

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Ryan C. Trinity University Partial Differential Equations Lecture 1 Ordinary differential equations (ODEs) These are equations of the form where: F(x,y,y,y,y,...)

More information

MATH 6B Spring 2017 Vector Calculus II Study Guide Final Exam Chapters 8, 9, and Sections 11.1, 11.2, 11.7, 12.2, 12.3.

MATH 6B Spring 2017 Vector Calculus II Study Guide Final Exam Chapters 8, 9, and Sections 11.1, 11.2, 11.7, 12.2, 12.3. MATH 6B pring 2017 Vector Calculus II tudy Guide Final Exam Chapters 8, 9, and ections 11.1, 11.2, 11.7, 12.2, 12.3. Before starting with the summary of the main concepts covered in the quarter, here there

More information

Classification of partial differential equations and their solution characteristics

Classification of partial differential equations and their solution characteristics 9 TH INDO GERMAN WINTER ACADEMY 2010 Classification of partial differential equations and their solution characteristics By Ankita Bhutani IIT Roorkee Tutors: Prof. V. Buwa Prof. S. V. R. Rao Prof. U.

More information

The wave equation in one dimension

The wave equation in one dimension The wave equation in one dimension Prof. Joyner 1 The theory of the vibrating string touches on musical theory and the theory of oscillating waves, so has likely been a concern of scholars since ancient

More information

Math 126 Final Exam Solutions

Math 126 Final Exam Solutions Math 126 Final Exam Solutions 1. (a) Give an example of a linear homogeneous PE, a linear inhomogeneous PE, and a nonlinear PE. [3 points] Solution. Poisson s equation u = f is linear homogeneous when

More information