Chapter 17: Double and Triple Integrals

Size: px
Start display at page:

Download "Chapter 17: Double and Triple Integrals"

Transcription

1 Chapter 17: Double and Triple Integrals Section 17.1 Multiple Sigma Notation a. Double Sigma Notation b. Properties Section 17.2 Double Integrals a. Double Integral Over a Rectangle b. Partitions c. More on Partitions d. Upper Sums and Lower Sums e. Double Integral Over a Rectangle R f. Double Integral as a Volume g. Volume of T h. Double Integral Over a Region i. Volume of the Solid T j. Elementary Properties: I and II k. Elementary Property III l. Elementary Property IV m. Mean-Value Theorem for Double Integrals Section 17.3 The Evaluation of Double Integrals By Repeated Integrals a. Type I Regions b. Type II Region c. Reduction Formulas Viewed Geometrically d. Reduction Formula e. Symmetry in Double Integration Section 17.4 The Double Integral as a Limit of Riemann Sums; Polar Coordinates a. Limit of Riemann Sums b. Evaluating Double Integrals Using Polar Coordinates c. Double Integral Formulas d. Integrating e x 2 Section 17.5 Further Applications of the Double Integration a. Mass of a Plate b. Center of Mass of a Plate c. Centroids d. Applications Section 17.6 Triple Integrals a. Triple Integral Over a Box b. Triple Integral Over a More General Solid c. Volume Section 17.7 Reduction to Repeated Integrals a. Formula and Illustration Section 17.8 Cylindrical Coordinates a. Rectangular Coordinates/ Cylindrical Coordinates b. Evaluating Triple Integrals c. Volume in Cylindrical Coordinates Section 17.9 Spherical Coordinates a. Longitude, Colatitude, Latitude b. Spherical Wedge c. Volume Section Jacobians, Changing Variables a. Change of Variables b. Jacobian

2 Multiple Sigma Notation When two indices are involved, say, we use double-sigma notation. By i j 2i aij = 25, aij =, aij = 1+ i 5 + j ( ) j we mean the sum of all the a ij where i ranges from 1 to m and j ranges from 1 to n. For example, 3 2 i= 1 j= 1 = = i j

3 Multiple Sigma Notation

4 Double Integrals The Double Integral over a Rectangle We start with a function f continuous on a rectangle R : a x b, c y d We want to define the double integral of f over R: R f ( ) x, y dx dy.

5 Double Integrals First we explain what we mean by a partition of the rectangle R. We begin with a partition P 1 = {x 0, x 1,..., x m } of [a, b], and a partition P 2 = {y 0, y 1,..., y n } of [c, d]. The set P = P 1 P 2 = {(x i, y j ) : x i P 1, y j P 2 } is called a partition of R. The set P consists of all the grid points (x i, y j ).

6 Double Integrals Using the partition P, we break up R into m n nonoverlapping rectangles R ij : x i 1 x x i, y j 1 y y j, where 1 i m, 1 j n.

7 Double Integrals The sum of all the products is called the P upper sum for f : ( area of ) ( 1)( 1) M R = M x x y y = M x y ij ij ij i i j j ij i j The sum of all the products is called the P lower sum for f : ( area of ) ( 1)( 1) m R = m x x y y = m x y ij ij ij i i j j ij i j

8 Double Integrals

9 Double Integrals The Double Integral as a Volume If f is continuous and nonnegative on the rectangle R, the equation z = f (x, y) represents a surface that lies above R. In this case the double integral R f ( ) x dx dy gives the volume of the solid that is bounded below by R and bounded above by the surface z = f (x, y).

10 Double Integrals Since the choice of a partition P is arbitrary, the volume of T must be the double integral: The double integral R 1dx dy = R dx dy gives the volume of a solid of constant height 1 erected over R. In square units this is just the area of R:

11 Double Integrals The Double Integral over a Region

12 Double Integrals If f is continuous and nonnegative over Ω, the extended f is nonnegative on all of R. The volume of the solid T bounded above by z = f (x, y) and bounded below by Ω is given by:

13 Double Integrals Four Elementary Properties of the Double Integral: The Ω referred to is a basic region. The functions f and g are assumed to be continuous on Ω. I. Linearity: The double integral of a linear combination is the linear combination of the double integrals: (, ) (, ) (, ) (, ) α f x y + βg x y dx dy = α f x y dx dy + β g x y dx dy Ω Ω Ω II. Order: The double integral preserves order: if f 0 on Ω, then Ω f ( ) x, y dx dy 0 if f g on Ω, then Ω (, ) (, ) f x y dx dy g x y dx dy Ω

14 Double Integrals III. Additivity: If Ω is broken up into a finite number of nonoverlapping basic regions Ω 1,..., Ω n, then (, ) = (, ) + + (, ) f x y dx dy f x y dx dy f x y dx dy Ω Ω Ω 1 n

15 Double Integrals IV. Mean-value condition: There is a point (x 0, y 0 ) in Ω for which Ω (, ) = (, ) ( area of Ω) f x y dx dy f x y 0 0 We call f (x 0, y 0 ) the average value of f on Ω.

16 Double Integrals

17 The Evaluation of Double Integrals By Repeated Integrals Type I Region The projection of Ω onto the x-axis is a closed interval [a, b] and Ω consists of all points (x, y) with a x b and φ ( x) y φ ( x) 1 2.

18 The Evaluation of Double Integrals By Repeated Integrals Type II Region The projection of Ω onto the y-axis is a closed interval [c, d] and Ω consists of all points (x, y) with c y d and ψ 1 (y) x ψ 2 (y). In this case

19 The Evaluation of Double Integrals By Repeated Integrals The Reduction Formulas Viewed Geometrically Suppose that f is nonnegative and Ω is a region of Type I. The double integral over Ω gives the volume of the solid T bounded above by the surface z = f (x, y) and bounded below by the region Ω: ( ) ( ) 1 f x, y dx dy = volume of T Ω

20 The Evaluation of Double Integrals By Repeated Integrals We can also calculate the volume of T by the method of parallel cross sections. b φ 2 f x, y dy dx = volume of T a φ 1( x) 2 ( x) ( ) ( ) Combining (1) with (2), we have the first reduction formula Ω b φ 2( x ) f ( x, y) dx dy = f ( x, y) dy dx a φ 1( x) The other reduction formula can be obtained in a similar manner.

21 The Evaluation of Double Integrals By Repeated Integrals Symmetry in Double Integration Suppose that Ω is symmetric about the y-axis. If f is odd in x [ f ( x, y) = f (x, y)], then If f is even in x [ f ( x, y) = f (x, y)], then Ω Ω f ( ) x, y dx dy = 0 (, ) = 2 (, ) f x y dx dy f x y dx dy right half of Ω Suppose that Ω is symmetric about the x-axis. If f is odd in y [ f (x, y) = f (x, y)], then If f is even in y [ f (x, y) = f (x, y)], then Ω Ω f ( ) x, y dx dy = 0 (, ) = 2 (, ) f x y dx dy f x y dx dy upper half of Ω

22 The Double Integral as a Limit of Riemann Sums; Polar Coordinates

23 The Double Integral as a Limit of Riemann Sums; Polar Coordinates Evaluating Double Integrals Using Polar Coordinates

24 The Double Integral as a Limit of Riemann Sums; Polar Coordinates

25 The Double Integral as a Limit of Riemann Sums; Polar Coordinates The function f (x) = e x 2 has no elementary antiderivative. Nevertheless, by taking a circuitous route and then using polar coordinates, we can show that

26 Further Applications of the Double Integral A thin plane distribution of matter (we call it a plate) is laid out in the xy-plane in the form of a basic region Ω. If the mass density of the plate (the mass per unit area) is a constant λ, then the total mass M of the plate is simply the density λ times the area of the plate: M = λ the area of Ω. If the density varies continuously from point to point, say λ = λ(x, y), then the mass of the plate is the average density of the plate times the area of the plate: This is a double integral: M = average density the area of Ω.

27 Further Applications of the Double Integral The Center of Mass of a Plate The center of mass x M of a rod is a density-weighted average of position taken over the interval occupied by the rod: b ( ). xm M = xλ x dx a The coordinates of the center of mass of a plate (x M, y M ) are determined by two density weighted averages of position, each taken over the region occupied by the plate:

28 Further Applications of the Double Integral Centroids If the plate is homogeneous, then the mass density λ is constantly M/A where A is the area of the base region Ω. In this case the center of mass of the plate falls on the centroid of the base region (a notion with which you are already familiar). The centroid x, y depends only on the geometry of Ω: ( )

29 Further Applications of the Double Integral Kinetic Energy and Moment of Inertia The Moment of Inertia of a Plate Radius of Gyration The Parallel Axis Theorem

30 Triple Integrals

31 Triple Integrals The Triple Integral Over a More General Solid

32 Triple Integrals Volume as a Triple Integral The simplest triple integral of interest is the triple integral of the function that is constantly 1 on T. This gives the volume of T :

33 Reduction to Repeated Integrals

34 Cylindrical Coordinates The cylindrical coordinates (r, θ, z) of a point P in xyz-space are shown geometrically in Figure The first two coordinates, r and θ, are the usual plane polar coordinates except that r is taken to be nonnegative and θ is restricted to the interval [0, 2π]. The third coordinate is the third rectangular coordinate z. In rectangular coordinates, the coordinate surfaces x = x 0, y = y 0, z = z 0 are three mutually perpendicular planes. In cylindrical coordinates, the coordinate surfaces take the form r = r 0, θ = θ 0, z = z 0

35 Cylindrical Coordinates Evaluating Triple Integrals Using Cylindrical Coordinates Suppose that T is some basic solid in xyz-space, not necessarily a wedge. If T is the set of all (x, y, z) with cylindrical coordinates in some basic solid S in rθz-space, then

36 Cylindrical Coordinates Volume Formula If f (x, y, z) = 1 for all (x, y, z) in T, then (17.8.1) reduces to T dx dy dz = r dr dθ dz. The triple integral on the left is the volume of T. In summary, if T is a basic solid in xyz-space and the cylindrical coordinates of T constitute a basic solid S in rθz-space, then the volume of T is given by the formula S

37 Spherical Coordinates φ The spherical coordinates (ρ, θ, ) of a point P in xyz-space are shown geometrically in Figure The first coordinate ρ is the distance from P to the origin; thus ρ 0. The second coordinate, the angle marked θ, is the second coordinate of cylindrical coordinates; θ ranges from 0 to 2π. We call θ the longitude. The third coordinate, the angle marked φ, ranges only from 0 to π. We call φ the colatitude, or more simply the polar angle. (The complement of φ would be the latitude on a globe.) φ

38 Spherical Coordinates

39 Spherical Coordinates Evaluating Triple Integrals Using Spherical Coordinates Volume Formula

40 Jacobians; Changing Variables in Multiple Integration Figure shows a basic region Γ in a plane that we are calling the uv-plane. (In this plane we denote the abscissa of a point by u and the ordinate by v.) Suppose that x = x(u, v), y = y(u, v) are continuously differentiable functions on the region Γ.

41 Jacobians; Changing Variables in Multiple Integration As (u, v) ranges over Γ, the point (x, y), (x(u, v), y(u, v)) generates a region Ω in the xy-plane. If the mapping (u, v) (x, y) is one-to-one on the interior of Γ, and the Jacobian (, ) J uv is never zero on the interior of Γ, then x y u u x y x y = = x y u v v u v v

THE DOUBLE INTEGRAL AS THE LIMIT OF RIEMANN SUMS; POLAR COORDINATES

THE DOUBLE INTEGRAL AS THE LIMIT OF RIEMANN SUMS; POLAR COORDINATES HE DOUBLE INEGRAL AS HE LIMI OF RIEMANN SUMS; POLAR COORDINAES HE DOUBLE INEGRAL AS HE LIMI OF RIEMANN SUMS; POLAR COORDINAES he Double Integral as the Limit of Riemann Sums In the one-variable case we

More information

Dr. Allen Back. Nov. 5, 2014

Dr. Allen Back. Nov. 5, 2014 Dr. Allen Back Nov. 5, 2014 12 lectures, 4 recitations left including today. a Most of what remains is vector integration and the integral theorems. b We ll start 7.1, 7.2,4.2 on Friday. c If you are not

More information

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14 14 Multiple Integration 14.1 Iterated Integrals and Area in the Plane Objectives Evaluate an iterated integral. Use an iterated integral to find the area of a plane region. Copyright Cengage Learning.

More information

MULTIVARIABLE INTEGRATION

MULTIVARIABLE INTEGRATION MULTIVARIABLE INTEGRATION (SPHERICAL POLAR COORDINATES) Question 1 a) Determine with the aid of a diagram an expression for the volume element in r, θ, ϕ. spherical polar coordinates, ( ) [You may not

More information

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work. Exam 3 Math 850-007 Fall 04 Odenthal Name: Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.. Evaluate the iterated integral

More information

ENGI Multiple Integration Page 8-01

ENGI Multiple Integration Page 8-01 ENGI 345 8. Multiple Integration Page 8-01 8. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple integration include

More information

Week 7: Integration: Special Coordinates

Week 7: Integration: Special Coordinates Week 7: Integration: Special Coordinates Introduction Many problems naturally involve symmetry. One should exploit it where possible and this often means using coordinate systems other than Cartesian coordinates.

More information

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01

ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 ENGI 4430 Multiple Integration Cartesian Double Integrals Page 3-01 3. Multiple Integration This chapter provides only a very brief introduction to the major topic of multiple integration. Uses of multiple

More information

Module 14 : Double Integrals, Applilcations to Areas and Volumes Change of variables

Module 14 : Double Integrals, Applilcations to Areas and Volumes Change of variables Module 14 : Double Integrals, Applilcations to Areas and Volumes Change of variables Lecture 41 : Triple integrals [Section 41.1] Objectives In this section you will learn the following : The concept of

More information

Figure 25:Differentials of surface.

Figure 25:Differentials of surface. 2.5. Change of variables and Jacobians In the previous example we saw that, once we have identified the type of coordinates which is best to use for solving a particular problem, the next step is to do

More information

MATH 52 FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

More information

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c.

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c. MATH 35 PRACTICE FINAL FALL 17 SAMUEL S. WATSON Problem 1 Verify that if a and b are nonzero vectors, the vector c = a b + b a bisects the angle between a and b. The cosine of the angle between a and c

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

Lecture 10 - Moment of Inertia

Lecture 10 - Moment of Inertia Lecture 10 - oment of Inertia A Puzzle... Question For any object, there are typically many ways to calculate the moment of inertia I = r 2 dm, usually by doing the integration by considering different

More information

MULTIVARIABLE INTEGRATION

MULTIVARIABLE INTEGRATION MULTIVARIABLE INTEGRATION (PLANE & CYLINDRICAL POLAR COORDINATES) PLANE POLAR COORDINATES Question 1 The finite region on the x-y plane satisfies 1 x + y 4, y 0. Find, in terms of π, the value of I. I

More information

Math 302 Outcome Statements Winter 2013

Math 302 Outcome Statements Winter 2013 Math 302 Outcome Statements Winter 2013 1 Rectangular Space Coordinates; Vectors in the Three-Dimensional Space (a) Cartesian coordinates of a point (b) sphere (c) symmetry about a point, a line, and a

More information

is any such piece, suppose we choose a in this piece and use σ ( xk, yk, zk) . If B

is any such piece, suppose we choose a in this piece and use σ ( xk, yk, zk) . If B Multivariable Calculus Lecture # Notes In this lecture we look at integration over regions in space, ie triple integrals, using Cartesian coordinates, cylindrical coordinates, and spherical coordinates

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

S12.1 SOLUTIONS TO PROBLEMS 12 (ODD NUMBERS)

S12.1 SOLUTIONS TO PROBLEMS 12 (ODD NUMBERS) OLUTION TO PROBLEM 2 (ODD NUMBER) 2. The electric field is E = φ = 2xi + 2y j and at (2, ) E = 4i + 2j. Thus E = 2 5 and its direction is 2i + j. At ( 3, 2), φ = 6i + 4 j. Thus the direction of most rapid

More information

Laplace equation in polar coordinates

Laplace equation in polar coordinates Laplace equation in polar coordinates The Laplace equation is given by 2 F 2 + 2 F 2 = 0 We have x = r cos θ, y = r sin θ, and also r 2 = x 2 + y 2, tan θ = y/x We have for the partials with respect to

More information

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 2 SECTION PROPERTIES

Hong Kong Institute of Vocational Education (Tsing Yi) Higher Diploma in Civil Engineering Structural Mechanics. Chapter 2 SECTION PROPERTIES Section Properties Centroid The centroid of an area is the point about which the area could be balanced if it was supported from that point. The word is derived from the word center, and it can be though

More information

Properties of surfaces II: Second moment of area

Properties of surfaces II: Second moment of area Properties of surfaces II: Second moment of area Just as we have discussing first moment of an area and its relation with problems in mechanics, we will now describe second moment and product of area of

More information

Figure 21:The polar and Cartesian coordinate systems.

Figure 21:The polar and Cartesian coordinate systems. Figure 21:The polar and Cartesian coordinate systems. Coordinate systems in R There are three standard coordinate systems which are used to describe points in -dimensional space. These coordinate systems

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Math 2433 Notes Week Triple Integrals. Integration over an arbitrary solid: Applications: 1. Volume of hypersolid = f ( x, y, z ) dxdydz

Math 2433 Notes Week Triple Integrals. Integration over an arbitrary solid: Applications: 1. Volume of hypersolid = f ( x, y, z ) dxdydz Math 2433 Notes Week 11 15.6 Triple Integrals Integration over an arbitrary solid: Applications: 1. Volume of hypersolid = f ( x, y, z ) dxdydz S 2. Volume of S = dxdydz S Reduction to a repeated integral

More information

Student name: Student ID: Math 265 (Butler) Midterm III, 10 November 2011

Student name: Student ID: Math 265 (Butler) Midterm III, 10 November 2011 Student name: Student ID: Math 265 (Butler) Midterm III, November 2 This test is closed book and closed notes. No calculator is allowed for this test. For full credit show all of your work (legibly!).

More information

STATICS. Distributed Forces: Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Distributed Forces: Moments of Inertia VECTOR MECHANICS FOR ENGINEERS: Eighth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. 007 The McGraw-Hill Companies, nc. All rights reserved. Eighth E CHAPTER 9 VECTOR MECHANCS FOR ENGNEERS: STATCS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University

More information

Substitutions in Multiple Integrals

Substitutions in Multiple Integrals Substitutions in Multiple Integrals P. Sam Johnson April 10, 2017 P. Sam Johnson (NIT Karnataka) Substitutions in Multiple Integrals April 10, 2017 1 / 23 Overview In the lecture, we discuss how to evaluate

More information

e x3 dx dy. 0 y x 2, 0 x 1.

e x3 dx dy. 0 y x 2, 0 x 1. Problem 1. Evaluate by changing the order of integration y e x3 dx dy. Solution:We change the order of integration over the region y x 1. We find and x e x3 dy dx = y x, x 1. x e x3 dx = 1 x=1 3 ex3 x=

More information

15.5. Applications of Double Integrals. Density and Mass. Density and Mass. Density and Mass. Density and Mass. Multiple Integrals

15.5. Applications of Double Integrals. Density and Mass. Density and Mass. Density and Mass. Density and Mass. Multiple Integrals 15 Multiple Integrals 15.5 Applications of Double Integrals Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. We were able to use single integrals to compute

More information

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6 .(5pts) y = uv. ompute the Jacobian, Multiple hoice (x, y) (u, v), of the coordinate transformation x = u v 4, (a) u + 4v 4 (b) xu yv (c) u + 7v 6 (d) u (e) u v uv 4 Solution. u v 4v u = u + 4v 4..(5pts)

More information

Moments of Inertia (7 pages; 23/3/18)

Moments of Inertia (7 pages; 23/3/18) Moments of Inertia (7 pages; 3/3/8) () Suppose that an object rotates about a fixed axis AB with angular velocity θ. Considering the object to be made up of particles, suppose that particle i (with mass

More information

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1 hapter 6 Integrals In this chapter we will look at integrals in more detail. We will look at integrals along a curve, and multi-dimensional integrals in 2 or more dimensions. In physics we use these integrals

More information

Chapter 10: Moments of Inertia

Chapter 10: Moments of Inertia Chapter 10: Moments of Inertia Chapter Objectives To develop a method for determining the moment of inertia and product of inertia for an area with respect to given x- and y-axes. To develop a method for

More information

is a surface above the xy-plane over R.

is a surface above the xy-plane over R. Chapter 13 Multiple Integration Section 13.1Double Integrals over ectangular egions ecall the Definite Integral from Chapter 5 b a n * lim i f x dx f x x n i 1 b If f x 0 then f xdx is the area under the

More information

MATH2111 Higher Several Variable Calculus Integration

MATH2111 Higher Several Variable Calculus Integration MATH2 Higher Several Variable Calculus Integration Dr. Jonathan Kress School of Mathematics and Statistics University of New South Wales Semester, 26 [updated: April 3, 26] JM Kress (UNSW Maths & Stats)

More information

MA 351 Fall 2008 Exam #3 Review Solutions 1. (2) = λ = x 2y OR x = y = 0. = y = x 2y (2x + 2) = 2x2 + 2x 2y = 2y 2 = 2x 2 + 2x = y 2 = x 2 + x

MA 351 Fall 2008 Exam #3 Review Solutions 1. (2) = λ = x 2y OR x = y = 0. = y = x 2y (2x + 2) = 2x2 + 2x 2y = 2y 2 = 2x 2 + 2x = y 2 = x 2 + x MA 5 Fall 8 Eam # Review Solutions. Find the maimum of f, y y restricted to the curve + + y. Give both the coordinates of the point and the value of f. f, y y g, y + + y f < y, > g < +, y > solve y λ +

More information

AREAS, RADIUS OF GYRATION

AREAS, RADIUS OF GYRATION Chapter 10 MOMENTS of INERTIA for AREAS, RADIUS OF GYRATION Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine the MoI for an area by integration.

More information

1 Integration in many variables.

1 Integration in many variables. MA2 athaye Notes on Integration. Integration in many variables.. Basic efinition. The integration in one variable was developed along these lines:. I f(x) dx, where I is any interval on the real line was

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information

Use partial integration with respect to y to compute the inner integral (treating x as a constant.)

Use partial integration with respect to y to compute the inner integral (treating x as a constant.) Math 54 ~ Multiple Integration 4. Iterated Integrals and Area in the Plane Iterated Integrals f ( x, y) dydx = f ( x, y) dy dx b g ( x) b g ( x) a g ( x) a g ( x) Use partial integration with respect to

More information

The Volume of a Hypersphere

The Volume of a Hypersphere The hypersphere has the equation The Volume of a Hypersphere x 2 y 2 x 2 w 2 = 2 if centered at the origin (,,,) and has a radius of in four dimensional space. We approach the project of determining its

More information

Double Integrals. P. Sam Johnson. February 4, P. Sam Johnson (NIT Karnataka) (NIT Karnataka) Double Integrals February 4, / 57

Double Integrals. P. Sam Johnson. February 4, P. Sam Johnson (NIT Karnataka) (NIT Karnataka) Double Integrals February 4, / 57 Double Integrals P. Sam Johnson February 4, 2018 P. Sam Johnson (NIT Karnataka) (NIT Karnataka) Double Integrals February 4, 2018 1 / 57 Overview We defined the definite integral of a continuous function

More information

Vector Calculus. Dr. D. Sukumar

Vector Calculus. Dr. D. Sukumar Vector Calculus Dr. D. Sukumar Space co-ordinates Change of variable Cartesian co-ordinates < x < Cartesian co-ordinates < x < < y < Cartesian co-ordinates < x < < y < < z < Cylindrical Cylindrical Cylindrical

More information

Salmon: Lectures on partial differential equations

Salmon: Lectures on partial differential equations 6. The wave equation Of the 3 basic equations derived in the previous section, we have already discussed the heat equation, (1) θ t = κθ xx + Q( x,t). In this section we discuss the wave equation, () θ

More information

ME 201 Engineering Mechanics: Statics

ME 201 Engineering Mechanics: Statics ME 0 Engineering Mechanics: Statics Unit 9. Moments of nertia Definition of Moments of nertia for Areas Parallel-Axis Theorem for an Area Radius of Gyration of an Area Moments of nertia for Composite Areas

More information

Probability Density (1)

Probability Density (1) Probability Density (1) Let f(x 1, x 2... x n ) be a probability density for the variables {x 1, x 2... x n }. These variables can always be viewed as coordinates over an abstract space (a manifold ).

More information

51. General Surface Integrals

51. General Surface Integrals 51. General urface Integrals The area of a surface in defined parametrically by r(u, v) = x(u, v), y(u, v), z(u, v) over a region of integration in the input-variable plane is given by d = r u r v da.

More information

Learning Objectives for Math 166

Learning Objectives for Math 166 Learning Objectives for Math 166 Chapter 6 Applications of Definite Integrals Section 6.1: Volumes Using Cross-Sections Draw and label both 2-dimensional perspectives and 3-dimensional sketches of the

More information

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane.

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane. Math 54 - Vector Calculus Notes 3. - 3. Double Integrals Consider f(x, y) = 8 x y. Let s estimate the volume under this surface over the rectangle R = [, 4] [, ] in the xy-plane. Here is a particular estimate:

More information

Math Applications of Double Integrals

Math Applications of Double Integrals Math 213 - Applications of Double Integrals Peter A. Perry University of Kentucky October 26, 2018 Homework Re-read section 15.4 Begin work on problems 1-23 (odd) from 15.4 Read section 15.5 for Monday,

More information

36. Double Integration over Non-Rectangular Regions of Type II

36. Double Integration over Non-Rectangular Regions of Type II 36. Double Integration over Non-Rectangular Regions of Type II When establishing the bounds of a double integral, visualize an arrow initially in the positive x direction or the positive y direction. A

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

Arnie Pizer Rochester Problem Library Fall 2005 WeBWorK assignment VMultIntegrals1Double due 04/03/2008 at 02:00am EST.

Arnie Pizer Rochester Problem Library Fall 2005 WeBWorK assignment VMultIntegrals1Double due 04/03/2008 at 02:00am EST. WeBWorK assignment VMultIntegralsouble due 04/03/2008 at 02:00am ST.. ( pt) rochesterlibrary/setvmultintegralsouble/ur vc 8.pg Consider the solid that lies above the square = [0,2] [0,2] and below the

More information

14. Rotational Kinematics and Moment of Inertia

14. Rotational Kinematics and Moment of Inertia 14. Rotational Kinematics and Moment of nertia A) Overview n this unit we will introduce rotational motion. n particular, we will introduce the angular kinematic variables that are used to describe the

More information

Part 8: Rigid Body Dynamics

Part 8: Rigid Body Dynamics Document that contains homework problems. Comment out the solutions when printing off for students. Part 8: Rigid Body Dynamics Problem 1. Inertia review Find the moment of inertia for a thin uniform rod

More information

Multiple Integrals and Vector Calculus: Synopsis

Multiple Integrals and Vector Calculus: Synopsis Multiple Integrals and Vector Calculus: Synopsis Hilary Term 28: 14 lectures. Steve Rawlings. 1. Vectors - recap of basic principles. Things which are (and are not) vectors. Differentiation and integration

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

ENGR-1100 Introduction to Engineering Analysis. Lecture 17

ENGR-1100 Introduction to Engineering Analysis. Lecture 17 ENGR-1100 Introduction to Engineering Analysis Lecture 17 CENTROID OF COMPOSITE AREAS Today s Objective : Students will: a) Understand the concept of centroid. b) Be able to determine the location of the

More information

Math Double Integrals in Polar Coordinates

Math Double Integrals in Polar Coordinates Math 213 - Double Integrals in Polar Coordinates Peter A. Perry University of Kentucky October 22, 2018 Homework Re-read section 15.3 Begin work on 1-4, 5-31 (odd), 35, 37 from 15.3 Read section 15.4 for

More information

### dv where ρ is density, R is distance from rotation axis, and dv is

### dv where ρ is density, R is distance from rotation axis, and dv is Comments This is one of my favorite problem assignments in our Solid Earth Geophysics class, typically taken by junior and senior concentrators and by first-year graduate students. I encourage students

More information

Chapter 6 Some Applications of the Integral

Chapter 6 Some Applications of the Integral Chapter 6 Some Applications of the Integral Section 6.1 More on Area a. Representative Rectangle b. Vertical Separation c. Example d. Integration with Respect to y e. Example Section 6.2 Volume by Parallel

More information

15.9. Triple Integrals in Spherical Coordinates. Spherical Coordinates. Spherical Coordinates. Spherical Coordinates. Multiple Integrals

15.9. Triple Integrals in Spherical Coordinates. Spherical Coordinates. Spherical Coordinates. Spherical Coordinates. Multiple Integrals 15 Multiple Integrals 15.9 Triple Integrals in Spherical Coordinates Copyright Cengage Learning. All rights reserved. Copyright Cengage Learning. All rights reserved. Triple Integrals in Another useful

More information

MOMENT OF INERTIA. Applications. Parallel-Axis Theorem

MOMENT OF INERTIA. Applications. Parallel-Axis Theorem MOMENT OF INERTIA Today s Objectives: Students will be able to: 1. Determine the mass moment of inertia of a rigid body or a system of rigid bodies. In-Class Activities: Applications Mass Moment of Inertia

More information

2 dimensions Area Under a Curve Added up rectangles length (f lies in 2-dimensional space) 3-dimensional Volume

2 dimensions Area Under a Curve Added up rectangles length (f lies in 2-dimensional space) 3-dimensional Volume 12.7 Triple Integrals HW do integrations manually except for the applications Single integral Functions of 1 variable, f ( x ) *Integrated over interval of x f ( x ) 2 dimensions Area Under a Curve f (

More information

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0).

Math 127C, Spring 2006 Final Exam Solutions. x 2 ), g(y 1, y 2 ) = ( y 1 y 2, y1 2 + y2) 2. (g f) (0) = g (f(0))f (0). Math 27C, Spring 26 Final Exam Solutions. Define f : R 2 R 2 and g : R 2 R 2 by f(x, x 2 (sin x 2 x, e x x 2, g(y, y 2 ( y y 2, y 2 + y2 2. Use the chain rule to compute the matrix of (g f (,. By the chain

More information

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w.

Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w. Math, Final Exam, Spring Problem Solution. Consider three position vectors (tails are the origin): u,, v 4,, w,, (a) Find an equation of the plane passing through the tips of u, v, and w. (b) Find an equation

More information

RJP Problems. Mathematica problems MM1, MM2, & MM3 are found under the Mathematical Summary document.

RJP Problems. Mathematica problems MM1, MM2, & MM3 are found under the Mathematical Summary document. RJP Problems Mathematica problems MM1, MM2, & MM3 are found under the Mathematical Summary document. RJP-10: Write a Fortran program that computes the x and y coordinates of the points on a circle of arbitrary

More information

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication.

MATH 423/ Note that the algebraic operations on the right hand side are vector subtraction and scalar multiplication. MATH 423/673 1 Curves Definition: The velocity vector of a curve α : I R 3 at time t is the tangent vector to R 3 at α(t), defined by α (t) T α(t) R 3 α α(t + h) α(t) (t) := lim h 0 h Note that the algebraic

More information

P1 Calculus II. Partial Differentiation & Multiple Integration. Prof David Murray. dwm/courses/1pd

P1 Calculus II. Partial Differentiation & Multiple Integration. Prof David Murray.  dwm/courses/1pd P1 2017 1 / 58 P1 Calculus II Partial Differentiation & Multiple Integration Prof David Murray david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/ dwm/courses/1pd 4 lectures, MT 2017 P1 2017 2 / 58 4 Multiple

More information

Tutorial Exercises: Geometric Connections

Tutorial Exercises: Geometric Connections Tutorial Exercises: Geometric Connections 1. Geodesics in the Isotropic Mercator Projection When the surface of the globe is projected onto a flat map some aspects of the map are inevitably distorted.

More information

θ + mgl θ = 0 or θ + ω 2 θ = 0 (2) ω 2 = I θ = mgl sinθ (1) + Ml 2 I = I CM mgl Kater s Pendulum The Compound Pendulum

θ + mgl θ = 0 or θ + ω 2 θ = 0 (2) ω 2 = I θ = mgl sinθ (1) + Ml 2 I = I CM mgl Kater s Pendulum The Compound Pendulum Kater s Pendulum The Compound Pendulum A compound pendulum is the term that generally refers to an arbitrary lamina that is allowed to oscillate about a point located some distance from the lamina s center

More information

In this section you will learn the following : 40.1Double integrals

In this section you will learn the following : 40.1Double integrals Module 14 : Double Integrals, Applilcations to Areas and Volumes Change of variables Lecture 40 : Double integrals over rectangular domains [Section 40.1] Objectives In this section you will learn the

More information

Warning, the protected names norm and trace have been redefined and unprotected

Warning, the protected names norm and trace have been redefined and unprotected 22M:28 Spring 5 J. Simon An example of computing a triple integral with several coordinate systems > > with(plots):with(linalg): Warning, the name changecoords has been redefined Warning, the protected

More information

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 3 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 3 : INTRODUCTION TO CLASSICAL MECHANICS 1. Angular velocity and

More information

Math 265 (Butler) Practice Midterm III B (Solutions)

Math 265 (Butler) Practice Midterm III B (Solutions) Math 265 (Butler) Practice Midterm III B (Solutions). Set up (but do not evaluate) an integral for the surface area of the surface f(x, y) x 2 y y over the region x, y 4. We have that the surface are is

More information

Arc Length and Surface Area in Parametric Equations

Arc Length and Surface Area in Parametric Equations Arc Length and Surface Area in Parametric Equations MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2011 Background We have developed definite integral formulas for arc length

More information

Integration. Tuesday, December 3, 13

Integration. Tuesday, December 3, 13 4 Integration 4.3 Riemann Sums and Definite Integrals Objectives n Understand the definition of a Riemann sum. n Evaluate a definite integral using properties of definite integrals. 3 Riemann Sums 4 Riemann

More information

(Refer Slide Time: 1:58 min)

(Refer Slide Time: 1:58 min) Applied Mechanics Prof. R. K. Mittal Department of Applied Mechanics Indian Institution of Technology, Delhi Lecture No. # 13 Moments and Products of Inertia (Contd.) Today s lecture is lecture thirteen

More information

Solution. This is a routine application of the chain rule.

Solution. This is a routine application of the chain rule. EXAM 2 SOLUTIONS 1. If z = e r cos θ, r = st, θ = s 2 + t 2, find the partial derivatives dz ds chain rule. Write your answers entirely in terms of s and t. dz and dt using the Solution. This is a routine

More information

MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION

MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION MOMENTS OF INERTIA FOR AREAS, RADIUS OF GYRATION OF AN AREA, & MOMENTS OF INTERTIA BY INTEGRATION Today s Objectives: Students will be able to: a) Define the moments of inertia (MoI) for an area. b) Determine

More information

Chapter 4. Multiple Integrals. 1. Integrals on Rectangles

Chapter 4. Multiple Integrals. 1. Integrals on Rectangles Chapter 4. Multiple Integrals Let be a rectangle in I 2 given by 1. Integrals on ectangles = [a 1, b 1 [a 2, b 2 := {(x, y) I 2 : a 1 x b 1, a 2 y b 2 }. Let P 1 be a partition of [a 1, b 1 : P 1 : a 1

More information

MATH2321, Calculus III for Science and Engineering, Fall Name (Printed) Print your name, the date, and then sign the exam on the line

MATH2321, Calculus III for Science and Engineering, Fall Name (Printed) Print your name, the date, and then sign the exam on the line MATH2321, Calculus III for Science and Engineering, Fall 218 1 Exam 2 Name (Printed) Date Signature Instructions STOP. above. Print your name, the date, and then sign the exam on the line This exam consists

More information

Answer sheet: Final exam for Math 2339, Dec 10, 2010

Answer sheet: Final exam for Math 2339, Dec 10, 2010 Answer sheet: Final exam for Math 9, ec, Problem. Let the surface be z f(x,y) ln(y + cos(πxy) + e ). (a) Find the gradient vector of f f(x,y) y + cos(πxy) + e πy sin(πxy), y πx sin(πxy) (b) Evaluate f(,

More information

Charge and current elements

Charge and current elements Charge and current elements for 1-, 2- and 3-dimensional integration Frits F.M. de Mul Presentations: Electromagnetism: History Electromagnetism: Electr. topics Electromagnetism: Magn. topics Electromagnetism:

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 3. Double Integrals 3A. Double

More information

ME 101: Engineering Mechanics

ME 101: Engineering Mechanics ME 0: Engineering Mechanics Rajib Kumar Bhattacharja Department of Civil Engineering ndian nstitute of Technolog Guwahati M Block : Room No 005 : Tel: 8 www.iitg.ernet.in/rkbc Area Moments of nertia Parallel

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 10 (Second moments of an arc) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 10 (Second moments of an arc) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.1 INTEGRATION APPLICATIONS 1 (Second moments of an arc) by A.J.Hobson 13.1.1 Introduction 13.1. The second moment of an arc about the y-axis 13.1.3 The second moment of an

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

Physics 225 Relativity and Math Applications. Fall Unit 11 Multidimensional Integration I

Physics 225 Relativity and Math Applications. Fall Unit 11 Multidimensional Integration I Physics 225 Relativity and Math Applications Fall 212 Unit 11 Multidimensional Integration I N.C.R. Makins University of Illinois at Urbana-Champaign 21 Physics 225 11.2 11.2 Physics 225 11.3 Unit 11:

More information

e x2 dxdy, e x2 da, e x2 x 3 dx = e

e x2 dxdy, e x2 da, e x2 x 3 dx = e STS26-4 Calculus II: The fourth exam Dec 15, 214 Please show all your work! Answers without supporting work will be not given credit. Write answers in spaces provided. You have 1 hour and 2minutes to complete

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

Change of Variables, Parametrizations, Surface Integrals

Change of Variables, Parametrizations, Surface Integrals Chapter 8 Change of Variables, Parametrizations, Surface Integrals 8. he transformation formula In evaluating any integral, if the integral depends on an auxiliary function of the variables involved, it

More information

********************************************************** 1. Evaluate the double or iterated integrals:

********************************************************** 1. Evaluate the double or iterated integrals: Practice problems 1. (a). Let f = 3x 2 + 4y 2 + z 2 and g = 2x + 3y + z = 1. Use Lagrange multiplier to find the extrema of f on g = 1. Is this a max or a min? No max, but there is min. Hence, among the

More information

Moment of inertia. Contents. 1 Introduction and simple cases. January 15, Introduction. 1.2 Examples

Moment of inertia. Contents. 1 Introduction and simple cases. January 15, Introduction. 1.2 Examples Moment of inertia January 15, 016 A systematic account is given of the concept and the properties of the moment of inertia. Contents 1 Introduction and simple cases 1 1.1 Introduction.............. 1 1.

More information

Complex Analysis Math 185A, Winter 2010 Final: Solutions

Complex Analysis Math 185A, Winter 2010 Final: Solutions Complex Analysis Math 85A, Winter 200 Final: Solutions. [25 pts] The Jacobian of two real-valued functions u(x, y), v(x, y) of (x, y) is defined by the determinant (u, v) J = (x, y) = u x u y v x v y.

More information

Two small balls, each of mass m, with perpendicular bisector of the line joining the two balls as the axis of rotation:

Two small balls, each of mass m, with perpendicular bisector of the line joining the two balls as the axis of rotation: PHYSCS LOCUS 17 summation in mi ri becomes an integration. We imagine the body to be subdivided into infinitesimal elements, each of mass dm, as shown in figure 7.17. Let r be the distance from such an

More information

Electromagnetism HW 1 math review

Electromagnetism HW 1 math review Electromagnetism HW math review Problems -5 due Mon 7th Sep, 6- due Mon 4th Sep Exercise. The Levi-Civita symbol, ɛ ijk, also known as the completely antisymmetric rank-3 tensor, has the following properties:

More information