Particle Identification with the Transition Radiation Detector

Size: px
Start display at page:

Download "Particle Identification with the Transition Radiation Detector"

Transcription

1 Particle Identification with the Transition Radiation Detector Yvonne Pachmayer, University of Heidelberg for the TRD PID Group Particle identification algorithms Performance

2 Transition Radiation PID with ALICE TRD p > 1 GeV/c Test Beam Data TR creation for γ > 800 TR photons absorbed in the drift volume preferentially close to radiator Time evolution of the signal recorded improved e/ separation power Specific energy loss and + TR production measured

3 TRD PID Methods Different analysis methods Truncated mean method LQ1D = 1-dim likelihood (total integrated charge) LQ2D = 2-dim likelihood (charge + position) Multi-dimensional PID LQ3D/LQ7D = 3/7-dim likelihood (charge + position) (Neural network (NN)) Bayesian approach within ALICE Combines PID method from various detectors Priors for ITS+TPC Propagation factors

4 Onset of Transition Radiation Muons (cosmic rays) de/dx only Compilation of TRD de/dx +TR data from proton-proton collisions, cosmic rays and test beam data Fit with Aleph parameterisation + TR contribution X-G. Lu, doctoral thesis, Universität Heidelberg, Germany

5 Truncated Mean Method cpass0/cpass1 Time-bin calibration Cosmics/V0/... X-G. Lu, doctoral thesis, Universität Heidelberg, Germany

6 Truncated Mean Method Truncation of TRD signal to obtain (almost) Gaussian distribution N signal clusters above baseline (up to 6 number of time bins) Signal clusters not completely independent (ion drift) Truncation fraction f = 0.55 Truncated mean signal from the M smallest signal clusters:

7 Truncated Mean Method Performance Idea by Marian to combine TRD truncated mean with TPC measurement Advantage in case part of TPC off However no manpower for this at the moment

8 Truncated Mean Method Summary PID via truncated mean accessible in AliPIDResponse ESDs and AODs supported Cuts on signal and n σ supported (up to triton) (Automatic η, cluster and centrality correction) Parameters available for LHC13b-f : p-pb 13TeV (best resolution ~12%) LHC15n : pp 5 TeV LHC15o : Pb-Pb 5 TeV Florian Herrmann Lukas Altenkämper

9 Transition Radiation Likelihood Methods TR creation for γ > 800 TR photons absorbed in the drift volume preferentially close to radiator Time evolution of the signal recorded improved e/ separation power Specific energy loss and + TR production measured

10 TRD - Likelihood analysis method A. Andronic P ( Ei e ) Probability that the energy deposited Ei in (layer i) was produced by an electron Likelihood to be an electron: Pe P ( Ei e ) = Pe + Pπ or respectively other particle species N Pe = P ( E i e ) i=1 N Pπ = P ( E i π ) i=1 N = number of modules (e.g. ALICE TRD Nmax = 6)

11 Implementation in AliRoot Documentation The TRD PID can be applied in two ways: via a cut on the probability of a given particle species AliPIDResponse::EDetPidStatus AliPIDResponse::ComputeTRDProbability (const AliVTrack *track, Int_t nspecies, Double_t p, AliTRDPIDResponse::ETRDPIDMethod PIDmethod) Double_t p returns the probabilities of a given particle species (electron, muon, pion, kaon, proton). Values between 0 to 1 are returned (The default value is 0.2). With AliTRDPIDResponse::ETRDPIDMethod PIDmethod one can select if the LQ1D/LQ2D/LQ3D/LQ7D method should be used: AliTRDPIDResponse::kLQ1D or analogous for other methods electron identification at a fixed electron efficiency level Using the function Bool_t AliPIDResponse::IdentifiedAsElectronTRD(const AliVTrack *vtrack, Int_t &ntracklets,double_t efficiencylevel,double_t centrality, AliTRDPIDResponse::ETRDPIDMethod PIDmethod) Int_t &ntracklets returns the number of tracklets used for the PID calculation. Double_t efficiencylevel: available electron efficiencies are (0.05%, 0.1%, 0.15%..., 0.85%, 0.9%, 0.95%). Double_t centrality for pp and p-pb collisions the centrality is -1; for Pb-Pb the respective centrality is used. (The TRD signal has a centrality dependence in Pb-Pb) With AliTRDPIDResponse::ETRDPIDMethod PIDmethod one can select if the LQ1D/LQ2D/LQ3D/LQ7D method should be used: AliTRDPIDResponse::kLQ1D or analogous for other methods Assumes that a TOF epid cut of ±3σ was applied

12 References and Thresholds available Period Comment LHC10h Pb-Pb 2.76 TeV LHC11h Pb-Pb 2.76 TeV LHC12c-f pp (using data from LHC13 p-pb) LHC13b-f p-pb LHC15f pp 13 TeV LHC15n pp 5 TeV LHC15o Pb-Pb 5 TeV Florian Herrmann

13 Electron Identification Likelihood on total charge (LQ1D) Simplest method of TRD PID: Based on the charge measured Likelihood on total charge in a single tracklet Data sample: V 0 sample topological identification + TOF&TPC PID e from conversion, pions from K0-decays, protons from Λ-decays D. Lohner, doctoral thesis, Universität Heidelberg, Germany

14 Electron Identification Likelihood on total charge (LQ1D) Simplest method of TRD PID: Based on the charge measured Likelihood on total charge in a single tracklet Data sample: V 0 sample topological identification + TOF&TPC PID e from conversion, pions from K0-decays, protons from Λ-decays M. Fasel, doctoral thesis, TU Darmstadt, Germany, Nov 2012

15 Electron Identification Likelihood on total charge (LQ1D) Cross-Checks Cross-Check with electrons from π0 γγ and then γ e+e- Electron identification efficiency Electron likelihood Tracking efficiency in MC (realistic detector description) M. Fasel, doctoral thesis, TU Darmstadt, Germany, Nov 2012

16 PID Systematic Uncertainty

17 Electron Identification Usage of Temporal Evolution of the Signal (I) Time evolution of the signal recorded TR photons absorbed in the drift volume preferentially close to the radiator Characteristic peak at large drift times enables even better separation of electrons and pions Treat slices as independent J. Klein, NIMA706(2013)23

18 Single Electron Analysis p-pb mb

19 Electron Identification Usage of Temporal Evolution of the Signal (II) References and thresholds determined for Electron efficiencies: Number of tracklets LQ1D robust and simple method with reasonable pion suppression LQ2-7D and NN improvement in pion suppression (#chambers in a stack): 1-6

20 Electron Identification Usage of Temporal Evolution of the Signal (II) The more differential, the more statistics needed Likelihood methods Same data sample for performance study as for for reference/threshold creation No systematics on electron efficiency Ideal tracks: 6 TRD tracklets + missing slices cut Limited in p due to statistics Treat slices as independent NN Statistics NN structure

21 Electron Identification Usage of Temporal Evolution of the Signal Example Application using LQ2D Physics Case: J/ψ analysis Data sample Pb-Pb (centrality: 0 40%) Single track transverse momentum pt > 2 GeV/c PID: TPC only and TPC+TRD TPC cuts: nσe < 2, rejection: nσπ > 3.5, nσp > 4 cut on standard deviation of (de/dx - <de/dxe hyp>)/σ TRD PID LQ2D method, electron likelihood > tracklets (chambers in a stack) PID only used when available (10/18 TRD supermodules installed in 2011) Despite reduced coverage the TRD PID yields an improvement of S/B by ~30% TRD PID improves S/B ratio I. Arsene

22 Performance in Pb-Pb (2010) TRD signal has a centrality dependence D. Lohner, doctoral thesis, Universität Heidelberg, Germany

23 Performance in Pb-Pb (2010) TRD signal has a centrality dependence D. Lohner, doctoral thesis, Universität Heidelberg, Germany

24 Performance in Pb-Pb (2015)

25 Thresholds/Parameters Not created charge dependent For study input sample and sample a. u. PID Performance Charge Dependence used for evaluation with the respective charge selection Charge dependent effects LQ1D less effected LQ2D positive charge smoother p shape p > 1.5 GeV/c stat. fluctuations 25

26 Missing Slices Cut Pion Efficiency 6 tracklets Missing slices cut None of the contributing tracklets has a missing slice for LQ1D and LQ2D No missing slices cut Min 1 slice per layer not empty LQ1D: Qtot >0 LQ2D: Q0 && Q1 > 0 Checks via true quantiles Not calculated thresholds TRD Meeting 26

27 Missing Slices Cut Pion Efficiency for different Electron Efficiency No gap & no missing slices cut Recover performance via lower electron efficiency cut TRD Meeting 27

28 Missing Slices Cut LQ3D Similar effect for LQ3D Less fast rise with no cut, probably statistics TRD Meeting 28

29 Comparison Data vs MC Pion Efficiency 6 tracklets Parameter creation analogous to data MC samples LHC13b2_efix_p1 LHC13b2_efix_p2 LHC13b2_efix_p4 Performance evaluated using the V0 sample used to create the references and thresholds MC shows an even stronger pion rejection than data when applying the missing slices cut Is the method analogous to data not valid? Differences in PID Response Is the separation of the different particle species larger? However common scaling factor Differences in tracking 29

30 Likelihood Methods Summary PID via likelihood method accessible in AliPIDResponse ESD/AOD analysis LQ1D, LQ2D, LQ3D, LQ7D available References and thresholds (layers: 1-6; efficiency %; centrality dependent) Not considered: charge dependence Thresholds: assume that a TOF eid cut was applied before

31 TRD PID QA (I) PID QA 'framework' for general user to judge that PID worked independent of his/her analysis task (parameters loaded etc.) for experts to spot any problems the general user reports should run on the lego train (in GSI train framework: PIDqa.root) Data ESD MC ESD Data AOD MC AOD Basic x x x x Likelihood x x x x Truncated Mean x x x x V0 Basic x x V0 Likelihood x x V0 Truncated Mean x x MC truth Basic x x 31

32 Likelihood TRD PID QA (II) Likelihood LQ1D and LQ2D vs p for 5 particle species (electron to proton) TPC nsigma vs p w/o TRD PID (LQ1D and LQ2D 90% electron efficiency) 32

33 Monte Carlo PID Response M. Voelkl Present implementation GEANT3 and 'after burner' Comparison MC vs test beam Test beam: only total integrated charge available (w/o radiator TR) de/dx and de/dx +TR GEANT3 vs GEANT4 GEANT4 Tuning of parameters ongoing No perfect representation possible due to varying incident angle on fibres Test beam vs ALICE (no material in front of TRD - Bremsstrahlung)

34 Neural Network with TMVA (I) TRD PID with NN TMVA Martin Kroesen LQ2D NN training in momentum ranges ideal tracks ideal tracks

35 Neural Network with TMVA (II) Test with local AliRoot version TMVA w/o TRD PID Implementation needs tuning Slow & large weights file Next steps Performance studies Non ideal tracks Pb-Pb TRD PID 90% electron efficiency

36 Single Electron Analysis p-pb mb Tracking Systematics Martin Fleck, Master Thesis PID systematics 3% Tracking systematics ~10%

37 Back-up

38 Data Sample Data samples needed to reference/threshold creation Test beam (total integrated charge) Cosmics (track inclination) V0 sample topological identification + TOF&TPC PID e from conversion, pions from K0-decays, protons from Λ-decays D. Lohner, doctoral thesis, Universität Heidelberg, Germany

39 Truncated Mean Method nσ Approach (I) Lukas Altenkämper Input: V0 sample

40 Truncated Mean Method nσ Approach (II) Lukas Altenkämper Input: V0 sample Use βγ information to produce correction map Compare mean signal with expected signal in βγ - η bins

41 Truncated Mean Method nσ Approach (III) Lukas Altenkämper nσ rather constant in after correction Only shown for pions, also works for other particle species Pions identified via TOF/TPC (not V0 sample)

42 TRD - Likelihood analysis method Definitions A. Andronic electron efficiency is the rate of electrons, which are identified correctly pion efficiency is the rate of pions which are misidentified as electrons pion suppression is the reciprocal of pion efficiency Design goal: example ALICE TRD Pion efficiency <1% at 90% electron efficiency

43 Total Integrated Charge (Slice 0) Lennart Volz Fit Function XianGuo:

44 Charge dependence of total integrated charge Electrons 44

45 Charge dependence of total integrated charge Pions 45

46 6 tracklets 6 tracklets

47 Missing Slices Lennart Volz Data Data p > 1 GeV/c MC p > 1 GeV/c p-pb mb Small layer dependence (7% 9%) Minor charge dependence Minor p dependence Correlation with other missing slices Similar dependence in MC In analysis no missing slice cut reduces the statistics

48 Pion Efficiency Track Parameter Dependence

Muon reconstruction performance in ATLAS at Run-2

Muon reconstruction performance in ATLAS at Run-2 2 Muon reconstruction performance in ATLAS at Run-2 Hannah Herde on behalf of the ATLAS Collaboration Brandeis University (US) E-mail: hannah.herde@cern.ch ATL-PHYS-PROC-205-2 5 October 205 The ATLAS muon

More information

Σ(1385) production in proton-proton collisions at s =7 TeV

Σ(1385) production in proton-proton collisions at s =7 TeV Σ(1385) production in proton-proton collisions at s =7 TeV Enrico Fragiacomo, Massimo Venaruzzo, Giacomo Contin, Ramona Lea July 16, 2012 1 Introduction Objective of this note is to support the Σ(1385)

More information

Transverse momentum spectra of identified charged hadrons with the ALICE detector in Pb-Pb collisions at the LHC

Transverse momentum spectra of identified charged hadrons with the ALICE detector in Pb-Pb collisions at the LHC Transverse momentum spectra of identified charged hadrons with the ALICE detector in Pb-Pb collisions at the LHC for the ALICE Collaboration Museo Storico della Fisica e Centro Studi e Ricerche Enrico

More information

Transverse momentum spectra using the Inner Tracking System of the ALICE experiment at LHC

Transverse momentum spectra using the Inner Tracking System of the ALICE experiment at LHC - 1 - Transverse momentum spectra using the Inner Tracking System of the ALICE experiment at LHC Seminario di fine secondo anno di dottorato Torino, 3 Febbraio 2010 Outline - 2-1 2 3 4 5 A Large Ion Collider

More information

Open-charm and J/ψ production at the ALICE experiment

Open-charm and J/ψ production at the ALICE experiment Open-charm and J/ψ production at the ALICE experiment Pietro Cortese Università del Piemonte Orientale and INFN Alessandria, Italy on behalf of the ALICE Collaboration Purdue University, Jan. 6, 2011 Pietro

More information

Photon Physics in ALICE from conversion electrons

Photon Physics in ALICE from conversion electrons Photon Physics in ALICE from conversion electrons A. Marin (for the AliCE Collaboration) Introduction: ALICE@LHC Photon detection via conversion method Physics results with conversion electrons: CERES,

More information

First Run-2 results from ALICE

First Run-2 results from ALICE First Run-2 results from ALICE Goethe University Frankfurt & GSI on behalf of the ALICE Collaboration XLV International Symposium on Multiparticle Dynamics Wildbad Kreuth, 4-9 Oct 2015 1 Outline Introduction

More information

Charged particle multiplicity in proton-proton collisions with ALICE

Charged particle multiplicity in proton-proton collisions with ALICE Charged particle multiplicity in proton-proton collisions with ALICE Introduction on the motivations for a pp physics programme with ALICE A short review on the detectors used to reconstruct charged particle

More information

Susanna Costanza. (Università degli Studi di Pavia & INFN Pavia) on behalf of the ALICE Collaboration

Susanna Costanza. (Università degli Studi di Pavia & INFN Pavia) on behalf of the ALICE Collaboration (Università degli Studi di Pavia & INFN Pavia) on behalf of the ALICE Collaboration 102 Congresso della Società Italiana di Fisica Padova, 26-30 settembre 2016 Outline Heavy flavour physics in ALICE The

More information

Beauty decay electrons in p-pb collisions using displaced electrons in ALICE

Beauty decay electrons in p-pb collisions using displaced electrons in ALICE Beauty decay electrons in p-pb collisions using displaced electrons in ALICE Soyeon Cho Inha University (Advised by Jin-Hee Yoon & MinJung Kweon) 2013.12.07 Heavy Ion Meeting in Andong 1 Motivation Study

More information

Federico Antinori (INFN Padova, Italy) on behalf of the ALICE Collaboration

Federico Antinori (INFN Padova, Italy) on behalf of the ALICE Collaboration Federico Antinori (INFN Padova, Italy) on behalf of the ALICE Collaboration ALICE run 2009-2010 Detector performance First physics results A taste of other analyses in advanced stage Outlook / Conclusion

More information

IKF. H-QM Quark Matter Studies. Quarkonia Measurements with ALICE. Frederick Kramer. WWND, Ocho Rios, Jan 8, IKF, Goethe-Universität Frankfurt

IKF. H-QM Quark Matter Studies. Quarkonia Measurements with ALICE. Frederick Kramer. WWND, Ocho Rios, Jan 8, IKF, Goethe-Universität Frankfurt Quarkonia Measurements with ALICE Frederick Kramer IKF, Goethe-Universität Frankfurt WWND, Ocho Rios, Jan 8, 2010 Helmholtz Research School H-QM Quark Matter Studies IKF Institut für Kernphysik Frankfurt

More information

Alice TPC particle identification

Alice TPC particle identification Alice TPC particle identification on the way to Anti-Nuclei and exotic states INTERNATIONAL SCHOOL OF NUCLEAR PHYSICS 34th Course Probing the Extremes of Matter with Heavy Ions Erice-Sicily: 16-24 September

More information

for the ALICE Collaboration V Convegno Nazionale sulla Fisica di ALICE Trieste - September,

for the ALICE Collaboration V Convegno Nazionale sulla Fisica di ALICE Trieste - September, 1/27 for the ALICE Collaboration Università e INFN di Torino V Convegno Nazionale sulla Fisica di ALICE Trieste - September, 14 2009 2/27 1 2 3 4 ITS role in ALICE 3/27 Reconstruction of primary vertex

More information

A Geant4 validation study for the ALICE experiment at the LHC

A Geant4 validation study for the ALICE experiment at the LHC A Geant4 validation study for the ALICE experiment at the LHC Kevin Nicholas Barends Department of Physics University of Cape Town Supervisor: Dr Alexander Kalweit Co-supervisor: Dr Sandro Wenzel 04 August

More information

Measurements of the dilepton continuum in ALICE. Christoph Baumann Resonance Workshop, Austin

Measurements of the dilepton continuum in ALICE. Christoph Baumann Resonance Workshop, Austin Measurements of the dilepton continuum in ALICE Christoph Baumann 07.03.2012 Resonance Workshop, Austin ALICE Central Detectors: Inner Tracking System Time Projection Chamber Time-of-Flight Transition

More information

ALICE results on identified particle spectra in p-pb collisions

ALICE results on identified particle spectra in p-pb collisions Workshop on proton-nucleus collisions at the LHC ALICE results on identified particle spectra in p-pb collisions for the ALICE Collaboration Museo Storico della Fisica e Centro Studi e Ricerche Enrico

More information

The Alice Experiment Felix Freiherr von Lüdinghausen

The Alice Experiment Felix Freiherr von Lüdinghausen The Alice Experiment Felix Freiherr von Lüdinghausen Alice, who is Alice? Alice is A Large Ion Collider Experiment. Worldwide hit in 1977 for the band Smokie Alice is the dedicated heavy ion experiment

More information

Introduction. The Standard Model

Introduction. The Standard Model Ph.D. Thesis in Engineering Physics Supervisor: Assoc. Prof. Dr. Ayda BEDDALL Co-supervisor: Assist. Prof. Dr. Andrew BEDDALL By Ahmet BNGÜL Page 1 Introduction Chapter 1-2 High energy collisions of sub-atomic

More information

Quarkonium production measurement in Pb-Pb collisions at forward and mid rapidity with the ALICE experiment

Quarkonium production measurement in Pb-Pb collisions at forward and mid rapidity with the ALICE experiment Quarkonium production measurement in Pb-Pb collisions at forward and mid rapidity with the ALICE experiment Lizardo Valencia Palomo Institut de Physique Nucléaire d Orsay (CNRS-IN2P3, Université Paris-Sud

More information

The ALICE Inner Tracking System Off-line Software

The ALICE Inner Tracking System Off-line Software The ALICE Inner Tracking System Off-line Software Roberto Barbera 1;2 for the ALICE Collaboration 1 Istituto Nazionale di Fisica Nucleare, Sezione di Catania Italy 2 Dipartimento di Fisica dell Università

More information

Particle Identification at LHCb. IML Workshop. April 10, 2018

Particle Identification at LHCb. IML Workshop. April 10, 2018 Particle Identification at LHCb Miriam Lucio, on behalf of the LHCb Collaboration IML Workshop April 10, 2018 M. Lucio Particle Identification at LHCb April 10, 2018 1 Outline 1 Introduction 2 Neutral

More information

Calibration of the CMS Electromagnetic Calorimeter with first LHC data

Calibration of the CMS Electromagnetic Calorimeter with first LHC data IPRD10 Siena, June 7-10 2010 1 Calibration of the CMS Electromagnetic Calorimeter with first LHC data Maria Margherita Obertino (Universita del Piemonte Orientale INFN Torino) On behalf of the CMS Collaboration

More information

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella

Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC. Michele Cascella Measurement of the associated production of direct photons and jets with the Atlas experiment at LHC Michele Cascella Graduate Course in Physics University of Pisa The School of Graduate Studies in Basic

More information

Roberta Arnaldi INFN, Torino for the ALICE Collaboration. Quarkonia in deconfined matter Acitrezza, September 28 th -30 th

Roberta Arnaldi INFN, Torino for the ALICE Collaboration. Quarkonia in deconfined matter Acitrezza, September 28 th -30 th Roberta Arnaldi INFN, Torino for the ALICE Collaboration Quarkonia in deconfined matter Acitrezza, September 28 th -30 th 2011 1 Physics motivations J/ψ measurement in PbPb collisions @ 2.76 TeV with ALICE

More information

Measurement of the baryon number transport with LHCb

Measurement of the baryon number transport with LHCb Measurement of the baryon number transport with LHCb Marco Adinolfi University of Bristol On behalf of the LHCb Collaboration 13 April 2011 / DIS 2011 Marco Adinolfi DIS 2011-13 April 2011 - Newport News

More information

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University Jet Physics at ALICE Oliver Busch University of Tsukuba Heidelberg University 1 2 Outline Introduction Results from pp collisions Identified jet fragmentation in pp Jets in heavy-ion collisions Jet shapes

More information

A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV

A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV A search for heavy and long-lived staus in the LHCb detector at s = 7 and 8 TeV Trần Minh Tâm minh-tam.tran@epfl.ch on behalf of the LHCb Collaboration LHCb-CONF-2014-001 EPFL, Laboratoire de Physique

More information

Some studies for ALICE

Some studies for ALICE Some studies for ALICE Motivations for a p-p programme in ALICE Special features of the ALICE detector Preliminary studies of Physics Performances of ALICE for the measurement of some global properties

More information

Open Heavy Flavour Measurement using Leptonic Final States at the ALICE Experiment

Open Heavy Flavour Measurement using Leptonic Final States at the ALICE Experiment Open Heavy Flavour Measurement using Leptonic Final States at the ALICE Experiment MinJung Kweon for the ALICE Collaboration Physikalisches Institut, Universität Heidelberg December 03 rd 20, December

More information

Open heavy-flavour production in pp, p Pb and Pb Pb collisions in ALICE

Open heavy-flavour production in pp, p Pb and Pb Pb collisions in ALICE Open heavy-flavour production in pp, p Pb and Pb Pb collisions in ALICE (INFN, Bologna) on behalf of the ALICE Collaboration Bormio Winter Meeting 26/01/2018 Why open heavy flavour in ALICE? Heavy-flavour

More information

Quarkonium results in pp collisions from ALICE

Quarkonium results in pp collisions from ALICE Quarkonium results in pp collisions from ALICE Giuseppe E Bruno Università di Bari and INFN Italy for the ALICE collaboration Outline: introduction measurements in pp at s=7 and 2.76 TeV Integrated and

More information

arxiv: v1 [nucl-ex] 29 Feb 2012

arxiv: v1 [nucl-ex] 29 Feb 2012 Measurement of the nuclear modification factor of electrons from heavy-flavour hadron decays in Pb Pb collisions at s NN =.76 ev with ALICE at the LHC arxiv:.65v [nucl-ex] 9 Feb Markus Fasel for the ALICE

More information

ALICE A Large Ion Collider Experiment

ALICE A Large Ion Collider Experiment ALICE A Large Ion Collider Experiment Purpose: study the physics of strongly interacting matter at extreme energy densities CERN LHC: Colliding Pb ions at E CM =5.5 A TeV, p-p, light ions collisions 84

More information

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017

Interaction of particles with matter - 2. Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Interaction of particles with matter - 2 Silvia Masciocchi, GSI and University of Heidelberg SS2017, Heidelberg May 3, 2017 Energy loss by ionization (by heavy particles) Interaction of electrons with

More information

Heavy-flavor production in pp and Pb Pb collisions at LHC with ALICE

Heavy-flavor production in pp and Pb Pb collisions at LHC with ALICE Heavy-flavor production in pp and Pb Pb collisions at LHC with ALICE Kai Schweda 1 on behalf of the ALICE Collaboration Physikalisches Institut der Universität Heidelberg, Philosophenweg 12, D-69120 Heidelberg,

More information

Prospective of gamma hadron correlation. study in CMS experiment

Prospective of gamma hadron correlation. study in CMS experiment Prospective of gamma hadron correlation. study in CMS experiment Yeonju Go (Korea University) for the CMS collaboration 5-6 Dec. 2014 HIM meeting Contents Physics Motivation Direct gamma-hadron correlation

More information

Jet Physics with ALICE

Jet Physics with ALICE Jet Physics with ALICE Oliver Busch for the ALICE collaboration Oliver Busch Tsukuba 2014 /03/13 1 Outline introduction results from pp jets in heavy-ion collisions results from Pb-Pb collisions jets in

More information

Photon and neutral meson production in pp and PbPb collisions at ALICE

Photon and neutral meson production in pp and PbPb collisions at ALICE Photon and neutral meson production in pp and PbPb collisions at ALICE Dieter Roehrich University of Bergen, Norway for the ALICE Collaboration Nuclear collisions at the LHC Photons as a probe for the

More information

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment

Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment Neutral particles energy spectra for 900 GeV and 7 TeV p-p collisions, measured by the LHCf experiment Raffaello D Alessandro 1 Department of Physics Università di Firenze and INFN-Firenze I-50019 Sesto

More information

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration

The HARP Experiment. G. Vidal-Sitjes (INFN-Ferrara) on behalf of the HARP Collaboration The HARP Experiment (INFN-Ferrara) on behalf of the HARP Collaboration New Views in Particle Physics Outline Goals for a HAdRon Production experiment Example: KEK PS Neutrino beam-line Detector layout

More information

Commissioning of the ATLAS LAr Calorimeter

Commissioning of the ATLAS LAr Calorimeter Commissioning of the ATLAS LAr Calorimeter S. Laplace (CNRS/LAPP) on behalf of the ATLAS Liquid Argon Calorimeter Group Outline: ATLAS in-situ commissioning steps Introduction to the ATLAS LAr Calorimeter

More information

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004

Results from HARP. Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004 Results from HARP Malcolm Ellis On behalf of the HARP collaboration DPF Meeting Riverside, August 2004 The HAdRon Production Experiment 124 physicists 24 institutes2 Physics Goals Input for precise calculation

More information

The ALICE the LHC. Measurement of Quarkonia as a Probe for a Quark Gluon Plasma

The ALICE the LHC. Measurement of Quarkonia as a Probe for a Quark Gluon Plasma The ALICE Experiment @ the LHC Measurement of Quarkonia as a Probe for a Quark Gluon Plasma Moritz Pohl Goethe Universität Frankfurt IAP Seminar 2. December 2011 Performance Studies for the Measurement

More information

Transition Radiation Detector for GlueX

Transition Radiation Detector for GlueX Transition Radiation Detector for GlueX Test with Argon S.Furletov, L. Pentchev Jefferson Lab GlueX Collaboration Meeting Feb 19, 2016 Outline Test setup in Hall D Monte Carlo simulation First results

More information

Perspectives for the measurement of beauty production via semileptonic decays in ALICE

Perspectives for the measurement of beauty production via semileptonic decays in ALICE Perspectives for the measurement of beauty production via semileptonic decays in ALICE Rosario Turrisi INFN Padova (Italy for the ALICE collaboration Contents Motivation: energy loss ALICE detector highlights

More information

Performance of ALICE silicon tracking detectors

Performance of ALICE silicon tracking detectors Performance of ALICE silicon tracking detectors Stefania Bufalino INFN Sezione di Torino On behalf of the ITS collaboration in the ALICE experiment at LHC The ALICE experiment Dedicated heavy ion experiment

More information

Central Meson Production in ALICE

Central Meson Production in ALICE Central Meson Production in ALICE ALICE detector Selection of central diffractive single/double gap events Central Meson production in pp-collisions at s = 7 TeV Analysis of f0(980) and f2(1270) production

More information

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF

Measurement of the Inclusive Isolated Prompt Photon Cross Section at CDF of the Inclusive Isolated Cross at IFAE Barcelona HEP Seminar University of Virginia Outline Theoretical introduction Prompt photon production The The Photon detection prediction The pqcd NLO prediction

More information

Relative branching ratio measurements of charmless B ± decays to three hadrons

Relative branching ratio measurements of charmless B ± decays to three hadrons LHCb-CONF-011-059 November 10, 011 Relative branching ratio measurements of charmless B ± decays to three hadrons The LHCb Collaboration 1 LHCb-CONF-011-059 10/11/011 Abstract With an integrated luminosity

More information

Measurement of Electrons from Beauty-Hadron Decays in p-pb Collision at snn = 5.02 TeV with ALICE at the LHC

Measurement of Electrons from Beauty-Hadron Decays in p-pb Collision at snn = 5.02 TeV with ALICE at the LHC Measurement of Electrons from Beauty-Hadron Decays in p-pb Collision at snn = 5.02 ev with ALICE at the LHC Minjung Kim, Inha University Advised by: Prof. MinJung Kweon, Prof. Jin-Hee Yoon Dec 5 th 2014,

More information

Heavy Ion Results from the ALICE Experiment

Heavy Ion Results from the ALICE Experiment Heavy Ion Results from the ALICE Experiment Johannes P. Wessels on behalf of the ALICE Collaboration Institute for uclear Physics University of Münster D-89 Münster, Germany and CER, CH- Geneva, Switzerland

More information

ALICE results on ultraperipheral Pb+Pb and p+pb collisions

ALICE results on ultraperipheral Pb+Pb and p+pb collisions ALICE results on ultraperipheral Pb+Pb and p+pb collisions Jaroslav Adam On behalf of the ALICE Collaboration Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague May

More information

Charged Particle Production in Proton-Proton Collisions at s = 13 TeV with ALICE at the LHC

Charged Particle Production in Proton-Proton Collisions at s = 13 TeV with ALICE at the LHC Charged Particle Production in Proton-Proton Collisions at s = 13 TeV with ALICE at the LHC Prabhakar Palni Institute of Particle Physics, Central China Normal University, Wuhan MPI@LHC 2015, ICTP, Trieste,

More information

Jet Results in pp and Pb-Pb Collisions at ALICE

Jet Results in pp and Pb-Pb Collisions at ALICE Jet Results in pp and Pb-Pb Collisions at ALICE Oliver Busch for the ALICE Collaboration Motivation Jet reconstruction in ALICE Jets in pp Jets in Pb-Pb Hadron triggered recoil jets Motivation Jets originate

More information

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration

QCD at CDF. Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration QCD at CDF Régis Lefèvre IFAE Barcelona On behalf of the CDF Collaboration Jet Inclusive Cross-Section Underlying event studies Jet Shapes Specific processes _ W+Jets, γ + γ, γ + b/c, b-jet / bb jet Diffraction

More information

Identified charged hadron production in pp, p Pb and Pb Pb collisions at LHC energies with ALICE

Identified charged hadron production in pp, p Pb and Pb Pb collisions at LHC energies with ALICE EPJ Web of Conferences 95, 04075 (2015) DOI: 10.1051/ epjconf/ 20159504075 C Owned by the authors, published by EDP Sciences, 2015 Identified charged hadron production in pp, p Pb and Pb Pb collisions

More information

PRODUCTION OF (ANTI-)(HYPER)NUCLEI IN Pb-Pb COLLISIONS MEASURED WITH ALICE AT THE LHC

PRODUCTION OF (ANTI-)(HYPER)NUCLEI IN Pb-Pb COLLISIONS MEASURED WITH ALICE AT THE LHC PRODUCTION OF (ANTI-)(HYPER)NUCLEI IN Pb-Pb COLLISIONS MEASURED WITH ALICE AT THE LHC Stefano Piano on behalf of ALICE Collaboration INFN sez. Trieste ALICE HYP2015: 12th Int. Conf. on Hypernuclear and

More information

Particle ID in ILD. Masakazu Kurata, KEK Calorimeter Workshop IAS program 01/19/2018

Particle ID in ILD. Masakazu Kurata, KEK Calorimeter Workshop IAS program 01/19/2018 Particle ID in ILD Masakazu Kurata, KEK Calorimeter Workshop IAS program 01/19/2018 1 Outline Introduction Requirement of the TPC for the ILD de/dx of ILD TPC Requirement of the Calorimeters for the ILD

More information

Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma

Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma Nuclear and Particle Physics 4b Physics of the Quark Gluon Plasma Goethe University Frankfurt GSI Helmholtzzentrum für Schwerionenforschung Lectures and Exercise Summer Semester 2016 1 Organization Language:

More information

EVENT BY EVENT PHYSICS IN ALICE

EVENT BY EVENT PHYSICS IN ALICE EVENT BY EVENT PHYSICS IN ALICE Panos Christakoglou NIKHEF - Utrecht University for the ALICE Collaboration 1 MOTIVATION The nature and the time evolution of the hot and dense system created in a heavy-ion

More information

Barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR

Barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR Barrel time-of-flight (TOF) detector for the PANDA experiment at FAIR K. Suzuki 1, D. Steinschaden 1, S. Zimmermann 1 2, N. Kratochwil 1, L. Gruber 3, C. Schwarz 4, H. Orth 4, L. Schmitt 5, K. Gtzen 4,

More information

ALICE status and first results

ALICE status and first results ALICE status and first results for the ALICE collaboration Paul Kuijer, NIKHEF Data taking February May 2010 Detector status and performance Physics analyses IPRD10-07/06/2010, ALICE status and first results,

More information

ATLAS E-M Calorimeter Resolution and Neural Network Based Particle Classification

ATLAS E-M Calorimeter Resolution and Neural Network Based Particle Classification ATLAS E-M Calorimeter Resolution and Neural Network Based Particle Classification Summer 2004 REU Igor Vaynman Undergraduate California Institute of Technology John Parsons Kamal Benslama Mentors Columbia

More information

arxiv: v3 [physics.ins-det] 15 Jul 2016

arxiv: v3 [physics.ins-det] 15 Jul 2016 Muon Identification with Muon Telescope Detector at the STAR Experiment T.C. Huang a, R. Ma b, B. Huang d, X. Huang c, L. Ruan b, T. Todoroki b, Z. Xu b, C. Yang e, S. Yang e, Q. Yang e, Y. Yang a,, W.

More information

Photo-production of vector mesons in 2.76 TeV ultra-peripheral Pb+Pb collisions at ALICE. Daniel Tapia Takaki. On behalf of the ALICE Collaboration

Photo-production of vector mesons in 2.76 TeV ultra-peripheral Pb+Pb collisions at ALICE. Daniel Tapia Takaki. On behalf of the ALICE Collaboration Photo-production of vector mesons in 2.76 TeV ultra-peripheral Pb+Pb collisions at ALICE On behalf of the ALICE Collaboration Rencontres du Viet Nam: 14th Workshop on Elastic and Diffractive Scattering

More information

Studies on the e + e - spectrum with the first data of the CMS experiment at the Large Hadron Collider

Studies on the e + e - spectrum with the first data of the CMS experiment at the Large Hadron Collider Studies on the e + e - spectrum with the first data of the CMS experiment at the Large Hadron Collider Dottorando: Alessandro Palma alessandro.palma@roma1.infn.it Relatori: Prof. E. Longo Dott. R. Paramatti

More information

D + analysis in pp collisions

D + analysis in pp collisions D + analysis in pp collisions Giacomo Ortona INFN Torino Junior s Day (CERN) - 2010-11-11 Junior s Day (CERN) - 2010-11-11 2010-11-11 1 / 22 Outline 1 Physics Motivation 2 Invariant Mass Analysis 3 Cuts

More information

Calibration of the BABAR CsI (Tl) calorimeter

Calibration of the BABAR CsI (Tl) calorimeter Journal of Physics: Conference Series Calibration of the BABAR CsI (Tl) calorimeter To cite this article: Jörg Marks and the Calorimeter Group of the BARBAR Collaboration 2009 J. Phys.: Conf. Ser. 60 02005

More information

Particle Identification of the LHCb detector

Particle Identification of the LHCb detector HCP 2005 Particle Identification of the LHCb detector Ann.Van.Lysebetten@cern.ch on behalf of the LHCb collaboration CERN 5th July 2005 The LHCb experiment : introduction precision measurements of CP violation

More information

ATLAS jet and missing energy reconstruction, calibration and performance in LHC Run-2

ATLAS jet and missing energy reconstruction, calibration and performance in LHC Run-2 Prepared for submission to JINS International Conference on Instrumentation for Colliding Beam Physics 7 February - March, 7 Budker Institute of Nuclear Physics, Novosibirsk, Russia ALAS jet and missing

More information

A Very High Momentum Particle Identification Detector for ALICE

A Very High Momentum Particle Identification Detector for ALICE A Very High Momentum Particle Identification Detector for ALICE Daniel Mayani for the VHMPID proto-collaboration 5th Workshop on High-pt Physics at LHC September 27th October 1st Collaboration members

More information

PoS(HCP2009)042. Status of the ALICE Experiment. Werner Riegler. For the ALICE Collaboration. CERN

PoS(HCP2009)042. Status of the ALICE Experiment. Werner Riegler. For the ALICE Collaboration. CERN Status of the ALICE Experiment CERN E-mail: Werner.Riegler@cern.ch For the ALICE Collaboration ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly interacting matter

More information

Transition Radiation Detector for GlueX

Transition Radiation Detector for GlueX Transition Radiation Detector for GlueX Feasibility studies S.Furletov, L. Pentchev Jefferson Lab GlueX Collaboration Meeting Oct 9, 2015 Outline Motivation Introduction to TR TRD for GlueX Radiator Detector

More information

Exotica production with ALICE

Exotica production with ALICE Exotica production with ALICE Benjamin Dönigus Institut für Kernphysik Goethe Universität Frankfurt for the ALICE Collaboration Content Motivation ALICE performance Anti-Alpha Deuteron Hypertriton Search

More information

Study of Dihadron Fragmentation Function Correlations in p-p collisions at 7 TeV. Derek Everett Dr. Claude Pruneau, Dr.

Study of Dihadron Fragmentation Function Correlations in p-p collisions at 7 TeV. Derek Everett Dr. Claude Pruneau, Dr. Study of Dihadron Fragmentation Function Correlations in p-p collisions at 7 TeV Derek Everett Dr. Claude Pruneau, Dr. Sidharth Prasad Outline Physics Motivation Definitions of Observables PYTHIA Monte

More information

The ALICE Experiment Introduction to relativistic heavy ion collisions

The ALICE Experiment Introduction to relativistic heavy ion collisions The ALICE Experiment Introduction to relativistic heavy ion collisions 13.06.2012 Introduction to relativistic heay ion collisions Anna Eichhorn 1 Facts about ALICE ALICE A Large Ion Collider Experiment

More information

CERN / LHCC Addendum to ALICE TDR 8 24 April 2002 A L I C E. Addendum. to the. Technical Design Report. of the. Time of Flight System (TOF)

CERN / LHCC Addendum to ALICE TDR 8 24 April 2002 A L I C E. Addendum. to the. Technical Design Report. of the. Time of Flight System (TOF) CERN / LHCC 22 6 Addendum to ALICE TDR 8 24 April 22 A L I C E Addendum to the Technical Design Report of the Time of Flight System (TOF) Cover design by Fabienne Marcastel Printed at CERN April 22 ISBN

More information

QCD Studies at LHC with the Atlas detector

QCD Studies at LHC with the Atlas detector QCD Studies at LHC with the Atlas detector Introduction Sebastian Eckweiler - University of Mainz (on behalf of the ATLAS Collaboration) Examples of QCD studies Minimum bias & underlying event Jet-physics

More information

Contents. What Are We Looking For? Predicted D

Contents. What Are We Looking For? Predicted D Contents D * e S DS e Souvik Das, Anders Ryd Cornell University What Are We Looking For? Predicted D * S D S e e - Rate Decay Modes of D S Used Fitting Soft Electrons Signal Samples Background Samples

More information

ATLAS NOTE. August 25, Electron Identification Studies for the Level 1 Trigger Upgrade. Abstract

ATLAS NOTE. August 25, Electron Identification Studies for the Level 1 Trigger Upgrade. Abstract Draft version 1.0 ATLAS NOTE August 25, 2012 1 Electron Identification Studies for the Level 1 Trigger Upgrade 2 3 4 L. Feremenga a, M.-A. Pleier b, F. Lanni b a University of Texas at Arlington b Brookhaven

More information

FYST17 Lecture 6 LHC Physics II

FYST17 Lecture 6 LHC Physics II FYST17 Lecture 6 LHC Physics II 1 Today, (tomorrow) & Next week The LHC accelerator Challenges The experiments (mainly CMS and ATLAS) Important variables Preparations Soft physics minímum bias, underlying

More information

Performance of the ALICE Muon Trigger system in Pb Pb collisions

Performance of the ALICE Muon Trigger system in Pb Pb collisions Performance of the ALICE Muon Trigger system in Pb Pb collisions, for the ALICE collaboration Dipartimento di Fisica Sperimentale dell Università di Torino and Sezione INFN di Torino, Turin, Italy Laboratoire

More information

HARP (Hadron Production) Experiment at CERN

HARP (Hadron Production) Experiment at CERN HARP (Hadron Production) Experiment at CERN 2nd Summer School On Particle Accelerators And Detectors 18-24 Sep 2006, Bodrum, Turkey Aysel Kayιş Topaksu Çukurova Üniversitesi, ADANA Outline The Physics

More information

Tracking at the LHC. Pippa Wells, CERN

Tracking at the LHC. Pippa Wells, CERN Tracking at the LHC Aims of central tracking at LHC Some basics influencing detector design Consequences for LHC tracker layout Measuring material before, during and after construction Pippa Wells, CERN

More information

Review of LHCb results on MPI, soft QCD and diffraction

Review of LHCb results on MPI, soft QCD and diffraction Review of LHCb results on MPI, soft QCD and diffraction Marcin Kucharczyk on behalf of LHCb collaboration HNI Krakow EDS Blois 2015, Borgo (Corse), 30.06.2015 Outline LHCb - general purpose forward experiment

More information

1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report)

1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report) 1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report) N. Terentiev* (Carnegie Mellon U./Fermilab) V. Di Benedetto, C. Gatto (INFN) A. Mazzacane, N. Mokhov, S. Striganov

More information

Heavy Flavours in ALICE

Heavy Flavours in ALICE Heavy Flavours in ALICE Yvonne Pachmayer, University of Heidelberg for the ALICE Collaboration Motivation Cold nuclear matter effects Results from p-pb collisions Open heavy flavour J/ψ, ψ(2s), ϒ(1S) Comparison

More information

Theory English (Official)

Theory English (Official) Q3-1 Large Hadron Collider (10 points) Please read the general instructions in the separate envelope before you start this problem. In this task, the physics of the particle accelerator LHC (Large Hadron

More information

Study of the MPD detector performance in pp collisions at NICA

Study of the MPD detector performance in pp collisions at NICA Study of the MPD detector performance in pp collisions at NICA Katherin Shtejer Díaz On behalf of the MPD Collaboration VBLHEP, JINR, Russia NICA Days 2017, November 6-10 Introduction Phase diagram of

More information

Heavy Ion Physics Program of CERN: Alice Setup at LHC.

Heavy Ion Physics Program of CERN: Alice Setup at LHC. Heavy Ion Physics Program of CERN: Alice Setup at LHC. Dr.Sc. Mais Suleymanov Department of Physics CIIT Islamabad First School on LHC Physics: ALICE week NCP Islamabad, 12-30 October,2009 1 1 ρc 7 10

More information

D mesons pp analyses: possible scenarios

D mesons pp analyses: possible scenarios D mesons pp analyses: possible scenarios Alessandro Grelli, Grazia Luparello 27/10/2015 D2H 1 Outline Introduction Expected statistical precision (13 TeV analyses) Comparison of 2010 pass4 (7 TeV) and

More information

Identified particles in pp and Pb-Pb collisions at LHC energies with the ALICE Detector

Identified particles in pp and Pb-Pb collisions at LHC energies with the ALICE Detector Identified particles in pp and Pb-Pb collisions at LHC energies with the ALICE Detector Michele Floris on behalf of ALICE Collaboration CERN, Geneva, Switzerland 26/05/2011 Quark Matter 2011 Outline What

More information

PERFORMANCE OF THE ATLAS MUON TRIGGER IN RUN 2

PERFORMANCE OF THE ATLAS MUON TRIGGER IN RUN 2 PERFORMANCE OF THE ATLAS MUON TRIGGER IN RUN 2 M.M. Morgenstern On behalf of the ATLAS collaboration Nikhef, National institute for subatomic physics, Amsterdam, The Netherlands E-mail: a marcus.matthias.morgenstern@cern.ch

More information

ATLAS: Status and First Results

ATLAS: Status and First Results ATLAS: Status and First Results, University of Sheffield, on behalf of the ATLAS Collaboration 1 Overview of the ATLAS detector Status of the experiment Performance and physics results in the first six

More information

Physics sources of noise in ring imaging Cherenkov detectors

Physics sources of noise in ring imaging Cherenkov detectors Nuclear Instruments and Methods in Physics Research A 433 (1999) 235}239 Physics sources of noise in ring imaging Cherenkov detectors For the ALICE HMPID Group Andreas Morsch EP Division, CERN, CH-1211

More information

Measurements of net-particle fluctuations in Pb-Pb collisions at ALICE

Measurements of net-particle fluctuations in Pb-Pb collisions at ALICE Measurements of net-particle fluctuations in Pb-Pb collisions at ALICE Alice Ohlson (Universität Heidelberg) for the ALICE Collaboration Observables of Hadronization and the QCD Phase Diagram in the Cross-over

More information

Recent highlights in the light-flavour sector from ALICE

Recent highlights in the light-flavour sector from ALICE Recent highlights in the light-flavour sector from ALICE Enrico Fragiacomo INFN - Trieste MIAMI 2016 Lago Mar Resort, Fort Lauderdale, Florida 14-19 December 2016 Ultra-Relativistic Heavy-Ion collisions

More information

V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron

V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron V0 cross-section measurement at LHCb. RIVET analysis module for Z boson decay to di-electron Outline of the presentation: 1. Introduction to LHCb physics and LHCb detector 2. RIVET plug-in for Z e+e- channel

More information