Preemptive scheduling. Disadvantages of preemptions WCET. Preemption indirect costs 19/10/2018. Cache related preemption delay

Size: px
Start display at page:

Download "Preemptive scheduling. Disadvantages of preemptions WCET. Preemption indirect costs 19/10/2018. Cache related preemption delay"

Transcription

1 19/1/18 Preemptve cedulng Mot o wor on cedulng a been ocued on ully preemptve ytem, becaue tey allow ger reponvene: Preemptve Non Preemptve Dadvantage o preempton However, eac preempton a a cot: ontext wtc cot: tme taen by te ceduler to upend te runnng ta, wtc te context, and dpatc te new ncomng ta. RPD: 1 ace related preempton delay delay ntroduced by g prorty ta tat evct cace lne contanng data ued n te uture: wrte B ace AB wrte A read A cace t read A cace m Extra tme needed or readng A, tu ncreang te WE o. WE a executng alone (or non preemptvely) on a ngle PU: a experencng preempton by ger prorty ta: Preempton ndrect cot Ppelne cot: tme to lu te ppelne wen a ta nterrupted and to rell t wen ta reumed. Bu cot: tme pent watng or te bu due to addtonal conlct wt I/O devce, caued by extra accee to te RAM or te extra cace me. WE NP NP = + RPD RPD context Bu wtc Ppelne 1

2 19/1/18 Preempton ndrect cot Preempton cot Addtonal preempton: te extra executon tme alo ncreae te number o preempton: WE may ncreae up to 5% n te preence o preempton (le ecency): Non Preemptve +5% Preemptve WE WE WE become alo more varable (le predctablty): A a conequence, WE etmaton or preemptve ta are ger le predctable (gly varable) WE dtrbuton Inluence on WE non-preemptve preemptve Advantage o NP cedulng It reduce context-wtc overead: mang WE maller and more predctable. It mple te acce to ared reource: No emapore are needed or crtcal ecton It reduce tac ze: a can are te ame tac, nce no more tan one ta can be n executon mn It allow acevng zero I/O Jtter: nng_tme tart_tme = (contant) Advantage o NP cedulng Dadvantage o NP cedulng In xed prorty ytem can mprove cedulablty: 4 U RM In general, NP cedulng reduce cedulablty ntroducng blocng delay n g prorty ta: NP-RM deadlne m deadlne m deadlne m

3 19/1/18 Dadvantage o NP cedulng Non preemptve anomale e utlzaton bound under non preemptve cedulng drop to zero: = double peed deadlne m = 1 1 U = + 1 Non-preemptve analy Analy o non-preemptve ytem more complex, becaue te larget repone tme may not occur n te rt ob ater te crtcal ntant. Non-preemptve analy Hence, te analy o mut be carred out or multple ob, untl all ta wt prorty P are completed Sel-pung penomenon Hg prorty ob actvated durng non-preemptve executon o lower prorty ta are pued aead and ntroduce ger delay n ubequent ob o te ame ta. NOE Analy can reduce to te rt ob o eac ta and only 1. te ta et eable under preemptve cedulng;. All deadlne are le tan or equal to perod. Repone tme analy (or preemptvely eable ta et wt D ) B I r = max{ r } B max{ } P P p() et o ta wt prorty ger tan P lp() et o ta wt prorty lower tan P Wort-cae Occuped tme: due to blocng B rom lp() ta and ntererence I rom p() ta. B I NOE: (or preemptvely eable ta et wt D ) r Hence x + 1 mut be ued ntead o x Repone tme analy = max{ r } R te end o I cannot concde wt te actvaton o a ger prorty ta, becaue t would ncreae I. B 1 1 = + 1

4 19/1/18 Repone tme analy rade-o oluton (or preemptvely eable ta et wt D ) () ( ) B B ( 1) 1 e ollowng oluton can be adopted to balance between te two extreme approace: Preempton reold Allow preempton only to ta wt g mportance Deerred Preempton Allow preempton only ater a gven tme nterval Stop wen ( ) ( 1) Fxed Preempton Pont Allow preempton only at gven pont n te ta code R = + 19 Preempton reold (P) Eac ta a two prorte: P nomnal prorty: ued to enqueue te ta n te ready queue and to preempt treold prorty: ued or ta executon ( P ) Fully preemptve 1 Uneable ta et 5 deadlne m treold nomnal A ta can be preempted by only P > Fully non preemptve 1 deadlne m But eable wt P Repone tme analy (P) P can preempt cannot preempt 1 cannot preempt NOE: e ame eable cedule obtaned by plttng n two non preemptve cunc: q 1 =,q = P can only be preempted by ta : P > P B ( 1) : P P : P can only be preempted by ta : P > 1 1 4

5 19/1/18 Deerred Preempton Interetng problem Eac ta can deer preempton up to q Gven a preemptvely eable ta et, nd te longet non-preemptve nterval Q or eac ta tat tll preerve cedulablty. Under EDF Barua - ERS 5 q Under Fx. Pr. Gang-Buttazzo, RSA 9 q B max{ q } P P Oten, g prorty ta ave Q =, meanng tat tey can execute ully non preemptvely. Blocng tolerance o compute Q, we need to nd te maxmum blocng tme tat can be tolerated by a ta, called blocng tolerance ( ): 1 B U lub ( ) U 1 lub( ) U A mple bound or Q e longet non preemptve nterval Q related wt te maxmum blocng tme tat can be tolerated by ger prorty ta. It mut be were Hence: B B max{ q } P P P P max{ q } A mple bound or Q A mple bound or Q = 1 = max{ q } P P max {q, q, q 4 } 1 max {q, q 4 } = 1 Q 1 = Q = mn{q -1, -1 } = q 4 = 1 q 1 = = q mn{ 1, } q 4 mn{ 1,, } 5

6 19/1/18 Ung Q Expermental Reult Once Q computed, t can be ued a ollow: Partton eac ta nto a et o NP regon no larger tan Q nertng utable preempton pont. Incapulate crtcal ecton nto NP regon, avodng complex concurrency control protocol. Avg. # o preempton x n = 16 Fully preemptve 7% preempton pont crtcal ecton 4 Ung Q Q Q U Fxed Preempton Pont (FPP) Eac ta dvded n m cun: q,1... q,m It can only be preempted between cun Example Let: 1 be ully non preemptve: q 11 = 1 = contng o NP cun: q 1 =1,q =, =4 be ully non preemptve: q 1 = = B max{ q P P max } Note tat: e wort cae repone tme o doe not occur n te rt ntance. e ntererence on larger tan B + 1. Repone me Analy (FPP) Repone me Analy (FPP) Mut be carry out up to te buy perod o eac ta Buy perod o Level- buy perod It te nterval n wc te proceor buy executng ta wt prorty ger tan or equal to P, ncludng blocng tme. Buy perod o Level- buy perod It can be computed a te ortet nterval tat ate: L Intal value can be: B L : P P () L B : P P up to ob N : N L 6

7 19/1/18 Repone me Analy (FPP) B ( 1) q R ( 1) [1, N ] R max R (-1) q q 1 NOE: : P P N () L ( 1) q Repone me Analy (FPP) or (=1 to n) { N L / () = 1 do { B ( 1) ( 1) q q R ( 1) ++ } wle ( N ) } return(feasible) (R > R ) ten R = R q 1 : P P (R >D ) ten return(unfeasible) Specal cae Fully non preemptve cedulng q B max{ } Deerred Preempton q P P B max{ Q } P P Fnal remar Preempton reold are eay to pecy, but t dcult to predct te number o preempton and were tey occur large preempton overead Deerred Preempton allow boundng te number o preempton but t dcult to predct were tey occur. Note tat te analy aume Fxed Preempton Pont allow more control on preempton and can be elected on purpoe (e.g., to mnmze overead, tac ze, and reduce WE). A large nal cun n reduce te ntererence rom pta (ence R ), but create more blocng to p-ta. q 7

Synchronization Protocols. Task Allocation Bin-Packing Heuristics: First-Fit Subtasks assigned in arbitrary order To allocate a new subtask T i,j

Synchronization Protocols. Task Allocation Bin-Packing Heuristics: First-Fit Subtasks assigned in arbitrary order To allocate a new subtask T i,j End-to-End Schedulng Framework 1. Tak allocaton: bnd tak to proceor 2. Synchronzaton protocol: enforce precedence contrant 3. Subdeadlne agnment 4. Schedulablty analy Tak Allocaton Bn-Packng eurtc: Frt-Ft

More information

Embedded Systems. 4. Aperiodic and Periodic Tasks

Embedded Systems. 4. Aperiodic and Periodic Tasks Embedded Systems 4. Aperodc and Perodc Tasks Lothar Thele 4-1 Contents of Course 1. Embedded Systems Introducton 2. Software Introducton 7. System Components 10. Models 3. Real-Tme Models 4. Perodc/Aperodc

More information

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling

Real-Time Systems. Multiprocessor scheduling. Multiprocessor scheduling. Multiprocessor scheduling Real-Tme Systems Multprocessor schedulng Specfcaton Implementaton Verfcaton Multprocessor schedulng -- -- Global schedulng How are tasks assgned to processors? Statc assgnment The processor(s) used for

More information

Limited Preemptive Scheduling for Real-Time Systems: a Survey

Limited Preemptive Scheduling for Real-Time Systems: a Survey Lmted Preemptve Schedulng for Real-Tme Systems: a Survey Gorgo C. Buttazzo, Fellow Member, IEEE, Marko Bertogna, Senor Member, IEEE, and Gang Yao Abstract The queston whether preemptve algorthms are better

More information

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS

CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS CHAPTER 9 LINEAR MOMENTUM, IMPULSE AND COLLISIONS 103 Phy 1 9.1 Lnear Momentum The prncple o energy conervaton can be ued to olve problem that are harder to olve jut ung Newton law. It ued to decrbe moton

More information

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder

Chapter 11. Supplemental Text Material. The method of steepest ascent can be derived as follows. Suppose that we have fit a firstorder S-. The Method of Steepet cent Chapter. Supplemental Text Materal The method of teepet acent can be derved a follow. Suppoe that we have ft a frtorder model y = β + β x and we wh to ue th model to determne

More information

Last Time. Priority-based scheduling. Schedulable utilization Rate monotonic rule: Keep utilization below 69% Static priorities Dynamic priorities

Last Time. Priority-based scheduling. Schedulable utilization Rate monotonic rule: Keep utilization below 69% Static priorities Dynamic priorities Last Tme Prorty-based schedulng Statc prortes Dynamc prortes Schedulable utlzaton Rate monotonc rule: Keep utlzaton below 69% Today Response tme analyss Blockng terms Prorty nverson And solutons Release

More information

Small signal analysis

Small signal analysis Small gnal analy. ntroducton Let u conder the crcut hown n Fg., where the nonlnear retor decrbed by the equaton g v havng graphcal repreentaton hown n Fg.. ( G (t G v(t v Fg. Fg. a D current ource wherea

More information

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD Numercal Analss or Engneers German Jordanan Unverst ORDINARY DIFFERENTIAL EQUATIONS We wll eplore several metods o solvng rst order ordnar derental equatons (ODEs and we wll sow ow tese metods can be appled

More information

Shuai Dong. Isaac Newton. Gottfried Leibniz

Shuai Dong. Isaac Newton. Gottfried Leibniz Computatonal pyscs Sua Dong Isaac Newton Gottred Lebnz Numercal calculus poston dervatve ntegral v velocty dervatve ntegral a acceleraton Numercal calculus Numercal derentaton Numercal ntegraton Roots

More information

Additional File 1 - Detailed explanation of the expression level CPD

Additional File 1 - Detailed explanation of the expression level CPD Addtonal Fle - Detaled explanaton of the expreon level CPD A mentoned n the man text, the man CPD for the uterng model cont of two ndvdual factor: P( level gen P( level gen P ( level gen 2 (.).. CPD factor

More information

Real-Time Operating Systems M. 11. Real-Time: Periodic Task Scheduling

Real-Time Operating Systems M. 11. Real-Time: Periodic Task Scheduling Real-Tme Operatng Systems M 11. Real-Tme: Perodc Task Schedulng Notce The course materal ncludes sldes downloaded from:! http://codex.cs.yale.edu/av/os-book/! and! (sldes by Slberschatz, Galvn, and Gagne,

More information

Critical sections. Using semaphores. Using semaphores. Using semaphores. How long is blocking time? 17/10/2016. Problems caused by mutual exclusion

Critical sections. Using semaphores. Using semaphores. Using semaphores. How long is blocking time? 17/10/2016. Problems caused by mutual exclusion rtcal sectons Problems caused by mutual excluson crtcal secton wat(s) x = ; y = 5; sgnal(s) wrte global memory buffer nt x; nt y; read wat(s) a = x+; b = y+; c = x+y; crtcal secton sgnal(s) Usng semaphores

More information

Problem Free Expansion of Ideal Gas

Problem Free Expansion of Ideal Gas Problem 4.3 Free Expanon o Ideal Ga In general: ds ds du P dv P dv NR V dn Snce U o deal ga ndependent on olume (du=), and N = cont n the proce: dv In a ere o nntemal ree expanon, entropy change by: S

More information

Portioned Static-Priority Scheduling on Multiprocessors

Portioned Static-Priority Scheduling on Multiprocessors Portoned Statc-Prorty Schedulng on Multproceor Shnpe Kato and Nobuyuk Yamaak School of Scence for Open and Envronmental Sytem Keo Unverty, Japan {hnpe,yamaak}@ny.c.keo.ac.jp Abtract Th paper propoe an

More information

1. The number of significant figures in the number is a. 4 b. 5 c. 6 d. 7

1. The number of significant figures in the number is a. 4 b. 5 c. 6 d. 7 Name: ID: Anwer Key There a heet o ueul ormulae and ome converon actor at the end. Crcle your anwer clearly. All problem are pont ecept a ew marked wth ther own core. Mamum core 100. There are a total

More information

Two Methods to Release a New Real-time Task

Two Methods to Release a New Real-time Task Two Methods to Release a New Real-tme Task Abstract Guangmng Qan 1, Xanghua Chen 2 College of Mathematcs and Computer Scence Hunan Normal Unversty Changsha, 410081, Chna qqyy@hunnu.edu.cn Gang Yao 3 Sebel

More information

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction

Specification -- Assumptions of the Simple Classical Linear Regression Model (CLRM) 1. Introduction ECONOMICS 35* -- NOTE ECON 35* -- NOTE Specfcaton -- Aumpton of the Smple Clacal Lnear Regreon Model (CLRM). Introducton CLRM tand for the Clacal Lnear Regreon Model. The CLRM alo known a the tandard lnear

More information

Scheduling Motivation

Scheduling Motivation 76 eal-me & Embedded Systems 7 Uwe. Zmmer - he Australan Natonal Unversty 78 Motvaton n eal-me Systems Concurrency may lead to non-determnsm. Non-determnsm may make t harder to predct the tmng behavour.

More information

Chapter.4 MAGNETIC CIRCUIT OF A D.C. MACHINE

Chapter.4 MAGNETIC CIRCUIT OF A D.C. MACHINE Chapter.4 MAGNETIC CIRCUIT OF A D.C. MACHINE The dfferent part of the dc machne manetc crcut / pole are yoke, pole, ar ap, armature teeth and armature core. Therefore, the ampere-turn /pole to etablh the

More information

Physics 111. CQ1: springs. con t. Aristocrat at a fixed angle. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468.

Physics 111. CQ1: springs. con t. Aristocrat at a fixed angle. Wednesday, 8-9 pm in NSC 118/119 Sunday, 6:30-8 pm in CCLIR 468. c Announcement day, ober 8, 004 Ch 8: Ch 10: Work done by orce at an angle Power Rotatonal Knematc angular dplacement angular velocty angular acceleraton Wedneday, 8-9 pm n NSC 118/119 Sunday, 6:30-8 pm

More information

Physics 120. Exam #1. April 15, 2011

Physics 120. Exam #1. April 15, 2011 Phyc 120 Exam #1 Aprl 15, 2011 Name Multple Choce /16 Problem #1 /28 Problem #2 /28 Problem #3 /28 Total /100 PartI:Multple Choce:Crclethebetanwertoeachqueton.Anyothermark wllnotbegvencredt.eachmultple

More information

Improved Worst-Case Response-Time Calculations by Upper-Bound Conditions

Improved Worst-Case Response-Time Calculations by Upper-Bound Conditions Improved Worst-Case Response-Tme Calculatons by Upper-Bound Condtons Vctor Pollex, Steffen Kollmann, Karsten Albers and Frank Slomka Ulm Unversty Insttute of Embedded Systems/Real-Tme Systems {frstname.lastname}@un-ulm.de

More information

Energy-Aware Fault Tolerance in Fixed-Priority Real-Time Embedded Systems*

Energy-Aware Fault Tolerance in Fixed-Priority Real-Time Embedded Systems* Energy-Aware Fault Tolerance n Fxed-Prorty Real-Tme Embedded Systems Yng Zang, Krsnendu Cakrabarty and Vsnu Swamnatan Department of Electrcal & Computer Engneerng Duke Unversty, Duram, NC 778, USA Abstract

More information

Clock-Driven Scheduling (in-depth) Cyclic Schedules: General Structure

Clock-Driven Scheduling (in-depth) Cyclic Schedules: General Structure CPSC-663: Real-me Systems n-depth Precompute statc schedule o-lne e.g. at desgn tme: can aord expensve algorthms. Idle tmes can be used or aperodc jobs. Possble mplementaton: able-drven Schedulng table

More information

Chapter 8: Fast Convolution. Keshab K. Parhi

Chapter 8: Fast Convolution. Keshab K. Parhi Cater 8: Fat Convoluton Keab K. Par Cater 8 Fat Convoluton Introducton Cook-Too Algort and Modfed Cook-Too Algort Wnograd Algort and Modfed Wnograd Algort Iterated Convoluton Cyclc Convoluton Degn of Fat

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Improvement on Warng Problem L An-Png Bejng, PR Chna apl@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th paper, we wll gve ome mprovement for Warng problem Keyword: Warng Problem,

More information

On Schedulability Bounds of Static Priority Schedulers

On Schedulability Bounds of Static Priority Schedulers On cedulablty Bounds of tatc Prorty cedulers Jana Wu, Jy-Carn Lu, and We Zao Department of Computer cence Texas A&M Unversty {anaw, lu, zao}@cstamuedu Wle utlzaton bound based scedulablty test s smple

More information

Energy-Efficient Scheduling Fixed-Priority tasks with Preemption Thresholds on Variable Voltage Processors

Energy-Efficient Scheduling Fixed-Priority tasks with Preemption Thresholds on Variable Voltage Processors Energy-Effcent Schedulng Fxed-Prorty tasks wth Preempton Thresholds on Varable Voltage Processors XaoChuan He, Yan Ja Insttute of Network Technology and Informaton Securty School of Computer Scence Natonal

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

This appendix derives Equations (16) and (17) from Equations (12) and (13).

This appendix derives Equations (16) and (17) from Equations (12) and (13). Capital growt pat of te neoclaical growt model Online Supporting Information Ti appendix derive Equation (6) and (7) from Equation () and (3). Equation () and (3) owed te evolution of pyical and uman capital

More information

Computer Control: Task Synchronisation in Dynamic Priority Scheduling

Computer Control: Task Synchronisation in Dynamic Priority Scheduling Computer Control: Task Synchronsaton n Dynamc Prorty Schedulng Sérgo Adrano Fernandes Lopes Department of Industral Electroncs Engneerng School Unversty of Mnho Campus de Azurém 4800 Gumarães - PORTUGAL

More information

Pythagorean triples. Leen Noordzij.

Pythagorean triples. Leen Noordzij. Pythagorean trple. Leen Noordz Dr.l.noordz@leennoordz.nl www.leennoordz.me Content A Roadmap for generatng Pythagorean Trple.... Pythagorean Trple.... 3 Dcuon Concluon.... 5 A Roadmap for generatng Pythagorean

More information

Not at Steady State! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Yes! Class 15. Is the following possible?

Not at Steady State! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Yes! Class 15. Is the following possible? Chapter 5-6 (where we are gong) Ideal gae and lqud (today) Dente Partal preure Non-deal gae (next tme) Eqn. of tate Reduced preure and temperature Compreblty chart (z) Vapor-lqud ytem (Ch. 6) Vapor preure

More information

Handling Overload (G. Buttazzo, Hard Real-Time Systems, Ch. 9) Causes for Overload

Handling Overload (G. Buttazzo, Hard Real-Time Systems, Ch. 9) Causes for Overload PS-663: Real-Te Systes Handlng Overloads Handlng Overload (G Buttazzo, Hard Real-Te Systes, h 9) auses for Overload Bad syste desgn eg poor estaton of worst-case executon tes Sultaneous arrval of unexpected

More information

No! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Survey Results. Class 15. Is the following possible?

No! Yes! Only if reactions occur! Yes! Ideal Gas, change in temperature or pressure. Survey Results. Class 15. Is the following possible? Survey Reult Chapter 5-6 (where we are gong) % of Student 45% 40% 35% 30% 25% 20% 15% 10% 5% 0% Hour Spent on ChE 273 1-2 3-4 5-6 7-8 9-10 11+ Hour/Week 2008 2009 2010 2011 2012 2013 2014 2015 2017 F17

More information

Solution Methods for Time-indexed MIP Models for Chemical Production Scheduling

Solution Methods for Time-indexed MIP Models for Chemical Production Scheduling Ian Davd Lockhart Bogle and Mchael Farweather (Edtor), Proceedng of the 22nd European Sympoum on Computer Aded Proce Engneerng, 17-2 June 212, London. 212 Elever B.V. All rght reerved. Soluton Method for

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

Minimizing Cache Overhead via Loaded Cache Blocks and Preemption Placement

Minimizing Cache Overhead via Loaded Cache Blocks and Preemption Placement Mnmzng Cache Overhead va Loaded Cache Blocks and Preempton Placement John Cavccho, Corey Tessler, and Nathan Fsher Wayne State Unversty {ba6444, corey.tessler, fshern}@wayne.edu Abstract Schedulablty analyss

More information

ELG3336: Op Amp-based Active Filters

ELG3336: Op Amp-based Active Filters ELG6: Op Amp-baed Actve Flter Advantage: educed ze and weght, and thereore paratc. Increaed relablty and mproved perormance. Smpler degn than or pave lter and can realze a wder range o uncton a well a

More information

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters

Chapter 6 The Effect of the GPS Systematic Errors on Deformation Parameters Chapter 6 The Effect of the GPS Sytematc Error on Deformaton Parameter 6.. General Beutler et al., (988) dd the frt comprehenve tudy on the GPS ytematc error. Baed on a geometrc approach and aumng a unform

More information

Overhead-Aware Compositional Analysis of Real-Time Systems

Overhead-Aware Compositional Analysis of Real-Time Systems Overhead-Aware ompostonal Analyss of Real-Tme Systems Lnh T.X. Phan, Meng Xu, Jaewoo Lee, nsup Lee, Oleg Sokolsky PRESE enter Department of omputer and nformaton Scence Unversty of Pennsylvana ompostonal

More information

Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference

Team. Outline. Statistics and Art: Sampling, Response Error, Mixed Models, Missing Data, and Inference Team Stattc and Art: Samplng, Repone Error, Mxed Model, Mng Data, and nference Ed Stanek Unverty of Maachuett- Amhert, USA 9/5/8 9/5/8 Outlne. Example: Doe-repone Model n Toxcology. ow to Predct Realzed

More information

Embedded Systems Development

Embedded Systems Development Embedded Systems Development Leture eal-tme Shedulng Dr. Danel Kästner AbsInt Angewandte Informat GmbH aestner@absnt.om Leture Evaluaton Please do leture evaluaton Deadlne tomorrow! http://www.lx.un-saarland.de

More information

E Tail Inequalities. E.1 Markov s Inequality. Non-Lecture E: Tail Inequalities

E Tail Inequalities. E.1 Markov s Inequality. Non-Lecture E: Tail Inequalities Algorthms Non-Lecture E: Tal Inequaltes If you hold a cat by the tal you learn thngs you cannot learn any other way. Mar Twan E Tal Inequaltes The smple recursve structure of sp lsts made t relatvely easy

More information

Harmonic oscillator approximation

Harmonic oscillator approximation armonc ocllator approxmaton armonc ocllator approxmaton Euaton to be olved We are fndng a mnmum of the functon under the retrcton where W P, P,..., P, Q, Q,..., Q P, P,..., P, Q, Q,..., Q lnwgner functon

More information

ONE-DIMENSIONAL COLLISIONS

ONE-DIMENSIONAL COLLISIONS Purpose Theory ONE-DIMENSIONAL COLLISIONS a. To very the law o conservaton o lnear momentum n one-dmensonal collsons. b. To study conservaton o energy and lnear momentum n both elastc and nelastc onedmensonal

More information

STOCHASTIC BEHAVIOUR OF COMMUNICATION SUBSYSTEM OF COMMUNICATION SATELLITE

STOCHASTIC BEHAVIOUR OF COMMUNICATION SUBSYSTEM OF COMMUNICATION SATELLITE IJS 4 () July Sharma & al ehavour of Subytem of ommuncaton Satellte SOHSI HVIOU O OMMUNIION SUSYSM O OMMUNIION SLLI SK Mttal eepankar Sharma & Neelam Sharma 3 S he author n th paper have dcued the tochatc

More information

Predictable Execution Model: Concept and Implementation

Predictable Execution Model: Concept and Implementation Predctable Executon Model: Concept and Implementaton Rodolfo Pellzzon, Emlano Bett, Stanley Bak, Gang Yao, John Crswell and Marco Caccamo Unversty of Illnos at Urbana-Champagn, IL, USA, {rpellz2, ebett,

More information

Improving the Quality of Control of Periodic Tasks Scheduled by FP with an Asynchronous Approach

Improving the Quality of Control of Periodic Tasks Scheduled by FP with an Asynchronous Approach Improvng the Qualty of Control of Perodc Tasks Scheduled by FP wth an Asynchronous Approach P. Meumeu Yoms, L. George, Y. Sorel, D. de Rauglaudre AOSTE Project-team INRIA Pars-Rocquencourt Le Chesnay,

More information

Computer Control Systems

Computer Control Systems Computer Control ytem In th chapter we preent the element and the bac concept of computercontrolled ytem. The dcretaton and choce of amplng frequency wll be frt examned, followed by a tudy of dcrete-tme

More information

The Schedulability Region of Two-Level Mixed-Criticality Systems based on EDF-VD

The Schedulability Region of Two-Level Mixed-Criticality Systems based on EDF-VD The Schedulablty Regon of Two-Level Mxed-Crtcalty Systems based on EDF-VD Drk Müller and Alejandro Masrur Department of Computer Scence TU Chemntz, Germany Abstract The algorthm Earlest Deadlne Frst wth

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

MULTIPLE REGRESSION ANALYSIS For the Case of Two Regressors

MULTIPLE REGRESSION ANALYSIS For the Case of Two Regressors MULTIPLE REGRESSION ANALYSIS For the Cae of Two Regreor In the followng note, leat-quare etmaton developed for multple regreon problem wth two eplanator varable, here called regreor (uch a n the Fat Food

More information

Variable Structure Control ~ Basics

Variable Structure Control ~ Basics Varable Structure Control ~ Bac Harry G. Kwatny Department of Mechancal Engneerng & Mechanc Drexel Unverty Outlne A prelmnary example VS ytem, ldng mode, reachng Bac of dcontnuou ytem Example: underea

More information

Improving the Sensitivity of Deadlines with a Specific Asynchronous Scenario for Harmonic Periodic Tasks scheduled by FP

Improving the Sensitivity of Deadlines with a Specific Asynchronous Scenario for Harmonic Periodic Tasks scheduled by FP Improvng the Senstvty of Deadlnes wth a Specfc Asynchronous Scenaro for Harmonc Perodc Tasks scheduled by FP P. Meumeu Yoms, Y. Sorel, D. de Rauglaudre AOSTE Project-team INRIA Pars-Rocquencourt Le Chesnay,

More information

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015 Introducton to Interfacal Segregaton Xaozhe Zhang 10/02/2015 Interfacal egregaton Segregaton n materal refer to the enrchment of a materal conttuent at a free urface or an nternal nterface of a materal.

More information

Improvements on Waring s Problem

Improvements on Waring s Problem Imrovement on Warng Problem L An-Png Bejng 85, PR Chna al@nacom Abtract By a new recurve algorthm for the auxlary equaton, n th aer, we wll gve ome mrovement for Warng roblem Keyword: Warng Problem, Hardy-Lttlewood

More information

Worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred preemption

Worst-case response time analysis of real-time tasks under fixed-priority scheduling with deferred preemption Real-Tme Syst (2009) 42: 63 119 DOI 10.1007/s11241-009-9071-z Worst-case response tme analyss of real-tme tasks under fxed-prorty schedulng wth deferred preempton Render J. Brl Johan J. Lukken Wm F.J.

More information

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11:

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11: 764: Numercal Analyss Topc : Soluton o Nonlnear Equatons Lectures 5-: UIN Malang Read Chapters 5 and 6 o the tetbook 764_Topc Lecture 5 Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton

More information

The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD

The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD e Karus-Kun-ucker condtons and dualt Nuno Vasconcelos ECE Department, UCSD Optmzaton goal: nd mamum or mnmum o a uncton Denton: gven unctons, g, 1,...,k and, 1,...m dened on some doman Ω R n mn w, w Ω

More information

Throughput and Delay Scaling of Cognitive Radio Networks with Heterogeneous Mobile Users

Throughput and Delay Scaling of Cognitive Radio Networks with Heterogeneous Mobile Users Trougput and Delay Scalng of Cogntve Rado Network wt Heterogeneou Moble Uer Pengyuan Du, Maro Gerla, and Xnbng Wang 2 Department of Computer Scence, Unverty of Calforna, Lo Angele, USA {pengyuandu, gerla}@c.ucla.edu

More information

Problem #1. Known: All required parameters. Schematic: Find: Depth of freezing as function of time. Strategy:

Problem #1. Known: All required parameters. Schematic: Find: Depth of freezing as function of time. Strategy: BEE 3500 013 Prelm Soluton Problem #1 Known: All requred parameter. Schematc: Fnd: Depth of freezng a functon of tme. Strategy: In thee mplfed analy for freezng tme, a wa done n cla for a lab geometry,

More information

m = 4 n = 9 W 1 N 1 x 1 R D 4 s x i

m = 4 n = 9 W 1 N 1 x 1 R D 4 s x i GREEDY WIRE-SIZING IS LINEAR TIME Chr C. N. Chu D. F. Wong cnchu@c.utexa.edu wong@c.utexa.edu Department of Computer Scence, Unverty of Texa at Autn, Autn, T 787. ABSTRACT In nterconnect optmzaton by wre-zng,

More information

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009

College of Computer & Information Science Fall 2009 Northeastern University 20 October 2009 College of Computer & Informaton Scence Fall 2009 Northeastern Unversty 20 October 2009 CS7880: Algorthmc Power Tools Scrbe: Jan Wen and Laura Poplawsk Lecture Outlne: Prmal-dual schema Network Desgn:

More information

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems )

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems ) Lecture Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton o Methods Analytcal Solutons Graphcal Methods Numercal Methods Bracketng Methods Open Methods Convergence Notatons Root Fndng

More information

Modeling motion with VPython Every program that models the motion of physical objects has two main parts:

Modeling motion with VPython Every program that models the motion of physical objects has two main parts: 1 Modelng moton wth VPython Eery program that models the moton o physcal objects has two man parts: 1. Beore the loop: The rst part o the program tells the computer to: a. Create numercal alues or constants

More information

Procrastination Scheduling for Fixed-Priority Tasks with Preemption Thresholds

Procrastination Scheduling for Fixed-Priority Tasks with Preemption Thresholds Procrastnaton Schedulng for Fxed-Prorty Tasks wth Preempton Thresholds XaoChuan He, Yan Ja Insttute of Network Technology and Informaton Securty School of Computer Scence Natonal Unversty of Defense Technology

More information

Valid Inequalities Based on Demand Propagation for Chemical Production Scheduling MIP Models

Valid Inequalities Based on Demand Propagation for Chemical Production Scheduling MIP Models Vald Inequalte Baed on Demand ropagaton for Chemcal roducton Schedulng MI Model Sara Velez, Arul Sundaramoorthy, And Chrto Maravela 1 Department of Chemcal and Bologcal Engneerng Unverty of Wconn Madon

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

Two-Layered Model of Blood Flow through Composite Stenosed Artery

Two-Layered Model of Blood Flow through Composite Stenosed Artery Avalable at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 93-9466 Vol. 4, Iue (December 9), pp. 343 354 (Prevouly, Vol. 4, No.) Applcaton Appled Mathematc: An Internatonal Journal (AAM) Two-ayered Model

More information

Scattering of two identical particles in the center-of. of-mass frame. (b)

Scattering of two identical particles in the center-of. of-mass frame. (b) Lecture # November 5 Scatterng of two dentcal partcle Relatvtc Quantum Mechanc: The Klen-Gordon equaton Interpretaton of the Klen-Gordon equaton The Drac equaton Drac repreentaton for the matrce α and

More information

Module 5. Cables and Arches. Version 2 CE IIT, Kharagpur

Module 5. Cables and Arches. Version 2 CE IIT, Kharagpur odule 5 Cable and Arche Veron CE IIT, Kharagpur Leon 33 Two-nged Arch Veron CE IIT, Kharagpur Intructonal Objectve: After readng th chapter the tudent wll be able to 1. Compute horzontal reacton n two-hnged

More information

Estimation of Finite Population Total under PPS Sampling in Presence of Extra Auxiliary Information

Estimation of Finite Population Total under PPS Sampling in Presence of Extra Auxiliary Information Internatonal Journal of Stattc and Analy. ISSN 2248-9959 Volume 6, Number 1 (2016), pp. 9-16 Reearch Inda Publcaton http://www.rpublcaton.com Etmaton of Fnte Populaton Total under PPS Samplng n Preence

More information

The Electric Potential Energy

The Electric Potential Energy Lecture 6 Chapter 28 Phyic II The Electric Potential Energy Coure webite: http://aculty.uml.edu/andriy_danylov/teaching/phyicii New Idea So ar, we ued vector quantitie: 1. Electric Force (F) Depreed! 2.

More information

Using non-preemptive regions and path modification to improve schedulability of real-time traffic over priority-based NoCs

Using non-preemptive regions and path modification to improve schedulability of real-time traffic over priority-based NoCs Real-Tme Syst (2017) 53:886 915 DOI 10.1007/s11241-017-9276-5 Usng non-preemptve regons and path modfcaton to mprove schedulablty of real-tme traffc over prorty-based NoCs Meng Lu 1 Matthas Becker 1 Mors

More information

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is.

a = f s,max /m = s g. 4. We first analyze the forces on the pig of mass m. The incline angle is. Chapter 6 1. The greatet deceleration (of magnitude a) i provided by the maximum friction force (Eq. 6-1, with = mg in thi cae). Uing ewton econd law, we find a = f,max /m = g. Eq. -16 then give the hortet

More information

MODELLING OF TRANSIENT HEAT TRANSPORT IN TWO-LAYERED CRYSTALLINE SOLID FILMS USING THE INTERVAL LATTICE BOLTZMANN METHOD

MODELLING OF TRANSIENT HEAT TRANSPORT IN TWO-LAYERED CRYSTALLINE SOLID FILMS USING THE INTERVAL LATTICE BOLTZMANN METHOD Journal o Appled Mathematc and Computatonal Mechanc 7, 6(4), 57-65 www.amcm.pcz.pl p-issn 99-9965 DOI:.75/jamcm.7.4.6 e-issn 353-588 MODELLING OF TRANSIENT HEAT TRANSPORT IN TWO-LAYERED CRYSTALLINE SOLID

More information

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund

Non-Preemptive and Limited Preemptive Scheduling. LS 12, TU Dortmund Non-Preemptive and Limited Preemptive Scheduling LS 12, TU Dortmund 09 May 2017 (LS 12, TU Dortmund) 1 / 31 Outline Non-Preemptive Scheduling A General View Exact Schedulability Test Pessimistic Schedulability

More information

NUMERICAL DIFFERENTIATION

NUMERICAL DIFFERENTIATION NUMERICAL DIFFERENTIATION 1 Introducton Dfferentaton s a method to compute the rate at whch a dependent output y changes wth respect to the change n the ndependent nput x. Ths rate of change s called the

More information

11 Tail Inequalities Markov s Inequality. Lecture 11: Tail Inequalities [Fa 13]

11 Tail Inequalities Markov s Inequality. Lecture 11: Tail Inequalities [Fa 13] Algorthms Lecture 11: Tal Inequaltes [Fa 13] If you hold a cat by the tal you learn thngs you cannot learn any other way. Mark Twan 11 Tal Inequaltes The smple recursve structure of skp lsts made t relatvely

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

Resource Sharing. CSCE 990: Real-Time Systems. Steve Goddard. Resources & Resource Access Control (Chapter 8 of Liu)

Resource Sharing. CSCE 990: Real-Time Systems. Steve Goddard. Resources & Resource Access Control (Chapter 8 of Liu) CSCE 990: Real-Tme Systems Resource Sharng Steve Goddard goddard@cse.unl.edu http://www.cse.unl.edu/~goddard/courses/realtmesystems Resources & Resource Access Control (Chapter 8 of Lu) Real-Tme Systems

More information

A High Throughput String Matching Architecture for Intrusion Detection and Prevention

A High Throughput String Matching Architecture for Intrusion Detection and Prevention A Hig Trougput tring Matcing Arcitecture for Intruion Detection and Prevention Lin Tan, Timoty erwood Appeared in ICA 25 Preented by: aile Kumar Dicuion Leader: Max Podleny Overview Overview of ID/IP ytem»

More information

S Mobile Communications Services and Systems

S Mobile Communications Services and Systems S-7.60 Mobile ommuniation Serie and Sytem Tutorial, Noember 9, 004. One a pyiit obert Wood did not top i ar beind te red trai ligt. He exue imel by uing oppler eet. Beaue o oppler it te red ligt ad turned

More information

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump

Main components of the above cycle are: 1) Boiler (steam generator) heat exchanger 2) Turbine generates work 3) Condenser heat exchanger 4) Pump Introducton to Terodynacs, Lecture -5 Pro. G. Cccarell (0 Applcaton o Control olue Energy Analyss Most terodynac devces consst o a seres o coponents operatng n a cycle, e.g., stea power plant Man coponents

More information

Velocity or 60 km/h. a labelled vector arrow, v 1

Velocity or 60 km/h. a labelled vector arrow, v 1 11.7 Velocity en you are outide and notice a brik wind blowing, or you are riding in a car at 60 km/, you are imply conidering te peed of motion a calar quantity. ometime, owever, direction i alo important

More information

TOPICS MULTIPLIERLESS FILTER DESIGN ELEMENTARY SCHOOL ALGORITHM MULTIPLICATION

TOPICS MULTIPLIERLESS FILTER DESIGN ELEMENTARY SCHOOL ALGORITHM MULTIPLICATION 1 2 MULTIPLIERLESS FILTER DESIGN Realzaton of flters wthout full-fledged multplers Some sldes based on support materal by W. Wolf for hs book Modern VLSI Desgn, 3 rd edton. Partly based on followng papers:

More information

Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight

Physics 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn in the following problems from Chapter 4 Knight Physcs 40 HW #4 Chapter 4 Key NEATNESS COUNTS! Solve but do not turn n the ollowng problems rom Chapter 4 Knght Conceptual Questons: 8, 0, ; 4.8. Anta s approachng ball and movng away rom where ball was

More information

Instantaneous Utilization Based Scheduling Algorithms for Real Time Systems Radhakrishna Naik 1, R.R.Manthalkar 2 Pune University 1, SGGS Nanded 2

Instantaneous Utilization Based Scheduling Algorithms for Real Time Systems Radhakrishna Naik 1, R.R.Manthalkar 2 Pune University 1, SGGS Nanded 2 Radhakrshna Nak et al, / (IJSIT) Internatonal Journal of omputer Scence and Informaton Technologes, Vol. (),, 654-66 Instantaneous tlzaton Based Schedulng Algorthms for Real Tme Systems Radhakrshna Nak,

More information

A New Recursive Method for Solving State Equations Using Taylor Series

A New Recursive Method for Solving State Equations Using Taylor Series I J E E E C Internatonal Journal of Electrcal, Electroncs ISSN No. (Onlne) : 77-66 and Computer Engneerng 1(): -7(01) Specal Edton for Best Papers of Mcael Faraday IET Inda Summt-01, MFIIS-1 A New Recursve

More information

Numerical Investigation of Power Tunability in Two-Section QD Superluminescent Diodes

Numerical Investigation of Power Tunability in Two-Section QD Superluminescent Diodes Numerca Investgaton of Power Tunabty n Two-Secton QD Superumnescent Dodes Matta Rossett Paoo Bardea Ivo Montrosset POLITECNICO DI TORINO DELEN Summary 1. A smpfed mode for QD Super Lumnescent Dodes (SLD)

More information

We name Functions f (x) or g(x) etc.

We name Functions f (x) or g(x) etc. Section 2 1B: Function Notation Bot of te equations y 2x +1 and y 3x 2 are functions. It is common to ave two or more functions in terms of x in te same problem. If I ask you wat is te value for y if x

More information

Two Approaches to Proving. Goldbach s Conjecture

Two Approaches to Proving. Goldbach s Conjecture Two Approache to Provng Goldbach Conecture By Bernard Farley Adved By Charle Parry May 3 rd 5 A Bref Introducton to Goldbach Conecture In 74 Goldbach made h mot famou contrbuton n mathematc wth the conecture

More information

This appendix presents the derivations and proofs omitted from the main text.

This appendix presents the derivations and proofs omitted from the main text. Onlne Appendx A Appendx: Omtted Dervaton and Proof Th appendx preent the dervaton and proof omtted from the man text A Omtted dervaton n Secton Mot of the analy provded n the man text Here, we formally

More information

Online story scheduling in web advertising

Online story scheduling in web advertising Onlne tory chedulng n web advertng Anrban Dagupta Arpta Ghoh Hamd Nazerzadeh Prabhakar Raghavan Abtract We tudy an onlne job chedulng problem motvated by toryboardng n web advertng, where an adverter derve

More information

Degrees of Freedom. Spherical (ball & socket) 3 (3 rotation) Two-Angle (universal) 2 (2 rotation)

Degrees of Freedom. Spherical (ball & socket) 3 (3 rotation) Two-Angle (universal) 2 (2 rotation) ME 6590 Multbody Dynamcs Connectn Jonts Part I o Connectn jonts constran te relatve moton between adjonn bodes n a multbody system. Jonts rane rom allown no relatve moton (a rd jont) to allown all motons

More information

Population element: 1 2 N. 1.1 Sampling with Replacement: Hansen-Hurwitz Estimator(HH)

Population element: 1 2 N. 1.1 Sampling with Replacement: Hansen-Hurwitz Estimator(HH) Chapter 1 Samplng wth Unequal Probabltes Notaton: Populaton element: 1 2 N varable of nterest Y : y1 y2 y N Let s be a sample of elements drawn by a gven samplng method. In other words, s s a subset of

More information

Design By Emulation (Indirect Method)

Design By Emulation (Indirect Method) Deign By Emulation (Indirect Method he baic trategy here i, that Given a continuou tranfer function, it i required to find the bet dicrete equivalent uch that the ignal produced by paing an input ignal

More information

SE Story Shear Frame. Final Project. 2 Story Bending Beam. m 2. u 2. m 1. u 1. m 3. u 3 L 3. Given: L 1 L 2. EI ω 1 ω 2 Solve for m 2.

SE Story Shear Frame. Final Project. 2 Story Bending Beam. m 2. u 2. m 1. u 1. m 3. u 3 L 3. Given: L 1 L 2. EI ω 1 ω 2 Solve for m 2. SE 8 Fnal Project Story Sear Frame Gven: EI ω ω Solve for Story Bendng Beam Gven: EI ω ω 3 Story Sear Frame Gven: L 3 EI ω ω ω 3 3 m 3 L 3 Solve for Solve for m 3 3 4 3 Story Bendng Beam Part : Determnng

More information