The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD

Size: px
Start display at page:

Download "The Karush-Kuhn-Tucker. Nuno Vasconcelos ECE Department, UCSD"

Transcription

1 e Karus-Kun-ucker condtons and dualt Nuno Vasconcelos ECE Department, UCSD

2 Optmzaton goal: nd mamum or mnmum o a uncton Denton: gven unctons, g, 1,...,k and, 1,...m dened on some doman Ω R n mn w, w Ω subect to g w w,, or compactness we wrte gw nstead o g w,. Smlarl w we derved necessar and sucent or local optmalt n te absence o constrants equalt constrants onl

3 Mnma condtons unconstraned let w be contnuousl derentable w s a local mnmum o w and onl w s a local mnmum o w and onl as zero gradent at w w and te Hessan o at w s postve dente w n t d d w d R were d d w d R, 1 n M L n n L

4 Mama condtons unconstraned let w be contnuousl derentable w s a local mamum o w and onl w s a local mamum o w and onl as zero gradent at w w and te Hessan o at w s negatve dente w n t d d w d R were d d w d R, 1 n M L n n L

5 Constraned optmzaton wt equalt constrants onl eorem: consder te problem arg mn subect to were te constrant gradents are lnearl ndependent. en s a soluton and onl tere ets a unque vector λ, suc tat m λ 1 + λ + m 1 λ, s.t. 5

6 Alternatve ormulaton state te condtons troug te Lagrangan m t t b tl tt, 1 L m + λ λ te teorem can be compactl wrtten as, L λ,, L L L st L, λ λ λ λ λ te entres o λ are reerred to as Lagrange multplers,, L s.t. λ 6

7 Geometrc nterpretaton dervatve o along d s lm α w + αd α w d w d. w.cos d, w ts means tatt greatest ncrease wen d no ncrease wen d snce tere s no ncrease wen d s tangent to so-contour k te gradent s perpendcular to te tangent o te so-contour allows geometrc nterpretaton o te Lagrangan g condtons no ncrease 7

8 Lagrangan optmzaton geometrc nterpretaton: snce s a so-contour o, s perpendcular to te so-contour sas tat span{ }.e. to tangent space o te constrant surace ntutve drecton o largest ncrease o s to constrant surace te gradent s zero along te constrant no wa to gve an nntesmal gradent step, wtout endng up volatng t t s mpossble to ncrease and stll sats te constrant span{} tg plane 8

9 Eample consder te problem mn 1 + subect to to te so-contours o 1 + k

10 Eample consder te problem mn 1 + subect to 1 + to te so-contour o

11 Eample recall tat dervatve along d s w + +α d w lm d. w.cos d, w α α crtcal pont crtcal pont - movng along te tangent s descent as long as cos tg, < -.e. π/ < angle,tg < 3π/ - can alwas nd suc d unless tg - crtcal pont wen - to nd wc tpe we need nd order as beore 11

12 Alternatve vew consder te tangent space to te so-contour ts s te subspace o rst order easble varatons { } V, space o or wc + satses te constrant up to rst order appromaton V easble varatons 1

13 Feasble varatons multplng our rst Lagrangan condton b + λ t ollows tat m 1, V ts s a generalzaton o n unconstraned case mples tat V and tereore note: Hessan constrant onl dened or n V makes sense: we cannot move anwere else, does not reall matter wat Hessan s outsde V 13

14 Inequalt constrants wat appens wen we ntroduce nequaltes? arg mn subect to, g we start b denng te set o actve nequalt constrants { g } A or eample 1, 1 +, ,

15 Actve nequalt constrants we ave a mnmum at, <, <, and 5 < arenactve - 5 s actve -5 note tat a local mnmum or ts problem would stll be a local mnmum we removed te nnactve constrants nnactve constrants do not do antng actve constrants are equaltes nnactve actve 15

16 Constraned optmzaton ence, te problem arg mn subect to, g s equvalent to arg mn subect to, g, A ts s a problem wt equalt constrants, tere must be a λ and µ, A, suc tat + m 1 λ + µ g A wc does not cange we assgn a zero Lagrange g multpler to te nnactve constrants 16

17 Constraned optmzaton lettng µ, A, + m 1 r λ + µ g 1 tere s one nal constrant t wc s µ, or all due to te ollowng pcture g as to pont nward oterwse we would ave a mamum o g as to pont outward oterwse g would ncrease nward,.e. g would be non-negatve g nsde wen we put togeter all tese constrants we obtan te amed Karus-Kun-ucker Kun KK condtons 17

18 e KK condtons eorem: or te problem, arg mn g to subect s a local mnmum and onl tere est λ and µ suc tat 1 1 g r m + + µ λ,, v A r m µ µ { },,, 1 1 A g V were V g v r m + + and µ λ 18 { },, A g V were and

19 Geometrc nterpretaton Let s orget te equalt constrants or now later we wll see tat te do not cange muc consder te problem arg mn subect to g rom te KK condtons, te soluton satses µ [ L, µ ], µ, A wt L, µ r + 1 µ g 19

20 Geometrc nterpretaton wc s equvalent to [ ] g [ L, µ ] mn + µ L mn µ wt we tus ave µ, and µ, A + µ g L + µ g L or w z - b w z - b were 1 b L, w, z µ g plane n z-space normal w, bas b L s n al-space ponted to b w

21 Geometrc Interpretaton rom b we ave L, 1 w, z µ g snce µ, w s alwas n te rst quadrant snce rst coordnate s 1, w s never parallel to g as ts can be vsualzed n z-space space as also, two cases: 1 g w z - b L te -ntercept s,l, s te mnmum o L w admssble planes w R g,, g R r-1 1

22 Geometrc Interpretaton b L, 1 w, µ case g< z g te constrants are nnactve µ w 1, plane s orzontal w z - b L te -ntercept s,l, s te mnmum o L.e. ts s alwas te case n general m o actve and nnactve but beavor s ts w g, g< R, g R r-1

23 In summar L mn wt µ [ g ] [ L, µ ] mn + µ s equvalent to, and µ, A w z - b 1 b L, w w, z z - b µ g can be vsualzed as g R g< w R easble g,, w g,, g R r-1 g< g R r-1 3

24 Dualt [ g ] [ L, µ ] mn + L mn µ wt µ, and µ, A does not appear terrbl dcult once I know µ ow I do nd ts value? consder ts uncton or an µ [ L, µ ] mn[ g ] q µ mn + µ wt µ ts s equvalent to w z - b b q µ, w w z - b 1, z µ g te pcture s te same wt L replaced b qµ 4

25 Dualt notng tat perplane w,b stll as to support easble set and we stll ave µ> ts leads to w g R g< w easble w R g,, w,,qµ g R r-1 g< g R r-1,qµ 5

26 Dualt note tat qµ L we keep ncreasng qµ we wll get qµ L we cannot go beond L would move to g > ts s eactl te denton o te dual problem ma q µ µ note: [ L, µ ] mn[ g ] q µ mn + µ wt µ qµ ma go to - or some µ, wc means tat tere s no Lagrange multpler plane would be vertcal. ts s avoded b ntroducng te constrant { µ µ > } µ D q D q 6

27 Dualt we tereore ave a two step recpe to nd te optmal soluton 1.or an µ, solve [ L, µ ] mn[ µ g ] q µ mn +.ten solve ma q µ µ, µ Dq one o te reasons w ts s nterestng s tat te second problem turns out to be qute manageable 7

28 Dualt eorem: D q s a conve set and q s concave on D q Proo: or an, µ, µ and α [,1] L + 1 α µ + αµ + 1 α µ, αµ g + αµ g + 1 α µ g [ µ g ] 1 α [ µ g ] α α L, µ + 1 α L, µ and takng mn on bot sdes mn L we ave, αµ + 1 α µ mn[ αl, µ + 1 α L, µ ] α mn L, µ + 1 α mn L, µ αµ + 1 α µ αq µ + 1 α q µ q 8

29 Dualt we ave αµ + 1 α µ αq µ + 1 α q µ q rom wc two conclusons ollow µ D q and µ D q qµ>-, qµ>- αµ+ 1-αµ D q Hence D q s sconve b denton o concavt mples tat q s concave over D q ts s a ver appealng result, snce conve optmzaton problems are among te easest to solve note tat te dual s alwas concave, rrespectve o te prmal problem te ollowng result onl proves wat we alread ave nerred rom te grapcal nterpretaton 9

30 Dualt eorem: weak dualt t s alwas true tat Proo: q or an µ, and wt g, q µ mn L z, µ + µ g z snce µ g. Hence q ma q µ µ and snce ts olds or an q mn, g 3

31 Dualt gap q we sa tat tere s no dualt gap. Oterwse tere s a dualt gap. te DG constrans te estence o Lagrange multplers eorem: tere s no dualt gap, te set o Lagrange multplers s te set o optmal dual solutons tere s a dualt gap, tere are no Lagrange multplers l Proo: b denton, µ µ s a Lagrange multpler and onl q µ q wc, rom te prevous teorem, olds and onl q,.e. tere s no dualt gap 31

32 Dualt gap note tat tere are stuatons n wc te dual problem as a soluton, but or wc tere s no Lagrange g multpler. or eample: ts s a vald dual problem owever te constrant µ g s not satsed and R, q g < g R r-1 n summar, dualt s nterestng onl wen tere s no dualt gap,q 3

33 33

Optimization. Nuno Vasconcelos ECE Department, UCSD

Optimization. Nuno Vasconcelos ECE Department, UCSD Optmzaton Nuno Vasconcelos ECE Department, UCSD Optmzaton many engneerng problems bol on to optmzaton goal: n mamum or mnmum o a uncton Denton: gven unctons, g,,...,k an h,,...m ene on some oman Ω R n

More information

Linear discriminants. Nuno Vasconcelos ECE Department, UCSD

Linear discriminants. Nuno Vasconcelos ECE Department, UCSD Lnear dscrmnants Nuno Vasconcelos ECE Department UCSD Classfcaton a classfcaton problem as to tpes of varables e.g. X - vector of observatons features n te orld Y - state class of te orld X R 2 fever blood

More information

Shuai Dong. Isaac Newton. Gottfried Leibniz

Shuai Dong. Isaac Newton. Gottfried Leibniz Computatonal pyscs Sua Dong Isaac Newton Gottred Lebnz Numercal calculus poston dervatve ntegral v velocty dervatve ntegral a acceleraton Numercal calculus Numercal derentaton Numercal ntegraton Roots

More information

Mathematical Economics MEMF e ME. Filomena Garcia. Topic 2 Calculus

Mathematical Economics MEMF e ME. Filomena Garcia. Topic 2 Calculus Mathematcal Economcs MEMF e ME Flomena Garca Topc 2 Calculus Mathematcal Economcs - www.seg.utl.pt/~garca/economa_matematca . Unvarate Calculus Calculus Functons : X Y y ( gves or each element X one element

More information

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming

OPTIMISATION. Introduction Single Variable Unconstrained Optimisation Multivariable Unconstrained Optimisation Linear Programming OPTIMIATION Introducton ngle Varable Unconstraned Optmsaton Multvarable Unconstraned Optmsaton Lnear Programmng Chapter Optmsaton /. Introducton In an engneerng analss, sometmes etremtes, ether mnmum or

More information

PHYS 705: Classical Mechanics. Calculus of Variations II

PHYS 705: Classical Mechanics. Calculus of Variations II 1 PHYS 705: Classcal Mechancs Calculus of Varatons II 2 Calculus of Varatons: Generalzaton (no constrant yet) Suppose now that F depends on several dependent varables : We need to fnd such that has a statonary

More information

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD

ORDINARY DIFFERENTIAL EQUATIONS EULER S METHOD Numercal Analss or Engneers German Jordanan Unverst ORDINARY DIFFERENTIAL EQUATIONS We wll eplore several metods o solvng rst order ordnar derental equatons (ODEs and we wll sow ow tese metods can be appled

More information

, rst we solve te PDE's L ad L ad n g g (x) = ; = ; ; ; n () (x) = () Ten, we nd te uncton (x), te lnearzng eedbac and coordnates transormaton are gve

, rst we solve te PDE's L ad L ad n g g (x) = ; = ; ; ; n () (x) = () Ten, we nd te uncton (x), te lnearzng eedbac and coordnates transormaton are gve Freedom n Coordnates Transormaton or Exact Lnearzaton and ts Applcaton to Transent Beavor Improvement Kenj Fujmoto and Tosaru Suge Dvson o Appled Systems Scence, Kyoto Unversty, Uj, Kyoto, Japan suge@robotuassyoto-uacjp

More information

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution.

Solutions HW #2. minimize. Ax = b. Give the dual problem, and make the implicit equality constraints explicit. Solution. Solutons HW #2 Dual of general LP. Fnd the dual functon of the LP mnmze subject to c T x Gx h Ax = b. Gve the dual problem, and make the mplct equalty constrants explct. Soluton. 1. The Lagrangan s L(x,

More information

Finite Difference Method

Finite Difference Method 7/0/07 Instructor r. Ramond Rump (9) 747 698 rcrump@utep.edu EE 337 Computatonal Electromagnetcs (CEM) Lecture #0 Fnte erence Method Lecture 0 These notes ma contan coprghted materal obtaned under ar use

More information

COS 521: Advanced Algorithms Game Theory and Linear Programming

COS 521: Advanced Algorithms Game Theory and Linear Programming COS 521: Advanced Algorthms Game Theory and Lnear Programmng Moses Charkar February 27, 2013 In these notes, we ntroduce some basc concepts n game theory and lnear programmng (LP). We show a connecton

More information

On a nonlinear compactness lemma in L p (0, T ; B).

On a nonlinear compactness lemma in L p (0, T ; B). On a nonlnear compactness lemma n L p (, T ; B). Emmanuel Matre Laboratore de Matématques et Applcatons Unversté de Haute-Alsace 4, rue des Frères Lumère 6893 Mulouse E.Matre@ua.fr 3t February 22 Abstract

More information

Lagrange Multipliers Kernel Trick

Lagrange Multipliers Kernel Trick Lagrange Multplers Kernel Trck Ncholas Ruozz Unversty of Texas at Dallas Based roughly on the sldes of Davd Sontag General Optmzaton A mathematcal detour, we ll come back to SVMs soon! subject to: f x

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Maximal Margin Classifier

Maximal Margin Classifier CS81B/Stat41B: Advanced Topcs n Learnng & Decson Makng Mamal Margn Classfer Lecturer: Mchael Jordan Scrbes: Jana van Greunen Corrected verson - /1/004 1 References/Recommended Readng 1.1 Webstes www.kernel-machnes.org

More information

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg

princeton univ. F 17 cos 521: Advanced Algorithm Design Lecture 7: LP Duality Lecturer: Matt Weinberg prnceton unv. F 17 cos 521: Advanced Algorthm Desgn Lecture 7: LP Dualty Lecturer: Matt Wenberg Scrbe: LP Dualty s an extremely useful tool for analyzng structural propertes of lnear programs. Whle there

More information

Physics 2A Chapter 3 HW Solutions

Physics 2A Chapter 3 HW Solutions Phscs A Chapter 3 HW Solutons Chapter 3 Conceptual Queston: 4, 6, 8, Problems: 5,, 8, 7, 3, 44, 46, 69, 70, 73 Q3.4. Reason: (a) C = A+ B onl A and B are n the same drecton. Sze does not matter. (b) C

More information

MMA and GCMMA two methods for nonlinear optimization

MMA and GCMMA two methods for nonlinear optimization MMA and GCMMA two methods for nonlnear optmzaton Krster Svanberg Optmzaton and Systems Theory, KTH, Stockholm, Sweden. krlle@math.kth.se Ths note descrbes the algorthms used n the author s 2007 mplementatons

More information

Solutions to exam in SF1811 Optimization, Jan 14, 2015

Solutions to exam in SF1811 Optimization, Jan 14, 2015 Solutons to exam n SF8 Optmzaton, Jan 4, 25 3 3 O------O -4 \ / \ / The network: \/ where all lnks go from left to rght. /\ / \ / \ 6 O------O -5 2 4.(a) Let x = ( x 3, x 4, x 23, x 24 ) T, where the varable

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen

Complex Variables. Chapter 18 Integration in the Complex Plane. March 12, 2013 Lecturer: Shih-Yuan Chen omplex Varables hapter 8 Integraton n the omplex Plane March, Lecturer: Shh-Yuan hen Except where otherwse noted, content s lcensed under a BY-N-SA. TW Lcense. ontents ontour ntegrals auchy-goursat theorem

More information

A Simple Research of Divisor Graphs

A Simple Research of Divisor Graphs The 29th Workshop on Combnatoral Mathematcs and Computaton Theory A Smple Research o Dvsor Graphs Yu-png Tsao General Educaton Center Chna Unversty o Technology Tape Tawan yp-tsao@cuteedutw Tape Tawan

More information

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier

EE 330 Lecture 24. Small Signal Analysis Small Signal Analysis of BJT Amplifier EE 0 Lecture 4 Small Sgnal Analss Small Sgnal Analss o BJT Ampler Eam Frda March 9 Eam Frda Aprl Revew Sesson or Eam : 6:00 p.m. on Thursda March 8 n Room Sweene 6 Revew rom Last Lecture Comparson o Gans

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

On Pfaff s solution of the Pfaff problem

On Pfaff s solution of the Pfaff problem Zur Pfaff scen Lösung des Pfaff scen Probles Mat. Ann. 7 (880) 53-530. On Pfaff s soluton of te Pfaff proble By A. MAYER n Lepzg Translated by D. H. Delpenc Te way tat Pfaff adopted for te ntegraton of

More information

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION

CHAPTER-5 INFORMATION MEASURE OF FUZZY MATRIX AND FUZZY BINARY RELATION CAPTER- INFORMATION MEASURE OF FUZZY MATRI AN FUZZY BINARY RELATION Introducton The basc concept of the fuzz matr theor s ver smple and can be appled to socal and natural stuatons A branch of fuzz matr

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

CENTROID (AĞIRLIK MERKEZİ )

CENTROID (AĞIRLIK MERKEZİ ) CENTOD (ĞLK MEKEZİ ) centrod s a geometrcal concept arsng from parallel forces. Tus, onl parallel forces possess a centrod. Centrod s tougt of as te pont were te wole wegt of a pscal od or sstem of partcles

More information

5 The Laplace Equation in a convex polygon

5 The Laplace Equation in a convex polygon 5 Te Laplace Equaton n a convex polygon Te most mportant ellptc PDEs are te Laplace, te modfed Helmoltz and te Helmoltz equatons. Te Laplace equaton s u xx + u yy =. (5.) Te real and magnary parts of an

More information

Problem Set 4: Sketch of Solutions

Problem Set 4: Sketch of Solutions Problem Set 4: Sketc of Solutons Informaton Economcs (Ec 55) George Georgads Due n class or by e-mal to quel@bu.edu at :30, Monday, December 8 Problem. Screenng A monopolst can produce a good n dfferent

More information

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M

CIS526: Machine Learning Lecture 3 (Sept 16, 2003) Linear Regression. Preparation help: Xiaoying Huang. x 1 θ 1 output... θ M x M CIS56: achne Learnng Lecture 3 (Sept 6, 003) Preparaton help: Xaoyng Huang Lnear Regresson Lnear regresson can be represented by a functonal form: f(; θ) = θ 0 0 +θ + + θ = θ = 0 ote: 0 s a dummy attrbute

More information

Work is the change in energy of a system (neglecting heat transfer). To examine what could

Work is the change in energy of a system (neglecting heat transfer). To examine what could Work Work s the change n energy o a system (neglectng heat transer). To eamne what could cause work, let s look at the dmensons o energy: L ML E M L F L so T T dmensonally energy s equal to a orce tmes

More information

CHAPTER 6 CONSTRAINED OPTIMIZATION 1: K-T CONDITIONS

CHAPTER 6 CONSTRAINED OPTIMIZATION 1: K-T CONDITIONS Chapter 6: Constraned Optzaton CHAPER 6 CONSRAINED OPIMIZAION : K- CONDIIONS Introducton We now begn our dscusson of gradent-based constraned optzaton. Recall that n Chapter 3 we looked at gradent-based

More information

Parameter estimation class 5

Parameter estimation class 5 Parameter estmaton class 5 Multple Ve Geometr Comp 9-89 Marc Pollefes Content Background: Projectve geometr (D, 3D), Parameter estmaton, Algortm evaluaton. Sngle Ve: Camera model, Calbraton, Sngle Ve Geometr.

More information

Single Variable Optimization

Single Variable Optimization 8/4/07 Course Instructor Dr. Raymond C. Rump Oce: A 337 Phone: (95) 747 6958 E Mal: rcrump@utep.edu Topc 8b Sngle Varable Optmzaton EE 4386/530 Computatonal Methods n EE Outlne Mathematcal Prelmnares Sngle

More information

CHAPTER 7 CONSTRAINED OPTIMIZATION 1: THE KARUSH-KUHN-TUCKER CONDITIONS

CHAPTER 7 CONSTRAINED OPTIMIZATION 1: THE KARUSH-KUHN-TUCKER CONDITIONS CHAPER 7 CONSRAINED OPIMIZAION : HE KARUSH-KUHN-UCKER CONDIIONS 7. Introducton We now begn our dscusson of gradent-based constraned optzaton. Recall that n Chapter 3 we looked at gradent-based unconstraned

More information

14 Lagrange Multipliers

14 Lagrange Multipliers Lagrange Multplers 14 Lagrange Multplers The Method of Lagrange Multplers s a powerful technque for constraned optmzaton. Whle t has applcatons far beyond machne learnng t was orgnally developed to solve

More information

Solutions to Homework 7, Mathematics 1. 1 x. (arccos x) (arccos x) 1

Solutions to Homework 7, Mathematics 1. 1 x. (arccos x) (arccos x) 1 Solutons to Homework 7, Mathematcs 1 Problem 1: a Prove that arccos 1 1 for 1, 1. b* Startng from the defnton of the dervatve, prove that arccos + 1, arccos 1. Hnt: For arccos arccos π + 1, the defnton

More information

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems )

Lecture 2 Solution of Nonlinear Equations ( Root Finding Problems ) Lecture Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton o Methods Analytcal Solutons Graphcal Methods Numercal Methods Bracketng Methods Open Methods Convergence Notatons Root Fndng

More information

Section 15.6 Directional Derivatives and the Gradient Vector

Section 15.6 Directional Derivatives and the Gradient Vector Section 15.6 Directional Derivatives and te Gradient Vector Finding rates of cange in different directions Recall tat wen we first started considering derivatives of functions of more tan one variable,

More information

Competitive Experimentation and Private Information

Competitive Experimentation and Private Information Compettve Expermentaton an Prvate Informaton Guseppe Moscarn an Francesco Squntan Omtte Analyss not Submtte for Publcaton Dervatons for te Gamma-Exponental Moel Dervaton of expecte azar rates. By Bayes

More information

The Finite Element Method: A Short Introduction

The Finite Element Method: A Short Introduction Te Fnte Element Metod: A Sort ntroducton Wat s FEM? Te Fnte Element Metod (FEM) ntroduced by engneers n late 50 s and 60 s s a numercal tecnque for solvng problems wc are descrbed by Ordnary Dfferental

More information

Machine Learning. What is a good Decision Boundary? Support Vector Machines

Machine Learning. What is a good Decision Boundary? Support Vector Machines Machne Learnng 0-70/5 70/5-78 78 Sprng 200 Support Vector Machnes Erc Xng Lecture 7 March 5 200 Readng: Chap. 6&7 C.B book and lsted papers Erc Xng @ CMU 2006-200 What s a good Decson Boundar? Consder

More information

CHAPTER 7 CONSTRAINED OPTIMIZATION 2: SQP AND GRG

CHAPTER 7 CONSTRAINED OPTIMIZATION 2: SQP AND GRG Chapter 7: Constraned Optmzaton CHAPER 7 CONSRAINED OPIMIZAION : SQP AND GRG Introducton In the prevous chapter we eamned the necessary and suffcent condtons for a constraned optmum. We dd not, however,

More information

Logarithmic functions

Logarithmic functions Roberto s Notes on Differential Calculus Capter 5: Derivatives of transcendental functions Section Derivatives of Logaritmic functions Wat ou need to know alread: Definition of derivative and all basic

More information

Practical Newton s Method

Practical Newton s Method Practcal Newton s Method Lecture- n Newton s Method n Pure Newton s method converges radly once t s close to. It may not converge rom the remote startng ont he search drecton to be a descent drecton rue

More information

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7

Stanford University CS254: Computational Complexity Notes 7 Luca Trevisan January 29, Notes for Lecture 7 Stanford Unversty CS54: Computatonal Complexty Notes 7 Luca Trevsan January 9, 014 Notes for Lecture 7 1 Approxmate Countng wt an N oracle We complete te proof of te followng result: Teorem 1 For every

More information

Some modelling aspects for the Matlab implementation of MMA

Some modelling aspects for the Matlab implementation of MMA Some modellng aspects for the Matlab mplementaton of MMA Krster Svanberg krlle@math.kth.se Optmzaton and Systems Theory Department of Mathematcs KTH, SE 10044 Stockholm September 2004 1. Consdered optmzaton

More information

Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE) Maxmum Lkelhood Estmaton (MLE) Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Wnter 01 UCSD Statstcal Learnng Goal: Gven a relatonshp between a feature vector x and a vector y, and d data samples (x,y

More information

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

More information

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up

Not-for-Publication Appendix to Optimal Asymptotic Least Aquares Estimation in a Singular Set-up Not-for-Publcaton Aendx to Otmal Asymtotc Least Aquares Estmaton n a Sngular Set-u Antono Dez de los Ros Bank of Canada dezbankofcanada.ca December 214 A Proof of Proostons A.1 Proof of Prooston 1 Ts roof

More information

Degrees of Freedom. Spherical (ball & socket) 3 (3 rotation) Two-Angle (universal) 2 (2 rotation)

Degrees of Freedom. Spherical (ball & socket) 3 (3 rotation) Two-Angle (universal) 2 (2 rotation) ME 6590 Multbody Dynamcs Connectn Jonts Part I o Connectn jonts constran te relatve moton between adjonn bodes n a multbody system. Jonts rane rom allown no relatve moton (a rd jont) to allown all motons

More information

Endogenous timing in a mixed oligopoly consisting of a single public firm and foreign competitors. Abstract

Endogenous timing in a mixed oligopoly consisting of a single public firm and foreign competitors. Abstract Endogenous tmng n a mxed olgopoly consstng o a sngle publc rm and oregn compettors Yuanzhu Lu Chna Economcs and Management Academy, Central Unversty o Fnance and Economcs Abstract We nvestgate endogenous

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

Chapter 3 Differentiation and Integration

Chapter 3 Differentiation and Integration MEE07 Computer Modelng Technques n Engneerng Chapter Derentaton and Integraton Reerence: An Introducton to Numercal Computatons, nd edton, S. yakowtz and F. zdarovsky, Mawell/Macmllan, 990. Derentaton

More information

Exercises of Fundamentals of Chemical Processes

Exercises of Fundamentals of Chemical Processes Department of Energ Poltecnco d Mlano a Lambruschn 4 2056 MILANO Exercses of undamentals of Chemcal Processes Prof. Ganpero Gropp Exercse 7 ) Estmaton of the composton of the streams at the ext of an sothermal

More information

Convex Optimization. Optimality conditions. (EE227BT: UC Berkeley) Lecture 9 (Optimality; Conic duality) 9/25/14. Laurent El Ghaoui.

Convex Optimization. Optimality conditions. (EE227BT: UC Berkeley) Lecture 9 (Optimality; Conic duality) 9/25/14. Laurent El Ghaoui. Convex Optmzaton (EE227BT: UC Berkeley) Lecture 9 (Optmalty; Conc dualty) 9/25/14 Laurent El Ghaou Organsatonal Mdterm: 10/7/14 (1.5 hours, n class, double-sded cheat sheet allowed) Project: Intal proposal

More information

Image classification. Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing i them?

Image classification. Given the bag-of-features representations of images from different classes, how do we learn a model for distinguishing i them? Image classfcaton Gven te bag-of-features representatons of mages from dfferent classes ow do we learn a model for dstngusng tem? Classfers Learn a decson rule assgnng bag-offeatures representatons of

More information

Lecture 10 Support Vector Machines. Oct

Lecture 10 Support Vector Machines. Oct Lecture 10 Support Vector Machnes Oct - 20-2008 Lnear Separators Whch of the lnear separators s optmal? Concept of Margn Recall that n Perceptron, we learned that the convergence rate of the Perceptron

More information

Quantum Mechanics I - Session 4

Quantum Mechanics I - Session 4 Quantum Mechancs I - Sesson 4 Aprl 3, 05 Contents Operators Change of Bass 4 3 Egenvectors and Egenvalues 5 3. Denton....................................... 5 3. Rotaton n D....................................

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Exponentials and Logarithms Review Part 2: Exponentials

Exponentials and Logarithms Review Part 2: Exponentials Eponentials and Logaritms Review Part : Eponentials Notice te difference etween te functions: g( ) and f ( ) In te function g( ), te variale is te ase and te eponent is a constant. Tis is called a power

More information

Machine Learning. Support Vector Machines. Eric Xing , Fall Lecture 9, October 6, 2015

Machine Learning. Support Vector Machines. Eric Xing , Fall Lecture 9, October 6, 2015 Machne Learnng 0-70 Fall 205 Support Vector Machnes Erc Xng Lecture 9 Octoer 6 205 Readng: Chap. 6&7 C.B ook and lsted papers Erc Xng @ CMU 2006-205 What s a good Decson Boundar? Consder a nar classfcaton

More information

Affine transformations and convexity

Affine transformations and convexity Affne transformatons and convexty The purpose of ths document s to prove some basc propertes of affne transformatons nvolvng convex sets. Here are a few onlne references for background nformaton: http://math.ucr.edu/

More information

2.8 The Derivative as a Function

2.8 The Derivative as a Function .8 Te Derivative as a Function Typically, we can find te derivative of a function f at many points of its domain: Definition. Suppose tat f is a function wic is differentiable at every point of an open

More information

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD

Bayesian decision theory. Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world observatons decson functon L[,y] loss of predctn y wth the epected value of the

More information

ESCUELA LATINOAMERICANA DE COOPERACIÓN Y DESARROLLO Especialización en Cooperación Internacional para el Desarrollo

ESCUELA LATINOAMERICANA DE COOPERACIÓN Y DESARROLLO Especialización en Cooperación Internacional para el Desarrollo ESCUELA LATINOAMERICANA DE COOPERACIÓN Y DESARROLLO Especialización en Cooperación Internacional para el Desarrollo A SURVIVAL KIT IN CASE O.MATHEMATICS b Marco Missaglia * Universit of Pavia September

More information

Physics 2A Chapters 6 - Work & Energy Fall 2017

Physics 2A Chapters 6 - Work & Energy Fall 2017 Physcs A Chapters 6 - Work & Energy Fall 017 These notes are eght pages. A quck summary: The work-energy theorem s a combnaton o Chap and Chap 4 equatons. Work s dened as the product o the orce actng on

More information

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods

Chapter Eight. Review and Summary. Two methods in solid mechanics ---- vectorial methods and energy methods or variational methods Chapter Eght Energy Method 8. Introducton 8. Stran energy expressons 8.3 Prncpal of statonary potental energy; several degrees of freedom ------ Castglano s frst theorem ---- Examples 8.4 Prncpal of statonary

More information

Summary with Examples for Root finding Methods -Bisection -Newton Raphson -Secant

Summary with Examples for Root finding Methods -Bisection -Newton Raphson -Secant Summary wth Eamples or Root ndng Methods -Bsecton -Newton Raphson -Secant Nonlnear Equaton Solvers Bracketng Graphcal Open Methods Bsecton False Poston (Regula-Fals) Newton Raphson Secant All Iteratve

More information

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner.

What is LP? LP is an optimization technique that allocates limited resources among competing activities in the best possible manner. (C) 998 Gerald B Sheblé, all rghts reserved Lnear Prograng Introducton Contents I. What s LP? II. LP Theor III. The Splex Method IV. Refneents to the Splex Method What s LP? LP s an optzaton technque that

More information

( ) 2 ( ) ( ) Problem Set 4 Suggested Solutions. Problem 1

( ) 2 ( ) ( ) Problem Set 4 Suggested Solutions. Problem 1 Problem Set 4 Suggested Solutons Problem (A) The market demand functon s the soluton to the followng utlty-maxmzaton roblem (UMP): The Lagrangean: ( x, x, x ) = + max U x, x, x x x x st.. x + x + x y x,

More information

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11:

: Numerical Analysis Topic 2: Solution of Nonlinear Equations Lectures 5-11: 764: Numercal Analyss Topc : Soluton o Nonlnear Equatons Lectures 5-: UIN Malang Read Chapters 5 and 6 o the tetbook 764_Topc Lecture 5 Soluton o Nonlnear Equatons Root Fndng Problems Dentons Classcaton

More information

Lecture 26 Finite Differences and Boundary Value Problems

Lecture 26 Finite Differences and Boundary Value Problems 4//3 Leture 6 Fnte erenes and Boundar Value Problems Numeral derentaton A nte derene s an appromaton o a dervatve - eample erved rom Talor seres 3 O! Negletng all terms ger tan rst order O O Tat s te orward

More information

Polynomial Barrier Method for Solving Linear Programming Problems

Polynomial Barrier Method for Solving Linear Programming Problems Internatonal Journal o Engneerng & echnology IJE-IJENS Vol: No: 45 Polynoal Barrer Method or Solvng Lnear Prograng Probles Parwad Moengn, Meber, IAENG Abstract In ths wor, we study a class o polynoal ordereven

More information

Pre-Calculus Summer Assignment

Pre-Calculus Summer Assignment Pre-Calculus Summer Assgnment Dear Future Pre-Calculus Student, Congratulatons on our successful completon of Algebra! Below ou wll fnd the summer assgnment questons. It s assumed that these concepts,

More information

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76

PHYS 1101 Practice problem set 12, Chapter 32: 21, 22, 24, 57, 61, 83 Chapter 33: 7, 12, 32, 38, 44, 49, 76 PHYS 1101 Practce problem set 1, Chapter 3: 1,, 4, 57, 61, 83 Chapter 33: 7, 1, 3, 38, 44, 49, 76 3.1. Vsualze: Please reer to Fgure Ex3.1. Solve: Because B s n the same drecton as the ntegraton path s

More information

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d.

SELECTED SOLUTIONS, SECTION (Weak duality) Prove that the primal and dual values p and d defined by equations (4.3.2) and (4.3.3) satisfy p d. SELECTED SOLUTIONS, SECTION 4.3 1. Weak dualty Prove that the prmal and dual values p and d defned by equatons 4.3. and 4.3.3 satsfy p d. We consder an optmzaton problem of the form The Lagrangan for ths

More information

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017

U.C. Berkeley CS294: Beyond Worst-Case Analysis Luca Trevisan September 5, 2017 U.C. Berkeley CS94: Beyond Worst-Case Analyss Handout 4s Luca Trevsan September 5, 07 Summary of Lecture 4 In whch we ntroduce semdefnte programmng and apply t to Max Cut. Semdefnte Programmng Recall that

More information

General Tips on How to Do Well in Physics Exams. 1. Establish a good habit in keeping track of your steps. For example, when you use the equation

General Tips on How to Do Well in Physics Exams. 1. Establish a good habit in keeping track of your steps. For example, when you use the equation General Tps on How to Do Well n Physcs Exams 1. Establsh a good habt n keepng track o your steps. For example when you use the equaton 1 1 1 + = d d to solve or d o you should rst rewrte t as 1 1 1 = d

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

Mean Field / Variational Approximations

Mean Field / Variational Approximations Mean Feld / Varatonal Appromatons resented by Jose Nuñez 0/24/05 Outlne Introducton Mean Feld Appromaton Structured Mean Feld Weghted Mean Feld Varatonal Methods Introducton roblem: We have dstrbuton but

More information

One Dimensional Axial Deformations

One Dimensional Axial Deformations One Dmensonal al Deformatons In ths secton, a specfc smple geometr s consdered, that of a long and thn straght component loaded n such a wa that t deforms n the aal drecton onl. The -as s taken as the

More information

CHAPTER 4d. ROOTS OF EQUATIONS

CHAPTER 4d. ROOTS OF EQUATIONS CHAPTER 4d. ROOTS OF EQUATIONS A. J. Clark School o Engneerng Department o Cvl and Envronmental Engneerng by Dr. Ibrahm A. Assakka Sprng 00 ENCE 03 - Computaton Methods n Cvl Engneerng II Department o

More information

SIMPLE LINEAR REGRESSION

SIMPLE LINEAR REGRESSION Smple Lnear Regresson and Correlaton Introducton Prevousl, our attenton has been focused on one varable whch we desgnated b x. Frequentl, t s desrable to learn somethng about the relatonshp between two

More information

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL

TR/95 February Splines G. H. BEHFOROOZ* & N. PAPAMICHAEL TR/9 February 980 End Condtons for Interpolatory Quntc Splnes by G. H. BEHFOROOZ* & N. PAPAMICHAEL *Present address: Dept of Matematcs Unversty of Tabrz Tabrz Iran. W9609 A B S T R A C T Accurate end condtons

More information

COMP4630: λ-calculus

COMP4630: λ-calculus COMP4630: λ-calculus 4. Standardsaton Mcael Norrs Mcael.Norrs@ncta.com.au Canberra Researc Lab., NICTA Semester 2, 2015 Last Tme Confluence Te property tat dvergent evaluatons can rejon one anoter Proof

More information

1. Fundamentals 1.1 Probability Theory Sample Space and Probability Random Variables Limit Theories

1. Fundamentals 1.1 Probability Theory Sample Space and Probability Random Variables Limit Theories 1. undamentals 1.1 robablt Theor 1.1.1 Sample Space and robablt 1.1.2 Random Varables 1.1.3 Lmt Theores 1.1 robablt Theor A statstcal model probablt model deals wth eperment whose outcome s not precsel

More information

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor

The Prncpal Component Transform The Prncpal Component Transform s also called Karhunen-Loeve Transform (KLT, Hotellng Transform, oregenvector Transfor Prncpal Component Transform Multvarate Random Sgnals A real tme sgnal x(t can be consdered as a random process and ts samples x m (m =0; ;N, 1 a random vector: The mean vector of X s X =[x0; ;x N,1] T

More information

Continuity and Differentiability Worksheet

Continuity and Differentiability Worksheet Continuity and Differentiability Workseet (Be sure tat you can also do te grapical eercises from te tet- Tese were not included below! Typical problems are like problems -3, p. 6; -3, p. 7; 33-34, p. 7;

More information

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation.

( ) [ ( k) ( k) ( x) ( ) ( ) ( ) [ ] ξ [ ] [ ] [ ] ( )( ) i ( ) ( )( ) 2! ( ) = ( ) 3 Interpolation. Polynomial Approximation. 3 Interpolaton {( y } Gven:,,,,,, [ ] Fnd: y for some Mn, Ma Polynomal Appromaton Theorem (Weerstrass Appromaton Theorem --- estence ε [ ab] f( P( , then there ests a polynomal

More information

Maximum Likelihood Estimation

Maximum Likelihood Estimation Maxmum Lkelhood Estmaton INFO-2301: Quanttatve Reasonng 2 Mchael Paul and Jordan Boyd-Graber MARCH 7, 2017 INFO-2301: Quanttatve Reasonng 2 Paul and Boyd-Graber Maxmum Lkelhood Estmaton 1 of 9 Why MLE?

More information

DIFFERENTIAL SCHEMES

DIFFERENTIAL SCHEMES DIFFERENTIAL SCHEMES RAYMOND T. HOOBLER Dedcated to the memory o Jerry Kovacc 1. schemes All rngs contan Q and are commutatve. We x a d erental rng A throughout ths secton. 1.1. The topologcal space. Let

More information

Neural networks. Nuno Vasconcelos ECE Department, UCSD

Neural networks. Nuno Vasconcelos ECE Department, UCSD Neural networs Nuno Vasconcelos ECE Department, UCSD Classfcaton a classfcaton problem has two types of varables e.g. X - vector of observatons (features) n the world Y - state (class) of the world x X

More information

Classical Mechanics Virtual Work & d Alembert s Principle

Classical Mechanics Virtual Work & d Alembert s Principle Classcal Mechancs Vrtual Work & d Alembert s Prncple Dpan Kumar Ghosh UM-DAE Centre for Excellence n Basc Scences Kalna, Mumba 400098 August 15, 2016 1 Constrants Moton of a system of partcles s often

More information

Spring Force and Power

Spring Force and Power Lecture 13 Chapter 9 Sprng Force and Power Yeah, energy s better than orces. What s net? Course webste: http://aculty.uml.edu/andry_danylov/teachng/physcsi IN THIS CHAPTER, you wll learn how to solve problems

More information

Numerical Differentiation

Numerical Differentiation Part 5 Capter 19 Numercal Derentaton PowerPonts organzed by Dr. Mcael R. Gustason II, Duke Unversty Revsed by Pro. Jang, CAU All mages copyrgt Te McGraw-Hll Companes, Inc. Permsson requred or reproducton

More information

f(x,y) = (4(x 2 4)x,2y) = 0 H(x,y) =

f(x,y) = (4(x 2 4)x,2y) = 0 H(x,y) = Problem Set 3: Unconstraned mzaton n R N. () Fnd all crtcal ponts of f(x,y) (x 4) +y and show whch are ma and whch are mnma. () Fnd all crtcal ponts of f(x,y) (y x ) x and show whch are ma and whch are

More information

Math 324 Advanced Financial Mathematics Spring 2008 Final Exam Solutions May 2, 2008

Math 324 Advanced Financial Mathematics Spring 2008 Final Exam Solutions May 2, 2008 Mat 324 Advanced Fnancal Matematcs Sprng 28 Fnal Exam Solutons May 2, 28 Ts s an open book take-ome exam. You may work wt textbooks and notes but do not consult any oter person. Sow all of your work and

More information