Outline. Inference in regression. Critical values GEOGRAPHICALLY WEIGHTED REGRESSION

Size: px
Start display at page:

Download "Outline. Inference in regression. Critical values GEOGRAPHICALLY WEIGHTED REGRESSION"

Transcription

1 GEOGRAPHICALLY WEIGHTED REGRESSION Outline Multiple Hypothesis Testing : Setting critical values for local pseudo-t statistics stewart.fotheringham@nuim.ie ncg.nuim.ie/gwr/ Significance tests in regression Parameter significance in GWR Multiple testing procedures Critical value adjustment in GWR Excel and R functions Example: Georgia data Inference in regression It is common in regression to test whether each parameter is zero A variable whose parameter estimate is zero does not contribute to the variation in the model. The t statistic is commonly reported on regression output for the null hypothesis that β n = 0 If the reported value of t for a parameter is greater than or less than (normal approximation - Wald), we reject the null hypothesis for that parameter. The parameter estimate is described as significant Critical values Note that in this context, significant does not mean important, merely not zero. Note as well that the test statistic follows a t distribution. However, if the sample is large enough, you can use the percentage points of the normal distribution as critical values If you use the 5% significance level, then the critical values for various sample sizes are: t α=0.05,df=30 = 2.04 t α=0.05,df=100 = 1.98 t α=0.05,df=500 = 1.97 t α=0.05,df=1000 = 1.96

2 What about GWR If we map the parameter estimates we see some apparent variation Sometimes most of the parameter estimates will be positive but a small handful are negative This suggests that the variable s influence is positive virtually everywhere, but in some places negative! and vice versa Local pseudo-t statistics We can divide the local parameter estimates by their associated local standard errors to obtain local pseudo-t statistics There will be one t for each of the m+1 variables and n regression points (the intercept term has local t statistics as well) Critical value This gives us n * (m+1) simultaneous tests So can we use the percentage points of the normal distribution as the critical values? NO! If we carried out 100 independent statistical tests, and we use the 5% significance level, we would expect that about 5 of these tests are significant by chance If n = 1000 and p = 4, then we will be carrying out 5000 tests, and about 250 would be significant So the false positive rate is much higher than the 5% of the individual tests Adjusting the critical value This means that we have to increase the critical value for a given α level to account for this This means changing the test-wise error rate to maintain the family-wise error rate at α So, you can t just use 1.96 or 2.58 Adjustments Our problem is that we have a large number of dependent tests (generally they are positively dependent) There are a number of different ways of adjusting the critical value

3 Bonferroni adjustment A commonly encountered adjustment in multiple testing is the Bonferroni adjustment The adjusted critical value is: β = α / n With 5000 tests, and α=0.05, the adjusted level β is So, instead of 1.96, you use 4.44 Bonferroni The effect is this is to make the test more stringent The Bonferroni test will deal with dependencies But it is widely regarded as being far too conservative that is, it rejects too many tests Yoav Benjamini Benjamini has long been interested in the multiple testing problem He is associated with the concept of the False Discovery Rate His work with Daniel Yekutieli has dealt with adjustment where the tests are independent Adjustment procedures The Benjamini-Yekutieli adjustment, and several similar procedures are complex to operationalise We have discovered that there is a Bonferroni-like adjustment which gives results very similar to the B-Y test Byrne, et al, 2009 Fotheringham adjustment Multiple Dependent Hypothesis Tests in Geographically Weighted Regression presented at Geocomputation 2009 in Sydney Stewart made the observation that the adjustment would be proportion to the number of degrees of freedom in the GWR model β = 1+ α pe pe np

4 β = 1 + α pe p e np Procedure β is the adjusted test level α is the unadjusted test level (frequently 0.05) p e is the effective number of parameters in the model n is the number of regression points p is the number of parameters to be estimated You can compute the critical value by using TINV function in Excel TINV(β,n-p e ) The resulting value will lie between 1.96 and the over-conservative value from the Bonferroni adjustment General Procedure Compute the adjusted critical value, t β,npe, and the TINV function in Excel (R [use qt()], or whatever) Map the parameter estimates for a variable of interest Select those locations where the associated local t value is in excess of the adjusted critical value Create a layer from this these are locations where the parameter estimate is significant - map this layer. Excel and R In Excel TINV(0.05,1000) returns In R qt(1-(0.05/2),1000) returns Georgia As an example, we ll fit global and local models to the Georgia data PctBach is the dependent variable PctEld, PctFB, PctPov and PctBlack are the 4 independent variables in this model Global model Parameter Estimate (B) Std Err T p(b=0) Intercept PctEld PctFB PctPov PctBlack In the global model the t statistics for the null hypotheses suggest that the variation in all the variable except PctEld contribute to the variation in the model. These variables are significant. The critical value of T with α=0.05 and degrees of freedom is 1.98 (so the normal approximation of 1.96 is reasonable)

5 GWR There are n=159 regression points (centroids of the counties) There are p=5 parameters estimated at each regression point Local model The effective degrees of freedom in the local model is The test-wise level to keep the family-wise error rate, α, at 0.05 will be which yields a critical value of 2.95 TINV( , ) => 2.95 Selection/Select by Attributes Label Minimum Lwr Quartile Median Upr Quartile Maximum Intrcept PctEld PctFB PctPov PctBlack PctPov seems to change sign mostly it s negative, but there are some counties where the relationship appears, counterintuitively, to be postive This is variable 4 we plot PARM_4 and select those areas where abs(tval_4) is greater than 2.95 To highlight the significant counties, select those where the absolute value of the T statistic is greater than PctPov parameter estimates End The selected counties are highlighted this variable is only significant in the southernmost part of the state. The values around the sign change are too small to be significant.

Multiple Dependent Hypothesis Tests in Geographically Weighted Regression

Multiple Dependent Hypothesis Tests in Geographically Weighted Regression Multiple Dependent Hypothesis Tests in Geographically Weighted Regression Graeme Byrne 1, Martin Charlton 2, and Stewart Fotheringham 3 1 La Trobe University, Bendigo, Victoria Austrlaia Telephone: +61

More information

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018

High-Throughput Sequencing Course. Introduction. Introduction. Multiple Testing. Biostatistics and Bioinformatics. Summer 2018 High-Throughput Sequencing Course Multiple Testing Biostatistics and Bioinformatics Summer 2018 Introduction You have previously considered the significance of a single gene Introduction You have previously

More information

Correlation and Regression (Excel 2007)

Correlation and Regression (Excel 2007) Correlation and Regression (Excel 2007) (See Also Scatterplots, Regression Lines, and Time Series Charts With Excel 2007 for instructions on making a scatterplot of the data and an alternate method of

More information

Econometrics. 4) Statistical inference

Econometrics. 4) Statistical inference 30C00200 Econometrics 4) Statistical inference Timo Kuosmanen Professor, Ph.D. http://nomepre.net/index.php/timokuosmanen Today s topics Confidence intervals of parameter estimates Student s t-distribution

More information

Outline. ArcGIS? ArcMap? I Understanding ArcMap. ArcMap GIS & GWR GEOGRAPHICALLY WEIGHTED REGRESSION. (Brief) Overview of ArcMap

Outline. ArcGIS? ArcMap? I Understanding ArcMap. ArcMap GIS & GWR GEOGRAPHICALLY WEIGHTED REGRESSION. (Brief) Overview of ArcMap GEOGRAPHICALLY WEIGHTED REGRESSION Outline GWR 3.0 Software for GWR (Brief) Overview of ArcMap Displaying GWR results in ArcMap stewart.fotheringham@nuim.ie http://ncg.nuim.ie ncg.nuim.ie/gwr/ ArcGIS?

More information

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests

z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests z and t tests for the mean of a normal distribution Confidence intervals for the mean Binomial tests Chapters 3.5.1 3.5.2, 3.3.2 Prof. Tesler Math 283 Fall 2018 Prof. Tesler z and t tests for mean Math

More information

y ˆ i = ˆ " T u i ( i th fitted value or i th fit)

y ˆ i = ˆ  T u i ( i th fitted value or i th fit) 1 2 INFERENCE FOR MULTIPLE LINEAR REGRESSION Recall Terminology: p predictors x 1, x 2,, x p Some might be indicator variables for categorical variables) k-1 non-constant terms u 1, u 2,, u k-1 Each u

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS In our work on hypothesis testing, we used the value of a sample statistic to challenge an accepted value of a population parameter. We focused only

More information

Geographically Weighted Regression

Geographically Weighted Regression Geographically Weighted Regression Modelling spatially heterogenous processes Martin Charlton National Centre for Geocomputation National University of Ireland Maynooth Outline Introduction Spatial Data

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Looking at the Other Side of Bonferroni

Looking at the Other Side of Bonferroni Department of Biostatistics University of Washington 24 May 2012 Multiple Testing: Control the Type I Error Rate When analyzing genetic data, one will commonly perform over 1 million (and growing) hypothesis

More information

Lectures 5 & 6: Hypothesis Testing

Lectures 5 & 6: Hypothesis Testing Lectures 5 & 6: Hypothesis Testing in which you learn to apply the concept of statistical significance to OLS estimates, learn the concept of t values, how to use them in regression work and come across

More information

Statistical testing. Samantha Kleinberg. October 20, 2009

Statistical testing. Samantha Kleinberg. October 20, 2009 October 20, 2009 Intro to significance testing Significance testing and bioinformatics Gene expression: Frequently have microarray data for some group of subjects with/without the disease. Want to find

More information

Business Statistics. Lecture 10: Course Review

Business Statistics. Lecture 10: Course Review Business Statistics Lecture 10: Course Review 1 Descriptive Statistics for Continuous Data Numerical Summaries Location: mean, median Spread or variability: variance, standard deviation, range, percentiles,

More information

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics Mathematics Curriculum A. DESCRIPTION This is a full year courses designed to introduce students to the basic elements of statistics and probability. Emphasis is placed on understanding terminology and

More information

Models for Count and Binary Data. Poisson and Logistic GWR Models. 24/07/2008 GWR Workshop 1

Models for Count and Binary Data. Poisson and Logistic GWR Models. 24/07/2008 GWR Workshop 1 Models for Count and Binary Data Poisson and Logistic GWR Models 24/07/2008 GWR Workshop 1 Outline I: Modelling counts Poisson regression II: Modelling binary events Logistic Regression III: Poisson Regression

More information

Specific Differences. Lukas Meier, Seminar für Statistik

Specific Differences. Lukas Meier, Seminar für Statistik Specific Differences Lukas Meier, Seminar für Statistik Problem with Global F-test Problem: Global F-test (aka omnibus F-test) is very unspecific. Typically: Want a more precise answer (or have a more

More information

Statistical Inference for Means

Statistical Inference for Means Statistical Inference for Means Jamie Monogan University of Georgia February 18, 2011 Jamie Monogan (UGA) Statistical Inference for Means February 18, 2011 1 / 19 Objectives By the end of this meeting,

More information

High-throughput Testing

High-throughput Testing High-throughput Testing Noah Simon and Richard Simon July 2016 1 / 29 Testing vs Prediction On each of n patients measure y i - single binary outcome (eg. progression after a year, PCR) x i - p-vector

More information

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages:

Glossary. The ISI glossary of statistical terms provides definitions in a number of different languages: Glossary The ISI glossary of statistical terms provides definitions in a number of different languages: http://isi.cbs.nl/glossary/index.htm Adjusted r 2 Adjusted R squared measures the proportion of the

More information

Class 19. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 19. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 19 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 2017 by D.B. Rowe 1 Agenda: Recap Chapter 8.3-8.4 Lecture Chapter 8.5 Go over Exam. Problem Solving

More information

Statistics Part IV Confidence Limits and Hypothesis Testing. Joe Nahas University of Notre Dame

Statistics Part IV Confidence Limits and Hypothesis Testing. Joe Nahas University of Notre Dame Statistics Part IV Confidence Limits and Hypothesis Testing Joe Nahas University of Notre Dame Statistic Outline (cont.) 3. Graphical Display of Data A. Histogram B. Box Plot C. Normal Probability Plot

More information

Probability and Statistics Notes

Probability and Statistics Notes Probability and Statistics Notes Chapter Seven Jesse Crawford Department of Mathematics Tarleton State University Spring 2011 (Tarleton State University) Chapter Seven Notes Spring 2011 1 / 42 Outline

More information

STA 6167 Exam 3 Spring 2016 PRINT Name

STA 6167 Exam 3 Spring 2016 PRINT Name STA 6167 Exam 3 Spring 2016 PRINT Name Conduct all tests at = 0.05 significance level. Q.1. A study in Edmonton, Canada modelled the relationship between the number of fresh food stores (including: supermarket,

More information

Review of Statistics 101

Review of Statistics 101 Review of Statistics 101 We review some important themes from the course 1. Introduction Statistics- Set of methods for collecting/analyzing data (the art and science of learning from data). Provides methods

More information

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons:

STAT 263/363: Experimental Design Winter 2016/17. Lecture 1 January 9. Why perform Design of Experiments (DOE)? There are at least two reasons: STAT 263/363: Experimental Design Winter 206/7 Lecture January 9 Lecturer: Minyong Lee Scribe: Zachary del Rosario. Design of Experiments Why perform Design of Experiments (DOE)? There are at least two

More information

The spgwr Package. January 9, 2006

The spgwr Package. January 9, 2006 The spgwr Package January 9, 2006 Version 0.3-12 Date 2006-01-08 Title Geographically weighted regression Author Roger Bivand and Danlin Yu Maintainer Roger Bivand Depends R (>= 2.1),

More information

A discussion on multiple regression models

A discussion on multiple regression models A discussion on multiple regression models In our previous discussion of simple linear regression, we focused on a model in which one independent or explanatory variable X was used to predict the value

More information

Controlling Bayes Directional False Discovery Rate in Random Effects Model 1

Controlling Bayes Directional False Discovery Rate in Random Effects Model 1 Controlling Bayes Directional False Discovery Rate in Random Effects Model 1 Sanat K. Sarkar a, Tianhui Zhou b a Temple University, Philadelphia, PA 19122, USA b Wyeth Pharmaceuticals, Collegeville, PA

More information

Preliminary Statistics Lecture 5: Hypothesis Testing (Outline)

Preliminary Statistics Lecture 5: Hypothesis Testing (Outline) 1 School of Oriental and African Studies September 2015 Department of Economics Preliminary Statistics Lecture 5: Hypothesis Testing (Outline) Gujarati D. Basic Econometrics, Appendix A.8 Barrow M. Statistics

More information

Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. T=number of type 2 errors

Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. Table of Outcomes. T=number of type 2 errors The Multiple Testing Problem Multiple Testing Methods for the Analysis of Microarray Data 3/9/2009 Copyright 2009 Dan Nettleton Suppose one test of interest has been conducted for each of m genes in a

More information

Garvan Ins)tute Biosta)s)cal Workshop 16/7/2015. Tuan V. Nguyen. Garvan Ins)tute of Medical Research Sydney, Australia

Garvan Ins)tute Biosta)s)cal Workshop 16/7/2015. Tuan V. Nguyen. Garvan Ins)tute of Medical Research Sydney, Australia Garvan Ins)tute Biosta)s)cal Workshop 16/7/2015 Tuan V. Nguyen Tuan V. Nguyen Garvan Ins)tute of Medical Research Sydney, Australia Analysis of variance Between- group and within- group varia)on explained

More information

Psychology 282 Lecture #4 Outline Inferences in SLR

Psychology 282 Lecture #4 Outline Inferences in SLR Psychology 282 Lecture #4 Outline Inferences in SLR Assumptions To this point we have not had to make any distributional assumptions. Principle of least squares requires no assumptions. Can use correlations

More information

STA 4210 Practise set 2a

STA 4210 Practise set 2a STA 410 Practise set a For all significance tests, use = 0.05 significance level. S.1. A multiple linear regression model is fit, relating household weekly food expenditures (Y, in $100s) to weekly income

More information

STAT 461/561- Assignments, Year 2015

STAT 461/561- Assignments, Year 2015 STAT 461/561- Assignments, Year 2015 This is the second set of assignment problems. When you hand in any problem, include the problem itself and its number. pdf are welcome. If so, use large fonts and

More information

Variance Decomposition and Goodness of Fit

Variance Decomposition and Goodness of Fit Variance Decomposition and Goodness of Fit 1. Example: Monthly Earnings and Years of Education In this tutorial, we will focus on an example that explores the relationship between total monthly earnings

More information

Journal Club: Higher Criticism

Journal Club: Higher Criticism Journal Club: Higher Criticism David Donoho (2002): Higher Criticism for Heterogeneous Mixtures, Technical Report No. 2002-12, Dept. of Statistics, Stanford University. Introduction John Tukey (1976):

More information

Lecture 9 Two-Sample Test. Fall 2013 Prof. Yao Xie, H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech

Lecture 9 Two-Sample Test. Fall 2013 Prof. Yao Xie, H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech Lecture 9 Two-Sample Test Fall 2013 Prof. Yao Xie, yao.xie@isye.gatech.edu H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech Computer exam 1 18 Histogram 14 Frequency 9 5 0 75 83.33333333

More information

Inference in Normal Regression Model. Dr. Frank Wood

Inference in Normal Regression Model. Dr. Frank Wood Inference in Normal Regression Model Dr. Frank Wood Remember We know that the point estimator of b 1 is b 1 = (Xi X )(Y i Ȳ ) (Xi X ) 2 Last class we derived the sampling distribution of b 1, it being

More information

Stat 206: Estimation and testing for a mean vector,

Stat 206: Estimation and testing for a mean vector, Stat 206: Estimation and testing for a mean vector, Part II James Johndrow 2016-12-03 Comparing components of the mean vector In the last part, we talked about testing the hypothesis H 0 : µ 1 = µ 2 where

More information

Simple Linear Regression

Simple Linear Regression Simple Linear Regression ST 370 Regression models are used to study the relationship of a response variable and one or more predictors. The response is also called the dependent variable, and the predictors

More information

Density Temp vs Ratio. temp

Density Temp vs Ratio. temp Temp Ratio Density 0.00 0.02 0.04 0.06 0.08 0.10 0.12 Density 0.0 0.2 0.4 0.6 0.8 1.0 1. (a) 170 175 180 185 temp 1.0 1.5 2.0 2.5 3.0 ratio The histogram shows that the temperature measures have two peaks,

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Lecture 28. Ingo Ruczinski. December 3, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University

Lecture 28. Ingo Ruczinski. December 3, Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University Lecture 28 Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Johns Hopkins University December 3, 2015 1 2 3 4 5 1 Familywise error rates 2 procedure 3 Performance of with multiple

More information

MATH 240. Chapter 8 Outlines of Hypothesis Tests

MATH 240. Chapter 8 Outlines of Hypothesis Tests MATH 4 Chapter 8 Outlines of Hypothesis Tests Test for Population Proportion p Specify the null and alternative hypotheses, ie, choose one of the three, where p is some specified number: () H : p H : p

More information

0 0'0 2S ~~ Employment category

0 0'0 2S ~~ Employment category Analyze Phase 331 60000 50000 40000 30000 20000 10000 O~----,------.------,------,,------,------.------,----- N = 227 136 27 41 32 5 ' V~ 00 0' 00 00 i-.~ fl' ~G ~~ ~O~ ()0 -S 0 -S ~~ 0 ~~ 0 ~G d> ~0~

More information

Plan Martingales cont d. 0. Questions for Exam 2. More Examples 3. Overview of Results. Reading: study Next Time: first exam

Plan Martingales cont d. 0. Questions for Exam 2. More Examples 3. Overview of Results. Reading: study Next Time: first exam Plan Martingales cont d 0. Questions for Exam 2. More Examples 3. Overview of Results Reading: study Next Time: first exam Midterm Exam: Tuesday 28 March in class Sample exam problems ( Homework 5 and

More information

Relating Graph to Matlab

Relating Graph to Matlab There are two related course documents on the web Probability and Statistics Review -should be read by people without statistics background and it is helpful as a review for those with prior statistics

More information

STAT 215 Confidence and Prediction Intervals in Regression

STAT 215 Confidence and Prediction Intervals in Regression STAT 215 Confidence and Prediction Intervals in Regression Colin Reimer Dawson Oberlin College 24 October 2016 Outline Regression Slope Inference Partitioning Variability Prediction Intervals Reminder:

More information

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA)

22s:152 Applied Linear Regression. Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) 22s:152 Applied Linear Regression Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) We now consider an analysis with only categorical predictors (i.e. all predictors are

More information

Inferences for Regression

Inferences for Regression Inferences for Regression An Example: Body Fat and Waist Size Looking at the relationship between % body fat and waist size (in inches). Here is a scatterplot of our data set: Remembering Regression In

More information

Remedial Measures, Brown-Forsythe test, F test

Remedial Measures, Brown-Forsythe test, F test Remedial Measures, Brown-Forsythe test, F test Dr. Frank Wood Frank Wood, fwood@stat.columbia.edu Linear Regression Models Lecture 7, Slide 1 Remedial Measures How do we know that the regression function

More information

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit

LECTURE 6. Introduction to Econometrics. Hypothesis testing & Goodness of fit LECTURE 6 Introduction to Econometrics Hypothesis testing & Goodness of fit October 25, 2016 1 / 23 ON TODAY S LECTURE We will explain how multiple hypotheses are tested in a regression model We will define

More information

Summary and discussion of: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

Summary and discussion of: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing Summary and discussion of: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing Statistics Journal Club, 36-825 Beau Dabbs and Philipp Burckhardt 9-19-2014 1 Paper

More information

Statistical Inference. Hypothesis Testing

Statistical Inference. Hypothesis Testing Statistical Inference Hypothesis Testing Previously, we introduced the point and interval estimation of an unknown parameter(s), say µ and σ 2. However, in practice, the problem confronting the scientist

More information

Inference for Regression Simple Linear Regression

Inference for Regression Simple Linear Regression Inference for Regression Simple Linear Regression IPS Chapter 10.1 2009 W.H. Freeman and Company Objectives (IPS Chapter 10.1) Simple linear regression p Statistical model for linear regression p Estimating

More information

Multiple Pairwise Comparison Procedures in One-Way ANOVA with Fixed Effects Model

Multiple Pairwise Comparison Procedures in One-Way ANOVA with Fixed Effects Model Biostatistics 250 ANOVA Multiple Comparisons 1 ORIGIN 1 Multiple Pairwise Comparison Procedures in One-Way ANOVA with Fixed Effects Model When the omnibus F-Test for ANOVA rejects the null hypothesis that

More information

Basics of Experimental Design. Review of Statistics. Basic Study. Experimental Design. When an Experiment is Not Possible. Studying Relations

Basics of Experimental Design. Review of Statistics. Basic Study. Experimental Design. When an Experiment is Not Possible. Studying Relations Basics of Experimental Design Review of Statistics And Experimental Design Scientists study relation between variables In the context of experiments these variables are called independent and dependent

More information

ANOVA Analysis of Variance

ANOVA Analysis of Variance ANOVA Analysis of Variance ANOVA Analysis of Variance Extends independent samples t test ANOVA Analysis of Variance Extends independent samples t test Compares the means of groups of independent observations

More information

Basic Statistics. 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation).

Basic Statistics. 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation). Basic Statistics There are three types of error: 1. Gross error analyst makes a gross mistake (misread balance or entered wrong value into calculation). 2. Systematic error - always too high or too low

More information

Lecture 41 Sections Mon, Apr 7, 2008

Lecture 41 Sections Mon, Apr 7, 2008 Lecture 41 Sections 14.1-14.3 Hampden-Sydney College Mon, Apr 7, 2008 Outline 1 2 3 4 5 one-proportion test that we just studied allows us to test a hypothesis concerning one proportion, or two categories,

More information

1 Multiple Regression

1 Multiple Regression 1 Multiple Regression In this section, we extend the linear model to the case of several quantitative explanatory variables. There are many issues involved in this problem and this section serves only

More information

Homework 9 Sample Solution

Homework 9 Sample Solution Homework 9 Sample Solution # 1 (Ex 9.12, Ex 9.23) Ex 9.12 (a) Let p vitamin denote the probability of having cold when a person had taken vitamin C, and p placebo denote the probability of having cold

More information

Outline. PubH 5450 Biostatistics I Prof. Carlin. Confidence Interval for the Mean. Part I. Reviews

Outline. PubH 5450 Biostatistics I Prof. Carlin. Confidence Interval for the Mean. Part I. Reviews Outline Outline PubH 5450 Biostatistics I Prof. Carlin Lecture 11 Confidence Interval for the Mean Known σ (population standard deviation): Part I Reviews σ x ± z 1 α/2 n Small n, normal population. Large

More information

a) The runner completes his next 1500 meter race in under 4 minutes: <

a) The runner completes his next 1500 meter race in under 4 minutes: < I. Let X be the time it takes a runner to complete a 1500 meter race. It is known that for this specific runner, the random variable X has a normal distribution with mean μ = 250.0 seconds and standard

More information

Outline ESDA. Exploratory Spatial Data Analysis ESDA. Luc Anselin

Outline ESDA. Exploratory Spatial Data Analysis ESDA. Luc Anselin Exploratory Spatial Data Analysis ESDA Luc Anselin University of Illinois, Urbana-Champaign http://www.spacestat.com Outline ESDA Exploring Spatial Patterns Global Spatial Autocorrelation Local Spatial

More information

Inference with Heteroskedasticity

Inference with Heteroskedasticity Inference with Heteroskedasticity Note on required packages: The following code requires the packages sandwich and lmtest to estimate regression error variance that may change with the explanatory variables.

More information

Statistical Applications in Genetics and Molecular Biology

Statistical Applications in Genetics and Molecular Biology Statistical Applications in Genetics and Molecular Biology Volume 5, Issue 1 2006 Article 28 A Two-Step Multiple Comparison Procedure for a Large Number of Tests and Multiple Treatments Hongmei Jiang Rebecca

More information

Why Is It There? Attribute Data Describe with statistics Analyze with hypothesis testing Spatial Data Describe with maps Analyze with spatial analysis

Why Is It There? Attribute Data Describe with statistics Analyze with hypothesis testing Spatial Data Describe with maps Analyze with spatial analysis 6 Why Is It There? Why Is It There? Getting Started with Geographic Information Systems Chapter 6 6.1 Describing Attributes 6.2 Statistical Analysis 6.3 Spatial Description 6.4 Spatial Analysis 6.5 Searching

More information

22s:152 Applied Linear Regression. 1-way ANOVA visual:

22s:152 Applied Linear Regression. 1-way ANOVA visual: 22s:152 Applied Linear Regression 1-way ANOVA visual: Chapter 8: 1-Way Analysis of Variance (ANOVA) 2-Way Analysis of Variance (ANOVA) 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 Y We now consider an analysis

More information

Preview from Notesale.co.uk Page 3 of 63

Preview from Notesale.co.uk Page 3 of 63 Stem-and-leaf diagram - vertical numbers on far left represent the 10s, numbers right of the line represent the 1s The mean should not be used if there are extreme scores, or for ranks and categories Unbiased

More information

Simple Linear Regression: One Qualitative IV

Simple Linear Regression: One Qualitative IV Simple Linear Regression: One Qualitative IV 1. Purpose As noted before regression is used both to explain and predict variation in DVs, and adding to the equation categorical variables extends regression

More information

Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017

Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017 Variance Decomposition in Regression James M. Murray, Ph.D. University of Wisconsin - La Crosse Updated: October 04, 2017 PDF file location: http://www.murraylax.org/rtutorials/regression_anovatable.pdf

More information

Applying the Benjamini Hochberg procedure to a set of generalized p-values

Applying the Benjamini Hochberg procedure to a set of generalized p-values U.U.D.M. Report 20:22 Applying the Benjamini Hochberg procedure to a set of generalized p-values Fredrik Jonsson Department of Mathematics Uppsala University Applying the Benjamini Hochberg procedure

More information

Frequency table: Var2 (Spreadsheet1) Count Cumulative Percent Cumulative From To. Percent <x<=

Frequency table: Var2 (Spreadsheet1) Count Cumulative Percent Cumulative From To. Percent <x<= A frequency distribution is a kind of probability distribution. It gives the frequency or relative frequency at which given values have been observed among the data collected. For example, for age, Frequency

More information

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling

Review for Final. Chapter 1 Type of studies: anecdotal, observational, experimental Random sampling Review for Final For a detailed review of Chapters 1 7, please see the review sheets for exam 1 and. The following only briefly covers these sections. The final exam could contain problems that are included

More information

Correlation and Simple Linear Regression

Correlation and Simple Linear Regression Correlation and Simple Linear Regression Sasivimol Rattanasiri, Ph.D Section for Clinical Epidemiology and Biostatistics Ramathibodi Hospital, Mahidol University E-mail: sasivimol.rat@mahidol.ac.th 1 Outline

More information

Inference for Single Proportions and Means T.Scofield

Inference for Single Proportions and Means T.Scofield Inference for Single Proportions and Means TScofield Confidence Intervals for Single Proportions and Means A CI gives upper and lower bounds between which we hope to capture the (fixed) population parameter

More information

MS&E 226: Small Data

MS&E 226: Small Data MS&E 226: Small Data Lecture 15: Examples of hypothesis tests (v5) Ramesh Johari ramesh.johari@stanford.edu 1 / 32 The recipe 2 / 32 The hypothesis testing recipe In this lecture we repeatedly apply the

More information

Lecture 6 Multiple Linear Regression, cont.

Lecture 6 Multiple Linear Regression, cont. Lecture 6 Multiple Linear Regression, cont. BIOST 515 January 22, 2004 BIOST 515, Lecture 6 Testing general linear hypotheses Suppose we are interested in testing linear combinations of the regression

More information

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data

False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data False discovery rate and related concepts in multiple comparisons problems, with applications to microarray data Ståle Nygård Trial Lecture Dec 19, 2008 1 / 35 Lecture outline Motivation for not using

More information

STAT22200 Spring 2014 Chapter 5

STAT22200 Spring 2014 Chapter 5 STAT22200 Spring 2014 Chapter 5 Yibi Huang April 29, 2014 Chapter 5 Multiple Comparisons Chapter 5-1 Chapter 5 Multiple Comparisons Note the t-tests and C.I. s are constructed assuming we only do one test,

More information

Alpha-Investing. Sequential Control of Expected False Discoveries

Alpha-Investing. Sequential Control of Expected False Discoveries Alpha-Investing Sequential Control of Expected False Discoveries Dean Foster Bob Stine Department of Statistics Wharton School of the University of Pennsylvania www-stat.wharton.upenn.edu/ stine Joint

More information

Chapte The McGraw-Hill Companies, Inc. All rights reserved.

Chapte The McGraw-Hill Companies, Inc. All rights reserved. 12er12 Chapte Bivariate i Regression (Part 1) Bivariate Regression Visual Displays Begin the analysis of bivariate data (i.e., two variables) with a scatter plot. A scatter plot - displays each observed

More information

BIOL Biometry LAB 6 - SINGLE FACTOR ANOVA and MULTIPLE COMPARISON PROCEDURES

BIOL Biometry LAB 6 - SINGLE FACTOR ANOVA and MULTIPLE COMPARISON PROCEDURES BIOL 458 - Biometry LAB 6 - SINGLE FACTOR ANOVA and MULTIPLE COMPARISON PROCEDURES PART 1: INTRODUCTION TO ANOVA Purpose of ANOVA Analysis of Variance (ANOVA) is an extremely useful statistical method

More information

Simple Linear Regression: One Quantitative IV

Simple Linear Regression: One Quantitative IV Simple Linear Regression: One Quantitative IV Linear regression is frequently used to explain variation observed in a dependent variable (DV) with theoretically linked independent variables (IV). For example,

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

Partitioning the Parameter Space. Topic 18 Composite Hypotheses

Partitioning the Parameter Space. Topic 18 Composite Hypotheses Topic 18 Composite Hypotheses Partitioning the Parameter Space 1 / 10 Outline Partitioning the Parameter Space 2 / 10 Partitioning the Parameter Space Simple hypotheses limit us to a decision between one

More information

CHAPTER 8. Test Procedures is a rule, based on sample data, for deciding whether to reject H 0 and contains:

CHAPTER 8. Test Procedures is a rule, based on sample data, for deciding whether to reject H 0 and contains: CHAPTER 8 Test of Hypotheses Based on a Single Sample Hypothesis testing is the method that decide which of two contradictory claims about the parameter is correct. Here the parameters of interest are

More information

Simple and Multiple Linear Regression

Simple and Multiple Linear Regression Sta. 113 Chapter 12 and 13 of Devore March 12, 2010 Table of contents 1 Simple Linear Regression 2 Model Simple Linear Regression A simple linear regression model is given by Y = β 0 + β 1 x + ɛ where

More information

Outline. Topic 19 - Inference. The Cell Means Model. Estimates. Inference for Means Differences in cell means Contrasts. STAT Fall 2013

Outline. Topic 19 - Inference. The Cell Means Model. Estimates. Inference for Means Differences in cell means Contrasts. STAT Fall 2013 Topic 19 - Inference - Fall 2013 Outline Inference for Means Differences in cell means Contrasts Multiplicity Topic 19 2 The Cell Means Model Expressed numerically Y ij = µ i + ε ij where µ i is the theoretical

More information

Step-down FDR Procedures for Large Numbers of Hypotheses

Step-down FDR Procedures for Large Numbers of Hypotheses Step-down FDR Procedures for Large Numbers of Hypotheses Paul N. Somerville University of Central Florida Abstract. Somerville (2004b) developed FDR step-down procedures which were particularly appropriate

More information

Normal Curve in standard form: Answer each of the following questions

Normal Curve in standard form: Answer each of the following questions Basic Statistics Normal Curve in standard form: Answer each of the following questions What percent of the normal distribution lies between one and two standard deviations above the mean? What percent

More information

Chapter 16: Understanding Relationships Numerical Data

Chapter 16: Understanding Relationships Numerical Data Chapter 16: Understanding Relationships Numerical Data These notes reflect material from our text, Statistics, Learning from Data, First Edition, by Roxy Peck, published by CENGAGE Learning, 2015. Linear

More information

An inferential procedure to use sample data to understand a population Procedures

An inferential procedure to use sample data to understand a population Procedures Hypothesis Test An inferential procedure to use sample data to understand a population Procedures Hypotheses, the alpha value, the critical region (z-scores), statistics, conclusion Two types of errors

More information

Recall that a measure of fit is the sum of squared residuals: where. The F-test statistic may be written as:

Recall that a measure of fit is the sum of squared residuals: where. The F-test statistic may be written as: 1 Joint hypotheses The null and alternative hypotheses can usually be interpreted as a restricted model ( ) and an model ( ). In our example: Note that if the model fits significantly better than the restricted

More information

REPRODUCIBLE ANALYSIS OF HIGH-THROUGHPUT EXPERIMENTS

REPRODUCIBLE ANALYSIS OF HIGH-THROUGHPUT EXPERIMENTS REPRODUCIBLE ANALYSIS OF HIGH-THROUGHPUT EXPERIMENTS Ying Liu Department of Biostatistics, Columbia University Summer Intern at Research and CMC Biostats, Sanofi, Boston August 26, 2015 OUTLINE 1 Introduction

More information

Business Analytics and Data Mining Modeling Using R Prof. Gaurav Dixit Department of Management Studies Indian Institute of Technology, Roorkee

Business Analytics and Data Mining Modeling Using R Prof. Gaurav Dixit Department of Management Studies Indian Institute of Technology, Roorkee Business Analytics and Data Mining Modeling Using R Prof. Gaurav Dixit Department of Management Studies Indian Institute of Technology, Roorkee Lecture - 04 Basic Statistics Part-1 (Refer Slide Time: 00:33)

More information

Multiple Testing. Hoang Tran. Department of Statistics, Florida State University

Multiple Testing. Hoang Tran. Department of Statistics, Florida State University Multiple Testing Hoang Tran Department of Statistics, Florida State University Large-Scale Testing Examples: Microarray data: testing differences in gene expression between two traits/conditions Microbiome

More information

2. Outliers and inference for regression

2. Outliers and inference for regression Unit6: Introductiontolinearregression 2. Outliers and inference for regression Sta 101 - Spring 2016 Duke University, Department of Statistical Science Dr. Çetinkaya-Rundel Slides posted at http://bit.ly/sta101_s16

More information