Lecture 9 Two-Sample Test. Fall 2013 Prof. Yao Xie, H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech

Size: px
Start display at page:

Download "Lecture 9 Two-Sample Test. Fall 2013 Prof. Yao Xie, H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech"

Transcription

1 Lecture 9 Two-Sample Test Fall 2013 Prof. Yao Xie, yao.xie@isye.gatech.edu H. Milton Stewart School of Industrial Systems & Engineering Georgia Tech

2 Computer exam 1 18 Histogram 14 Frequency More Bin mean std 6.02 median 90

3 Midterm 2 Cover Confidence interval One sided and two sided confidence intervals Hypothesis testing Two approaches Fixed significance level p- value Can bring a 1- page 1- sided cheat sheet Make- up lecture on Friday Nov. 8: tentatively noon- 1:20pm in the area in front of my office, Groseclose #339

4 Outline Test difference in the mean Known variance Unknown variance Test difference in sample proportion Test difference in variance

5 Motivating Example Safety of drinking water (Arizona Republic, May 27, 2001) Water sampled from 10 communities in Pheonix And 10 communities from rural Arizona Arsenic concentration (AC): determines water quality, ranges from 3 ppb to 48 ppb Is there a difference in AC between these two areas? If the difference is large enough?

6 Formulate into statistical method Answered by statistical methods Pheonix μ 1 rural Arizona μ 2 Whether or not there is a difference between in mean AC level, μ 1 and μ 2, in these two areas? Equivalent to: test whether μ 1 - μ 2 is different from 0?

7 In general: comparing two populations Comparing two population means is often the way used to prove one population is different or better than another Competing Companies / Products Treatment vs. No Treatment New method vs. Old method

8 Test difference in the mean

9 Test difference in mean, variance known Solve the following hypothesis test H 0 : µ 1 µ 2 = Δ H 1 : µ 1 µ 2 Δ Assumptions for two sample inference

10 Test statistics A reasonable estimator for μ 1 - μ 2 is Under H 0, its mean is Δ Its variance is Detection statistic σ 1 2 X 1 X 2 2 n 1 + σ 2 n 2 Z = X 1 X 2 Δ σ n 1 + σ 2 n 2

11 Detection for two sample difference For given significance level: Reject H 0 when Z > b Z = X 1 X 2 Δ σ 1 2 n 1 + σ 2 And decide threshold b for that given significance level 2 n 2

12 p-value Probability of observing sample difference even more extreme, under H 0 P( Z > z )= 1 Φ( z ) 0 0

13 Example: paint drying time

14 Solution test difference in mean drying time H 1 : µ 1 µ 2 > Δ Δ 0 H 0 : µ 1 = µ 2 H 0 : µ 1 µ 2 = Δ H 1 : µ 1 > µ 2 form test statistic Z = X 1 X 2 σ σ 2 2 n 1 n 2

15 Fixed significance level approach Reject H 0 when Calculate: α = 0.05 Z = X 1 X 2 σ σ 2 2 n 1 z 0.05 = 1.65 n 2 > z α x 1 x 2 σ n 1 + σ 2 n 2 > 1.65 Reject H 0

16 Calculate p-value Compute p- value: Value of the statistic from data p- value: P( Z > z 0 )= 1 Φ( z 0 )= 1 Φ( 2.52)= Reject H 0 since its value is less than 0.01

17 Outline Test difference in the mean Known variance Unknown variance Test difference in sample proportion Test difference in variance

18 Case 2: test difference in mean, variance unknown, true variance equal Solve the following hypothesis test Variances are equal but unknown, so we pool the samples to estimate the variance H 0 : µ 1 µ 2 = Δ H 1 : µ 1 µ 2 Δ S 2 = (n 1 1)S 2 + (n 1)S p n + n S 1 and S 2 are sample variances S p 2 (n 1 + n 2 2) σ 2 ~ χ n1 +n 2 2

19 Use the following as the test statistics X 1 X 2 Δ S p 1/ n 1 +1/ n 2 ~ t n1 +n 2 2 For the following hypothesis test H 0 : µ 1 µ 2 = Δ H 1 : µ 1 µ 2 Δ Reject H 0 when X Y (µ 1 µ 2 ) S p 1/ n 1 +1/ n 2 > t α /2 19

20 Example α = 0.05 n 1 = 10 x 1 = 28 S 1 2 = 4 n 2 = 10 x 2 = 26 S 2 2 = 5 Assume true variance equal Test Statistic: t = x-y S 1 p n1 + 1 n 2 S 2 p = S 2 1 (n 1 1) + S 2 1 (n 2 1) n 1 + n 2 2 = 4(9) + 5(9) 18 = 4.5

21 S p 2 = 4.5 Recall degrees of freedom here is n + m 2 = 18 Threshold: t 18,0.025 = t = /10 +1/10 = 2.11>2.101 Weakly reject H 0 Calculate p-value p value = P( T > 2.11)=2P(T > 2.11) = =0.0982

22 Outline Test difference in the mean Known variance Unknown variance Test difference in sample proportion Test difference in variance

23 Formulation Two binomial parameters of interests Two independent random samples are taken from 2 populations Estimation of sample proportion X ~ Bin(n 1, p 1 ), Y ~ Bin(n 2, p 2 ) ˆp 1 = X n 1, ˆp 2 = Y n 2 H 0 : p 1 = p 2 H 1 : p 1 p 2

24 Test statistics Z = p ( 1 1 p ) 1 Pooled estimate ˆp 1 ˆp 2 ( ) n 1 + p 2 1 p 2 Estimate the test statistic: ˆp 1 ˆp 2 n 2 ˆp = X 1 + X 2 n 1 + n 2 ˆp 1 ˆp " ( ) 1 n + 1 # $ n 1 2 % & '

25 Two-sided test Z = ˆp 1 ˆp 2 ( p 1 p ) 2 p ( 1 1 p ) 1 For two-sided test, ( ) n 1 + p 2 1 p 2 n 2 H 0 : p 1 = p 2 reject H 0 when H 1 : p 1 p 2 ˆp 1 ˆp ˆp 1 ˆp 2 " ( ) 1 n + 1 # $ n 1 2 % & ' > z α /2

26 Test statistics and one-sided test H 0 : p 1 = p 2 H 1 : p 1 < p 2 Reject H 0 when H 0 : p 1 = p 2 H 1 : p 1 > p 2 Reject H 0 when ˆp 1 ˆp 2 ˆp 1 ˆp 2 ˆp 1 ˆp " ( ) 1 n + 1 # $ n 1 2 % & ' < z α ˆp 1 ˆp " ( ) 1 n + 1 # $ n 1 2 % & ' > z α

27 Comparing 2 population proportions: Example A new drug is being compared to a standard using 200 clinical trials (100 patients for each group). For the new drug, 83 of 100 patients improved. For the standard, 72 of 100 improved. Is the new drug statistically superior? Standard drug X ~ Bin(100, p 1 ) New drug Y ~ Bin(100, p 2 )

28 Fixed significance level approach H : p = p H : p < p X 1 = 72, X 2 = 83 n 1 = n 2 = 100 ˆp 1 = 0.72, ˆp 2 = 0.83 z 0.05 = 1.65 ˆp 1 ˆp ˆp 1 ˆp 2 " ( ) 1 n + 1 # $ n 1 2 % & ' = < 1.65 Reject H 0

29 p-value p- value P(Z < ) = Less than α = 0.05, reject H 0 Reject H 0, with p- value

30 Outline Test difference in the mean Known variance Unknown variance Test difference in sample proportion Test difference in variance

31 Test difference in variance two independent normal populations means and variances of the two normals are unknown test whether or not two variances are the same H 0 : H 1 :

32 Test based on sample variance ratio Test statistics: ratio of two sample variances F = S S 2 Need to introduce F distribution Let W and Y be independent chi-square 1 2 a ba b random variables with u and v degrees of freedom, respectively. Then the ratio 1 2 F W 1 2 a b a b c a b d u (10-28) Y v is said to follow the F distribution with u degrees of freedom in the numerator v degrees of freedom in the denominator. It is usually abbreviated as F u,v. 1 2 a ba b 1 2 a b a b c a b d

33 F distribution A continuous distribution mean = we should reject H 0 when the statistic is large

34 Sample distribution Under H 0 the detection statistic 2 χ n1 1 F = S 2 1 S = (n 1 1)S /σ 1 / (n 1 1) 2 2 (n 2 1)S /σ 2 / (n 2 1) ( σ = σ ) 2 has are indepe F n1 1,n 2 1 d 2 χ n2 1 distribution 34

35 Form of test Null hypothesis: H 0 : Test statistic: F 0 S2 1 (10-31) S 2 2 Alternative Hypotheses H 1 : H 1 : H 1 : Rejection Criterion f 0 f 2,n 1 1,n 2 1 or f 0 f 1 2,n 1 1,n 2 1 f 0 f,n1 1,n 2 1 f 0 f 1, n1 1,n 2 1 f (x) 2 n 1 f (x) 2 n 1 f (x) 2 n 1 α /2 α /2 α α α /2, n 1 (a) 2 α /2, n 1 x 0 (b) 2 α, n 1 x α, n 1 Figure 10-6 The F distribution for the test of with critical region values for (a), (b) H 1 : 2 2 H 1 : 2 2 H 0 : 2 2, and (c) H 1 : (c) 35 x

36 Example: Semiconductor etch variability variability in oxide layer of semiconductor is a critical characteristic of the semiconductor two kind of semiconductors, sample standard deviation s 1 = 1.96 s 2 = 2.13 n 1 = n 2 = 16 α = 0.05 test: whether or not their variances are the same 36

37 1. Parameter of interest: The parameter of interest are the variances of oxide thickness 2 1 and 2 2. We will assume that oxide thickness is a normal random variable for both gas mixtures. 2. Null hypothesis: H 0 : Alternative hypothesis: H 1 : Test statistic: The test statistic is given by equation 10-31: f 0 s2 1 s Reject H 0 if : Because n 1 n 2 16 and 0.05, we will reject H 0 : if f 0 f 0.025,15, or if f 0 f 0.975,15,15 1 f 0.025,15,

38 7. Computations: Because s 2 1 (1.96) and s 2 2 (2.13) , the test statistic is f 0 s2 1 s Conclusions: Because f 0.975,15, f 0.025,15, , we cannot reject the null hypothesis H 0 : at the 0.05 level of significance. 38

39 p-value Observe test statistic more extreme than what we got Alternative Hypotheses H 1 : H 1 : H 1 : calculate using R command p <- pf(x,d1,d2) p- value 2Ρ F > f 0 ( ) or 2Ρ F < f 0 ( ) ( ) Ρ F > f 0 Ρ F < f 0 ( ), depends on f 0 fall in upper or lower tail 39

40 Back to semiconductor example computed value of the test statistic in this example is f P(F 15, ) a p- value 2(0.3785) calculate using R command 40

Tables Table A Table B Table C Table D Table E 675

Tables Table A Table B Table C Table D Table E 675 BMTables.indd Page 675 11/15/11 4:25:16 PM user-s163 Tables Table A Standard Normal Probabilities Table B Random Digits Table C t Distribution Critical Values Table D Chi-square Distribution Critical Values

More information

CBA4 is live in practice mode this week exam mode from Saturday!

CBA4 is live in practice mode this week exam mode from Saturday! Announcements CBA4 is live in practice mode this week exam mode from Saturday! Material covered: Confidence intervals (both cases) 1 sample hypothesis tests (both cases) Hypothesis tests for 2 means as

More information

1 Statistical inference for a population mean

1 Statistical inference for a population mean 1 Statistical inference for a population mean 1. Inference for a large sample, known variance Suppose X 1,..., X n represents a large random sample of data from a population with unknown mean µ and known

More information

Statistical Inference

Statistical Inference Statistical Inference Classical and Bayesian Methods Revision Class for Midterm Exam AMS-UCSC Th Feb 9, 2012 Winter 2012. Session 1 (Revision Class) AMS-132/206 Th Feb 9, 2012 1 / 23 Topics Topics We will

More information

STA 101 Final Review

STA 101 Final Review STA 101 Final Review Statistics 101 Thomas Leininger June 24, 2013 Announcements All work (besides projects) should be returned to you and should be entered on Sakai. Office Hour: 2 3pm today (Old Chem

More information

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS

T.I.H.E. IT 233 Statistics and Probability: Sem. 1: 2013 ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS ESTIMATION AND HYPOTHESIS TESTING OF TWO POPULATIONS In our work on hypothesis testing, we used the value of a sample statistic to challenge an accepted value of a population parameter. We focused only

More information

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses.

Review: General Approach to Hypothesis Testing. 1. Define the research question and formulate the appropriate null and alternative hypotheses. 1 Review: Let X 1, X,..., X n denote n independent random variables sampled from some distribution might not be normal!) with mean µ) and standard deviation σ). Then X µ σ n In other words, X is approximately

More information

STATISTICS 141 Final Review

STATISTICS 141 Final Review STATISTICS 141 Final Review Bin Zou bzou@ualberta.ca Department of Mathematical & Statistical Sciences University of Alberta Winter 2015 Bin Zou (bzou@ualberta.ca) STAT 141 Final Review Winter 2015 1 /

More information

Unit5: Inferenceforcategoricaldata. 4. MT2 Review. Sta Fall Duke University, Department of Statistical Science

Unit5: Inferenceforcategoricaldata. 4. MT2 Review. Sta Fall Duke University, Department of Statistical Science Unit5: Inferenceforcategoricaldata 4. MT2 Review Sta 101 - Fall 2015 Duke University, Department of Statistical Science Dr. Çetinkaya-Rundel Slides posted at http://bit.ly/sta101_f15 Outline 1. Housekeeping

More information

Summary: the confidence interval for the mean (σ 2 known) with gaussian assumption

Summary: the confidence interval for the mean (σ 2 known) with gaussian assumption Summary: the confidence interval for the mean (σ known) with gaussian assumption on X Let X be a Gaussian r.v. with mean µ and variance σ. If X 1, X,..., X n is a random sample drawn from X then the confidence

More information

Hypothesis for Means and Proportions

Hypothesis for Means and Proportions November 14, 2012 Hypothesis Tests - Basic Ideas Often we are interested not in estimating an unknown parameter but in testing some claim or hypothesis concerning a population. For example we may wish

More information

Stat 231 Exam 2 Fall 2013

Stat 231 Exam 2 Fall 2013 Stat 231 Exam 2 Fall 2013 I have neither given nor received unauthorized assistance on this exam. Name Signed Date Name Printed 1 1. Some IE 361 students worked with a manufacturer on quantifying the capability

More information

Performance Evaluation and Comparison

Performance Evaluation and Comparison Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Cross Validation and Resampling 3 Interval Estimation

More information

POLI 443 Applied Political Research

POLI 443 Applied Political Research POLI 443 Applied Political Research Session 6: Tests of Hypotheses Contingency Analysis Lecturer: Prof. A. Essuman-Johnson, Dept. of Political Science Contact Information: aessuman-johnson@ug.edu.gh College

More information

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples Objective Section 9.4 Inferences About Two Means (Matched Pairs) Compare of two matched-paired means using two samples from each population. Hypothesis Tests and Confidence Intervals of two dependent means

More information

CHAPTER 9, 10. Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities:

CHAPTER 9, 10. Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities: CHAPTER 9, 10 Hypothesis Testing Similar to a courtroom trial. In trying a person for a crime, the jury needs to decide between one of two possibilities: The person is guilty. The person is innocent. To

More information

A3. Statistical Inference Hypothesis Testing for General Population Parameters

A3. Statistical Inference Hypothesis Testing for General Population Parameters Appendix / A3. Statistical Inference / General Parameters- A3. Statistical Inference Hypothesis Testing for General Population Parameters POPULATION H 0 : θ = θ 0 θ is a generic parameter of interest (e.g.,

More information

Inference for Regression

Inference for Regression Inference for Regression Section 9.4 Cathy Poliak, Ph.D. cathy@math.uh.edu Office in Fleming 11c Department of Mathematics University of Houston Lecture 13b - 3339 Cathy Poliak, Ph.D. cathy@math.uh.edu

More information

Ch 8: Inference for two samples

Ch 8: Inference for two samples Summer 2017 UAkron Dept. of Stats [3470 : 461/561] Applied Statistics Ch 8: Inference for two samples Contents 1 Preliminaries 2 1.1 Prelim: Two Normals.............................................................

More information

(a) The density histogram above right represents a particular sample of n = 40 practice shots. Answer each of the following. Show all work.

(a) The density histogram above right represents a particular sample of n = 40 practice shots. Answer each of the following. Show all work. . Target Practice. An archer is practicing hitting the bull s-eye of the target shown below left. For any point on the target, define the continuous random variable D = (signed) radial distance to the

More information

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015

AMS7: WEEK 7. CLASS 1. More on Hypothesis Testing Monday May 11th, 2015 AMS7: WEEK 7. CLASS 1 More on Hypothesis Testing Monday May 11th, 2015 Testing a Claim about a Standard Deviation or a Variance We want to test claims about or 2 Example: Newborn babies from mothers taking

More information

Sociology 6Z03 Review II

Sociology 6Z03 Review II Sociology 6Z03 Review II John Fox McMaster University Fall 2016 John Fox (McMaster University) Sociology 6Z03 Review II Fall 2016 1 / 35 Outline: Review II Probability Part I Sampling Distributions Probability

More information

Hypothesis Testing Problem. TMS-062: Lecture 5 Hypotheses Testing. Alternative Hypotheses. Test Statistic

Hypothesis Testing Problem. TMS-062: Lecture 5 Hypotheses Testing. Alternative Hypotheses. Test Statistic Hypothesis Testing Problem TMS-062: Lecture 5 Hypotheses Testing Same basic situation as befe: Data: random i. i. d. sample X 1,..., X n from a population and we wish to draw inference about unknown population

More information

Review. December 4 th, Review

Review. December 4 th, Review December 4 th, 2017 Att. Final exam: Course evaluation Friday, 12/14/2018, 10:30am 12:30pm Gore Hall 115 Overview Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 6: Statistics and Sampling Distributions Chapter

More information

Exam Empirical Methods VU University Amsterdam, Faculty of Exact Sciences h, February 12, 2015

Exam Empirical Methods VU University Amsterdam, Faculty of Exact Sciences h, February 12, 2015 Exam Empirical Methods VU University Amsterdam, Faculty of Exact Sciences 18.30 21.15h, February 12, 2015 Question 1 is on this page. Always motivate your answers. Write your answers in English. Only the

More information

Chapter 10: Inferences based on two samples

Chapter 10: Inferences based on two samples November 16 th, 2017 Overview Week 1 Week 2 Week 4 Week 7 Week 10 Week 12 Chapter 1: Descriptive statistics Chapter 6: Statistics and Sampling Distributions Chapter 7: Point Estimation Chapter 8: Confidence

More information

Exam 2 (KEY) July 20, 2009

Exam 2 (KEY) July 20, 2009 STAT 2300 Business Statistics/Summer 2009, Section 002 Exam 2 (KEY) July 20, 2009 Name: USU A#: Score: /225 Directions: This exam consists of six (6) questions, assessing material learned within Modules

More information

PubH 5450 Biostatistics I Prof. Carlin. Lecture 13

PubH 5450 Biostatistics I Prof. Carlin. Lecture 13 PubH 5450 Biostatistics I Prof. Carlin Lecture 13 Outline Outline Sample Size Counts, Rates and Proportions Part I Sample Size Type I Error and Power Type I error rate: probability of rejecting the null

More information

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc.

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc. Hypothesis Tests and Estimation for Population Variances 11-1 Learning Outcomes Outcome 1. Formulate and carry out hypothesis tests for a single population variance. Outcome 2. Develop and interpret confidence

More information

Sample size re-estimation in clinical trials. Dealing with those unknowns. Chris Jennison. University of Kyoto, January 2018

Sample size re-estimation in clinical trials. Dealing with those unknowns. Chris Jennison. University of Kyoto, January 2018 Sample Size Re-estimation in Clinical Trials: Dealing with those unknowns Christopher Jennison Department of Mathematical Sciences, University of Bath, UK http://people.bath.ac.uk/mascj University of Kyoto,

More information

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă

HYPOTHESIS TESTING II TESTS ON MEANS. Sorana D. Bolboacă HYPOTHESIS TESTING II TESTS ON MEANS Sorana D. Bolboacă OBJECTIVES Significance value vs p value Parametric vs non parametric tests Tests on means: 1 Dec 14 2 SIGNIFICANCE LEVEL VS. p VALUE Materials and

More information

16.3 One-Way ANOVA: The Procedure

16.3 One-Way ANOVA: The Procedure 16.3 One-Way ANOVA: The Procedure Tom Lewis Fall Term 2009 Tom Lewis () 16.3 One-Way ANOVA: The Procedure Fall Term 2009 1 / 10 Outline 1 The background 2 Computing formulas 3 The ANOVA Identity 4 Tom

More information

TUTORIAL 8 SOLUTIONS #

TUTORIAL 8 SOLUTIONS # TUTORIAL 8 SOLUTIONS #9.11.21 Suppose that a single observation X is taken from a uniform density on [0,θ], and consider testing H 0 : θ = 1 versus H 1 : θ =2. (a) Find a test that has significance level

More information

SEVERAL μs AND MEDIANS: MORE ISSUES. Business Statistics

SEVERAL μs AND MEDIANS: MORE ISSUES. Business Statistics SEVERAL μs AND MEDIANS: MORE ISSUES Business Statistics CONTENTS Post-hoc analysis ANOVA for 2 groups The equal variances assumption The Kruskal-Wallis test Old exam question Further study POST-HOC ANALYSIS

More information

Chapter 9. Hypothesis testing. 9.1 Introduction

Chapter 9. Hypothesis testing. 9.1 Introduction Chapter 9 Hypothesis testing 9.1 Introduction Confidence intervals are one of the two most common types of statistical inference. Use them when our goal is to estimate a population parameter. The second

More information

HYPOTHESIS TESTING. Hypothesis Testing

HYPOTHESIS TESTING. Hypothesis Testing MBA 605 Business Analytics Don Conant, PhD. HYPOTHESIS TESTING Hypothesis testing involves making inferences about the nature of the population on the basis of observations of a sample drawn from the population.

More information

Questions 3.83, 6.11, 6.12, 6.17, 6.25, 6.29, 6.33, 6.35, 6.50, 6.51, 6.53, 6.55, 6.59, 6.60, 6.65, 6.69, 6.70, 6.77, 6.79, 6.89, 6.

Questions 3.83, 6.11, 6.12, 6.17, 6.25, 6.29, 6.33, 6.35, 6.50, 6.51, 6.53, 6.55, 6.59, 6.60, 6.65, 6.69, 6.70, 6.77, 6.79, 6.89, 6. Chapter 7 Reading 7.1, 7.2 Questions 3.83, 6.11, 6.12, 6.17, 6.25, 6.29, 6.33, 6.35, 6.50, 6.51, 6.53, 6.55, 6.59, 6.60, 6.65, 6.69, 6.70, 6.77, 6.79, 6.89, 6.112 Introduction In Chapter 5 and 6, we emphasized

More information

Midterm 1 and 2 results

Midterm 1 and 2 results Midterm 1 and 2 results Midterm 1 Midterm 2 ------------------------------ Min. :40.00 Min. : 20.0 1st Qu.:60.00 1st Qu.:60.00 Median :75.00 Median :70.0 Mean :71.97 Mean :69.77 3rd Qu.:85.00 3rd Qu.:85.0

More information

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing

Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing Quantitative Introduction ro Risk and Uncertainty in Business Module 5: Hypothesis Testing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu October

More information

Summary of Chapters 7-9

Summary of Chapters 7-9 Summary of Chapters 7-9 Chapter 7. Interval Estimation 7.2. Confidence Intervals for Difference of Two Means Let X 1,, X n and Y 1, Y 2,, Y m be two independent random samples of sizes n and m from two

More information

Chapter 5: HYPOTHESIS TESTING

Chapter 5: HYPOTHESIS TESTING MATH411: Applied Statistics Dr. YU, Chi Wai Chapter 5: HYPOTHESIS TESTING 1 WHAT IS HYPOTHESIS TESTING? As its name indicates, it is about a test of hypothesis. To be more precise, we would first translate

More information

8.1-4 Test of Hypotheses Based on a Single Sample

8.1-4 Test of Hypotheses Based on a Single Sample 8.1-4 Test of Hypotheses Based on a Single Sample Example 1 (Example 8.6, p. 312) A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation

More information

Class 24. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700

Class 24. Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science. Marquette University MATH 1700 Class 4 Daniel B. Rowe, Ph.D. Department of Mathematics, Statistics, and Computer Science Copyright 013 by D.B. Rowe 1 Agenda: Recap Chapter 9. and 9.3 Lecture Chapter 10.1-10.3 Review Exam 6 Problem Solving

More information

We need to define some concepts that are used in experiments.

We need to define some concepts that are used in experiments. Chapter 0 Analysis of Variance (a.k.a. Designing and Analysing Experiments) Section 0. Introduction In Chapter we mentioned some different ways in which we could get data: Surveys, Observational Studies,

More information

MEI STRUCTURED MATHEMATICS STATISTICS 2, S2. Practice Paper S2-B

MEI STRUCTURED MATHEMATICS STATISTICS 2, S2. Practice Paper S2-B MEI Mathematics in Education and Industry MEI STRUCTURED MATHEMATICS STATISTICS, S Practice Paper S-B Additional materials: Answer booklet/paper Graph paper MEI Examination formulae and tables (MF) TIME

More information

Part III: Unstructured Data

Part III: Unstructured Data Inf1-DA 2010 2011 III: 51 / 89 Part III Unstructured Data Data Retrieval: III.1 Unstructured data and data retrieval Statistical Analysis of Data: III.2 Data scales and summary statistics III.3 Hypothesis

More information

Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS

Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS Stat 135, Fall 2006 A. Adhikari HOMEWORK 6 SOLUTIONS 1a. Under the null hypothesis X has the binomial (100,.5) distribution with E(X) = 50 and SE(X) = 5. So P ( X 50 > 10) is (approximately) two tails

More information

Chapter 9. Inferences from Two Samples. Objective. Notation. Section 9.2. Definition. Notation. q = 1 p. Inferences About Two Proportions

Chapter 9. Inferences from Two Samples. Objective. Notation. Section 9.2. Definition. Notation. q = 1 p. Inferences About Two Proportions Chapter 9 Inferences from Two Samples 9. Inferences About Two Proportions 9.3 Inferences About Two s (Independent) 9.4 Inferences About Two s (Matched Pairs) 9.5 Comparing Variation in Two Samples Objective

More information

GROUPED DATA E.G. FOR SAMPLE OF RAW DATA (E.G. 4, 12, 7, 5, MEAN G x / n STANDARD DEVIATION MEDIAN AND QUARTILES STANDARD DEVIATION

GROUPED DATA E.G. FOR SAMPLE OF RAW DATA (E.G. 4, 12, 7, 5, MEAN G x / n STANDARD DEVIATION MEDIAN AND QUARTILES STANDARD DEVIATION FOR SAMPLE OF RAW DATA (E.G. 4, 1, 7, 5, 11, 6, 9, 7, 11, 5, 4, 7) BE ABLE TO COMPUTE MEAN G / STANDARD DEVIATION MEDIAN AND QUARTILES Σ ( Σ) / 1 GROUPED DATA E.G. AGE FREQ. 0-9 53 10-19 4...... 80-89

More information

Inference About Two Means: Independent Samples

Inference About Two Means: Independent Samples Inference About Two Means: Independent Samples MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Motivation Suppose we wish to study the mean absorption in muscle

More information

Ch. 7. One sample hypothesis tests for µ and σ

Ch. 7. One sample hypothesis tests for µ and σ Ch. 7. One sample hypothesis tests for µ and σ Prof. Tesler Math 18 Winter 2019 Prof. Tesler Ch. 7: One sample hypoth. tests for µ, σ Math 18 / Winter 2019 1 / 23 Introduction Data Consider the SAT math

More information

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper

McGill University. Faculty of Science. Department of Mathematics and Statistics. Part A Examination. Statistics: Theory Paper McGill University Faculty of Science Department of Mathematics and Statistics Part A Examination Statistics: Theory Paper Date: 10th May 2015 Instructions Time: 1pm-5pm Answer only two questions from Section

More information

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics

Dover- Sherborn High School Mathematics Curriculum Probability and Statistics Mathematics Curriculum A. DESCRIPTION This is a full year courses designed to introduce students to the basic elements of statistics and probability. Emphasis is placed on understanding terminology and

More information

Section 9.5. Testing the Difference Between Two Variances. Bluman, Chapter 9 1

Section 9.5. Testing the Difference Between Two Variances. Bluman, Chapter 9 1 Section 9.5 Testing the Difference Between Two Variances Bluman, Chapter 9 1 This the last day the class meets before spring break starts. Please make sure to be present for the test or make appropriate

More information

Soc3811 Second Midterm Exam

Soc3811 Second Midterm Exam Soc38 Second Midterm Exam SEMI-OPE OTE: One sheet of paper, signed & turned in with exam booklet Bring our Own Pencil with Eraser and a Hand Calculator! Standardized Scores & Probability If we know the

More information

Population Variance. Concepts from previous lectures. HUMBEHV 3HB3 one-sample t-tests. Week 8

Population Variance. Concepts from previous lectures. HUMBEHV 3HB3 one-sample t-tests. Week 8 Concepts from previous lectures HUMBEHV 3HB3 one-sample t-tests Week 8 Prof. Patrick Bennett sampling distributions - sampling error - standard error of the mean - degrees-of-freedom Null and alternative/research

More information

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA

Sample Size and Power I: Binary Outcomes. James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power I: Binary Outcomes James Ware, PhD Harvard School of Public Health Boston, MA Sample Size and Power Principles: Sample size calculations are an essential part of study design Consider

More information

Classroom Activity 7 Math 113 Name : 10 pts Intro to Applied Stats

Classroom Activity 7 Math 113 Name : 10 pts Intro to Applied Stats Classroom Activity 7 Math 113 Name : 10 pts Intro to Applied Stats Materials Needed: Bags of popcorn, watch with second hand or microwave with digital timer. Instructions: Follow the instructions on the

More information

6.4 Type I and Type II Errors

6.4 Type I and Type II Errors 6.4 Type I and Type II Errors Ulrich Hoensch Friday, March 22, 2013 Null and Alternative Hypothesis Neyman-Pearson Approach to Statistical Inference: A statistical test (also known as a hypothesis test)

More information

Tests for Population Proportion(s)

Tests for Population Proportion(s) Tests for Population Proportion(s) Esra Akdeniz April 6th, 2016 Motivation We are interested in estimating the prevalence rate of breast cancer among 50- to 54-year-old women whose mothers have had breast

More information

The Components of a Statistical Hypothesis Testing Problem

The Components of a Statistical Hypothesis Testing Problem Statistical Inference: Recall from chapter 5 that statistical inference is the use of a subset of a population (the sample) to draw conclusions about the entire population. In chapter 5 we studied one

More information

Econ 325: Introduction to Empirical Economics

Econ 325: Introduction to Empirical Economics Econ 325: Introduction to Empirical Economics Chapter 9 Hypothesis Testing: Single Population Ch. 9-1 9.1 What is a Hypothesis? A hypothesis is a claim (assumption) about a population parameter: population

More information

STA2601. Tutorial letter 203/2/2017. Applied Statistics II. Semester 2. Department of Statistics STA2601/203/2/2017. Solutions to Assignment 03

STA2601. Tutorial letter 203/2/2017. Applied Statistics II. Semester 2. Department of Statistics STA2601/203/2/2017. Solutions to Assignment 03 STA60/03//07 Tutorial letter 03//07 Applied Statistics II STA60 Semester Department of Statistics Solutions to Assignment 03 Define tomorrow. university of south africa QUESTION (a) (i) The normal quantile

More information

+ Specify 1 tail / 2 tail

+ Specify 1 tail / 2 tail Week 2: Null hypothesis Aeroplane seat designer wonders how wide to make the plane seats. He assumes population average hip size μ = 43.2cm Sample size n = 50 Question : Is the assumption μ = 43.2cm reasonable?

More information

WISE International Masters

WISE International Masters WISE International Masters ECONOMETRICS Instructor: Brett Graham INSTRUCTIONS TO STUDENTS 1 The time allowed for this examination paper is 2 hours. 2 This examination paper contains 32 questions. You are

More information

Lecture 4: Statistical Hypothesis Testing

Lecture 4: Statistical Hypothesis Testing EAS31136/B9036: Statistics in Earth & Atmospheric Sciences Lecture 4: Statistical Hypothesis Testing Instructor: Prof. Johnny Luo www.sci.ccny.cuny.edu/~luo Dates Topic Reading (Based on the 2 nd Edition

More information

Sampling Distributions: Central Limit Theorem

Sampling Distributions: Central Limit Theorem Review for Exam 2 Sampling Distributions: Central Limit Theorem Conceptually, we can break up the theorem into three parts: 1. The mean (µ M ) of a population of sample means (M) is equal to the mean (µ)

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Test 3 Practice Test A. NOTE: Ignore Q10 (not covered)

Test 3 Practice Test A. NOTE: Ignore Q10 (not covered) Test 3 Practice Test A NOTE: Ignore Q10 (not covered) MA 180/418 Midterm Test 3, Version A Fall 2010 Student Name (PRINT):............................................. Student Signature:...................................................

More information

Two-Sample Inference for Proportions and Inference for Linear Regression

Two-Sample Inference for Proportions and Inference for Linear Regression Two-Sample Inference for Proportions and Inference for Linear Regression Kwonsang Lee University of Pennsylvania kwonlee@wharton.upenn.edu April 24, 2015 Kwonsang Lee STAT111 April 24, 2015 1 / 13 Announcement:

More information

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2

Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Lecture 2: Basic Concepts and Simple Comparative Experiments Montgomery: Chapter 2 Fall, 2013 Page 1 Random Variable and Probability Distribution Discrete random variable Y : Finite possible values {y

More information

Announcements. Final Review: Units 1-7

Announcements. Final Review: Units 1-7 Announcements Announcements Final : Units 1-7 Statistics 104 Mine Çetinkaya-Rundel June 24, 2013 Final on Wed: cheat sheet (one sheet, front and back) and calculator Must have webcam + audio on at all

More information

Topic 22 Analysis of Variance

Topic 22 Analysis of Variance Topic 22 Analysis of Variance Comparing Multiple Populations 1 / 14 Outline Overview One Way Analysis of Variance Sample Means Sums of Squares The F Statistic Confidence Intervals 2 / 14 Overview Two-sample

More information

Chapter 9 Inferences from Two Samples

Chapter 9 Inferences from Two Samples Chapter 9 Inferences from Two Samples 9-1 Review and Preview 9-2 Two Proportions 9-3 Two Means: Independent Samples 9-4 Two Dependent Samples (Matched Pairs) 9-5 Two Variances or Standard Deviations Review

More information

Medical statistics part I, autumn 2010: One sample test of hypothesis

Medical statistics part I, autumn 2010: One sample test of hypothesis Medical statistics part I, autumn 2010: One sample test of hypothesis Eirik Skogvoll Consultant/ Professor Faculty of Medicine Dept. of Anaesthesiology and Emergency Medicine 1 What is a hypothesis test?

More information

Chapter Six: Two Independent Samples Methods 1/51

Chapter Six: Two Independent Samples Methods 1/51 Chapter Six: Two Independent Samples Methods 1/51 6.3 Methods Related To Differences Between Proportions 2/51 Test For A Difference Between Proportions:Introduction Suppose a sampling distribution were

More information

Natural Language Processing

Natural Language Processing Natural Language Processing Info 159/259 Lecture 12: Features and hypothesis tests (Oct 3, 2017) David Bamman, UC Berkeley Announcements No office hours for DB this Friday (email if you d like to chat)

More information

16.400/453J Human Factors Engineering. Design of Experiments II

16.400/453J Human Factors Engineering. Design of Experiments II J Human Factors Engineering Design of Experiments II Review Experiment Design and Descriptive Statistics Research question, independent and dependent variables, histograms, box plots, etc. Inferential

More information

ANOVA: Comparing More Than Two Means

ANOVA: Comparing More Than Two Means 1 ANOVA: Comparing More Than Two Means 10.1 ANOVA: The Completely Randomized Design Elements of a Designed Experiment Before we begin any calculations, we need to discuss some terminology. To make this

More information

ECO220Y Review and Introduction to Hypothesis Testing Readings: Chapter 12

ECO220Y Review and Introduction to Hypothesis Testing Readings: Chapter 12 ECO220Y Review and Introduction to Hypothesis Testing Readings: Chapter 12 Winter 2012 Lecture 13 (Winter 2011) Estimation Lecture 13 1 / 33 Review of Main Concepts Sampling Distribution of Sample Mean

More information

This paper is not to be removed from the Examination Halls

This paper is not to be removed from the Examination Halls ~~ST104B ZA d0 This paper is not to be removed from the Examination Halls UNIVERSITY OF LONDON ST104B ZB BSc degrees and Diplomas for Graduates in Economics, Management, Finance and the Social Sciences,

More information

BIOS 6222: Biostatistics II. Outline. Course Presentation. Course Presentation. Review of Basic Concepts. Why Nonparametrics.

BIOS 6222: Biostatistics II. Outline. Course Presentation. Course Presentation. Review of Basic Concepts. Why Nonparametrics. BIOS 6222: Biostatistics II Instructors: Qingzhao Yu Don Mercante Cruz Velasco 1 Outline Course Presentation Review of Basic Concepts Why Nonparametrics The sign test 2 Course Presentation Contents Justification

More information

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV

ME3620. Theory of Engineering Experimentation. Spring Chapter IV. Decision Making for a Single Sample. Chapter IV Theory of Engineering Experimentation Chapter IV. Decision Making for a Single Sample Chapter IV 1 4 1 Statistical Inference The field of statistical inference consists of those methods used to make decisions

More information

INTERVAL ESTIMATION AND HYPOTHESES TESTING

INTERVAL ESTIMATION AND HYPOTHESES TESTING INTERVAL ESTIMATION AND HYPOTHESES TESTING 1. IDEA An interval rather than a point estimate is often of interest. Confidence intervals are thus important in empirical work. To construct interval estimates,

More information

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1

Notes for Week 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Notes for Wee 13 Analysis of Variance (ANOVA) continued WEEK 13 page 1 Exam 3 is on Friday May 1. A part of one of the exam problems is on Predictiontervals : When randomly sampling from a normal population

More information

Inference for Proportions, Variance and Standard Deviation

Inference for Proportions, Variance and Standard Deviation Inference for Proportions, Variance and Standard Deviation Sections 7.10 & 7.6 Cathy Poliak, Ph.D. cathy@math.uh.edu Office Fleming 11c Department of Mathematics University of Houston Lecture 12 Cathy

More information

1 Hypothesis testing for a single mean

1 Hypothesis testing for a single mean This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike License. Your use of this material constitutes acceptance of that license and the conditions of use of materials on this

More information

We know from STAT.1030 that the relevant test statistic for equality of proportions is:

We know from STAT.1030 that the relevant test statistic for equality of proportions is: 2. Chi 2 -tests for equality of proportions Introduction: Two Samples Consider comparing the sample proportions p 1 and p 2 in independent random samples of size n 1 and n 2 out of two populations which

More information

Chapter 7 Comparison of two independent samples

Chapter 7 Comparison of two independent samples Chapter 7 Comparison of two independent samples 7.1 Introduction Population 1 µ σ 1 1 N 1 Sample 1 y s 1 1 n 1 Population µ σ N Sample y s n 1, : population means 1, : population standard deviations N

More information

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides

Chapter 7. Inference for Distributions. Introduction to the Practice of STATISTICS SEVENTH. Moore / McCabe / Craig. Lecture Presentation Slides Chapter 7 Inference for Distributions Introduction to the Practice of STATISTICS SEVENTH EDITION Moore / McCabe / Craig Lecture Presentation Slides Chapter 7 Inference for Distributions 7.1 Inference for

More information

Discrete Probability distribution Discrete Probability distribution

Discrete Probability distribution Discrete Probability distribution 438//9.4.. Discrete Probability distribution.4.. Binomial P.D. The outcomes belong to either of two relevant categories. A binomial experiment requirements: o There is a fixed number of trials (n). o On

More information

Hypothesis Testing One Sample Tests

Hypothesis Testing One Sample Tests STATISTICS Lecture no. 13 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 12. 1. 2010 Tests on Mean of a Normal distribution Tests on Variance of a Normal

More information

Relating Graph to Matlab

Relating Graph to Matlab There are two related course documents on the web Probability and Statistics Review -should be read by people without statistics background and it is helpful as a review for those with prior statistics

More information

Visual interpretation with normal approximation

Visual interpretation with normal approximation Visual interpretation with normal approximation H 0 is true: H 1 is true: p =0.06 25 33 Reject H 0 α =0.05 (Type I error rate) Fail to reject H 0 β =0.6468 (Type II error rate) 30 Accept H 1 Visual interpretation

More information

Outline. PubH 5450 Biostatistics I Prof. Carlin. Confidence Interval for the Mean. Part I. Reviews

Outline. PubH 5450 Biostatistics I Prof. Carlin. Confidence Interval for the Mean. Part I. Reviews Outline Outline PubH 5450 Biostatistics I Prof. Carlin Lecture 11 Confidence Interval for the Mean Known σ (population standard deviation): Part I Reviews σ x ± z 1 α/2 n Small n, normal population. Large

More information

Lecture 15: Inference Based on Two Samples

Lecture 15: Inference Based on Two Samples Lecture 15: Inference Based on Two Samples MSU-STT 351-Sum17B (P. Vellaisamy: STT 351-Sum17B) Probability & Statistics for Engineers 1 / 26 9.1 Z-tests and CI s for (µ 1 µ 2 ) The assumptions: (i) X =

More information

A proportion is the fraction of individuals having a particular attribute. Can range from 0 to 1!

A proportion is the fraction of individuals having a particular attribute. Can range from 0 to 1! Proportions A proportion is the fraction of individuals having a particular attribute. It is also the probability that an individual randomly sampled from the population will have that attribute Can range

More information

Inference for Distributions Inference for the Mean of a Population

Inference for Distributions Inference for the Mean of a Population Inference for Distributions Inference for the Mean of a Population PBS Chapter 7.1 009 W.H Freeman and Company Objectives (PBS Chapter 7.1) Inference for the mean of a population The t distributions The

More information

7.2 One-Sample Correlation ( = a) Introduction. Correlation analysis measures the strength and direction of association between

7.2 One-Sample Correlation ( = a) Introduction. Correlation analysis measures the strength and direction of association between 7.2 One-Sample Correlation ( = a) Introduction Correlation analysis measures the strength and direction of association between variables. In this chapter we will test whether the population correlation

More information

Lecture 18: Analysis of variance: ANOVA

Lecture 18: Analysis of variance: ANOVA Lecture 18: Announcements: Exam has been graded. See website for results. Lecture 18: Announcements: Exam has been graded. See website for results. Reading: Vasilj pp. 83-97. Lecture 18: Announcements:

More information