Financial Econometrics and Quantitative Risk Managenent Return Properties

Size: px
Start display at page:

Download "Financial Econometrics and Quantitative Risk Managenent Return Properties"

Transcription

1 Financial Econometrics and Quantitative Risk Managenent Return Properties Eric Zivot Updated: April 1, 2013

2 Lecture Outline Course introduction Return definitions Empirical properties of returns

3 Reading FRF chapter 1 FMUND chapter 1 and chapter 2 SDAFE chapter 2 and chapter 4

4 Discrete Returns Simple Net Return = 1 1 =% Gross Return 1+ = 1

5 2 Period Return (2) = 2 2 = 2 1 (2) = = (1+ )(1 + 1 ) 1 Period Return 1+ ( ) = (1+ )(1 + 1 ) ( ) = 1 Y =0 (1 + )

6 Adjusting for Dividends (Total Returns) = = Adjusting for Inflation (Real Returns) 1+ Real = 1 1

7 Portfolio Return = = X =1 X =1 X =1 =1 Excess Returns = = T-bill rate or LIBOR rate

8 Continuously Compounded Returns Ã! = ln(1+ )=ln = ln( ) ln( 1 ) = 1 = 1+ = 1 = = 1 1 Note: = 1

9 2 period return (2) = ln(1 + (2)) = ln = ln = ln à 1 1 à 1 = + 1! Ã! 2! 2 Ã! 1 +ln 2 = 2

10 period return ( ) = ln(1+ ( )) = ln = 1 X =0 Ã! =

11 Adjusting for Dividends (Total Returns) = ln(1+ )=ln à + 1 = ln( + ) ln( 1 )! Adjusting for Inflation (Real Returns) Real = ln(1+ Real )=ln = Ã! 1 1

12 Portfolio Return But = ln(1+ ) = ln 1+ 6= X =1 X =1 X =1 if is small

13 Excess Returns = = ln( )=ln( ) 6= But if is small then

14 Stylized Facts of Asset Return Distributions Fat tails Asymmetry Aggregated normality Absence of serial correlation Volatility clustering Time-varying cross correlation

15 Shape Characteristics Let be a random variable with pdf = [ ] : center 2 = var( ) = [( ) 2 ]: spread " # ( ) 3 skew( ) = : symmetry kurt( ) = 3 " ( ) 4 4 # : tail thickness Note: The moment and central moment of is 0 = [ ] = [( ) ]

16 Normal Distribution ( 2 ) ( ) = Ã! exp ( )2 2 2 [ ] = var( ) = 2 skew( ) = 0 kurt( ) = 3 = 0 for odd

17 Sample moments Let { } denote a random sample of size where is a realization of the random variable ˆ = 1 X =1 skew d = ˆ 3 ˆ 3 ˆ = 1 1 ˆ 2 = 1 1 kurt d = ˆ 4 ˆ 3 X =1 ( ˆ ) X =1 ( ˆ ) 2 =ˆ 2 Note: we divide by 1 to get unbiased estimates. Check software to see how moments are computed.

18 Testing for Normality QQ-plot: plot standardized empirical quantiles vs. theoretical quantiles from specified distribution. Note: Shapiro-Wilks (SW) test for normality: correlation coefficient between values used in QQ-plot Jarque-Bera (JB) test for normality à JB = skew d 2 + ( kurt d 3) (2) Note: if ( 2 ) then d skew (0 6) ( d kurt 3) (0 24)!

19 Kolmogorov-Smirnov (KS) test compares the empirical CDF of returns with the CDF of the normal distribution (or any other assumed distribution) Sort returns: (1) ( ) and compute empirical CDF ˆ ( ( ) )= Evaluate normal CDF: Φ µ ( ) ˆ ˆ Compute KS statistic: =sup Φ µ ( ) ˆ ˆ

20 Student s-t distribution Let (0 1), 2 ( ) such that and are independent. Then = q where denotes a (standardized) Student s t distribution with degrees of freedom. Note: [ ] = 0 var( ) = 2 2 skew = 0 kurt 3= Existence of moments depends on degrees of freedom (df) parameter Cauchy = Student s-t with 1 df. Only density exists.

21 If then has moments = + q ( 2) [ ]= var( )= 2

22 Density function ( ; ) = Γ( ) = " Γ{( +1) 2 ( ) 1 2 Γ( 2) Z 0 # 1 {1+( 2 )} ( +1) 2 1 exp( ) = gamma function The d.f. parameter can be estimated by MLE. Note: A simple method of moments estimator for isbasedonkurtosis: kurt 3= 6 4 =6 (kurt 3) + 4

23 Skew Normal Distribution Azzalini and Capitanio (2002) define ( ) as a skew-normal random variable with density ( ) = 2 ( )Φ( 1 ( )) Ã! 2 Z ( ) = (2 ) 1 2 exp 2 Φ( ) = ( ) = location parameter, = scale parameter, 0 = shape (skew) parameter, Note: Estimation and simulation functions in R package sn

24 Remarks =0 ( 2 ) 0 positive skewness 0 negative skewness

25 Skew-t Distribution Azzalini and Capitanio (2002) define ( ) as a skew-t random variable using the transformation = ( ) 2 ( ) The parameters and have the same interpretation as in the skew-normal and = degrees of freedom parameter, 0 Note: Estimation and simulation functions in R package sn

26 Defn: The stochastic process { } is covariance stationary if [ ] = for all ( ) = [( )( )] = for all and any The parameter is called the order or lag j autocovariance of { } The autocorrelations of { } are defined by = ( ) q ( ) ( ) = 0 and a plot of against is called the autocorrelation function (ACF)

27 The lag sample autocovariance and lag sample autocorrelation are defined as ˆ = 1 ˆ = ˆ ˆ 0 X = +1 where = 1 P =1 isthesamplemean. ( )( ) ThesampleACF(SACF)isaplotofˆ against.

28 Example: White noise (GWN) processes Perhaps the most simple stationary time series is the independent Gaussian white noise process { } (0 2 ) (0 2 ). Thisprocesshas = = =0( 6= 0). Two slightly more general processes are the independent white noise (IWN) process, { } (0 2 ),andthewhite noise (WN) process, { } (0 2 ). Both processes have mean zero and variance 2, but the IWN process has independent increments, whereas the WN process has uncorrelated increments.

29 The SACF is typically shown with 95% confidence limits about zero. These limitsarebasedontheresultthatif{ } (0 2 ) then µ ˆ The notation ˆ ³ 0 1 means that the distribution of ˆ is approximated by normal distribution with mean 0 and variance 1 and is based on the central limit theorem result ˆ (0 1). The 95% limits about zero are then ± 1 96.

30 Testing for White Noise Consider testing the null hypothesis 0 : { } (0 2 ) Under the null, all of the autocorrelations for 0 are zero. To test this null, Box and Pierce (1970) suggested the Q-statistic ( ) = X ˆ 2 =1 Under the null, ( ) is asymptotically distributed 2 ( ). In a finite sample, the Q-statistic may not be well approximated by the 2 ( ). Ljung and Box (1978) suggested the modified Q-statistic ( ) = ( +2) X =1 ˆ 2

Econ 424 Time Series Concepts

Econ 424 Time Series Concepts Econ 424 Time Series Concepts Eric Zivot January 20 2015 Time Series Processes Stochastic (Random) Process { 1 2 +1 } = { } = sequence of random variables indexed by time Observed time series of length

More information

6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series. MA6622, Ernesto Mordecki, CityU, HK, 2006.

6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series. MA6622, Ernesto Mordecki, CityU, HK, 2006. 6. The econometrics of Financial Markets: Empirical Analysis of Financial Time Series MA6622, Ernesto Mordecki, CityU, HK, 2006. References for Lecture 5: Quantitative Risk Management. A. McNeil, R. Frey,

More information

Volatility. Gerald P. Dwyer. February Clemson University

Volatility. Gerald P. Dwyer. February Clemson University Volatility Gerald P. Dwyer Clemson University February 2016 Outline 1 Volatility Characteristics of Time Series Heteroskedasticity Simpler Estimation Strategies Exponentially Weighted Moving Average Use

More information

Financial Econometrics and Volatility Models Copulas

Financial Econometrics and Volatility Models Copulas Financial Econometrics and Volatility Models Copulas Eric Zivot Updated: May 10, 2010 Reading MFTS, chapter 19 FMUND, chapters 6 and 7 Introduction Capturing co-movement between financial asset returns

More information

Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 2

Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 2 Introduction to Computational Finance and Financial Econometrics Probability Theory Review: Part 2 Eric Zivot July 7, 2014 Bivariate Probability Distribution Example - Two discrete rv s and Bivariate pdf

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

Nonlinear GMM. Eric Zivot. Winter, 2013

Nonlinear GMM. Eric Zivot. Winter, 2013 Nonlinear GMM Eric Zivot Winter, 2013 Nonlinear GMM estimation occurs when the GMM moment conditions g(w θ) arenonlinearfunctionsofthe model parameters θ The moment conditions g(w θ) may be nonlinear functions

More information

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process

ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Department of Electrical Engineering University of Arkansas ELEG 3143 Probability & Stochastic Process Ch. 6 Stochastic Process Dr. Jingxian Wu wuj@uark.edu OUTLINE 2 Definition of stochastic process (random

More information

Financial Econometrics and Volatility Models Extreme Value Theory

Financial Econometrics and Volatility Models Extreme Value Theory Financial Econometrics and Volatility Models Extreme Value Theory Eric Zivot May 3, 2010 1 Lecture Outline Modeling Maxima and Worst Cases The Generalized Extreme Value Distribution Modeling Extremes Over

More information

Review of Statistics

Review of Statistics Review of Statistics Topics Descriptive Statistics Mean, Variance Probability Union event, joint event Random Variables Discrete and Continuous Distributions, Moments Two Random Variables Covariance and

More information

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 14

Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 14 Introduction to Econometrics (3 rd Updated Edition) by James H. Stock and Mark W. Watson Solutions to Odd-Numbered End-of-Chapter Exercises: Chapter 14 (This version July 0, 014) 015 Pearson Education,

More information

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles

Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Week 5 Quantitative Analysis of Financial Markets Characterizing Cycles Christopher Ting http://www.mysmu.edu/faculty/christophert/ Christopher Ting : christopherting@smu.edu.sg : 6828 0364 : LKCSB 5036

More information

Introduction to Algorithmic Trading Strategies Lecture 10

Introduction to Algorithmic Trading Strategies Lecture 10 Introduction to Algorithmic Trading Strategies Lecture 10 Risk Management Haksun Li haksun.li@numericalmethod.com www.numericalmethod.com Outline Value at Risk (VaR) Extreme Value Theory (EVT) References

More information

Economics 583: Econometric Theory I A Primer on Asymptotics

Economics 583: Econometric Theory I A Primer on Asymptotics Economics 583: Econometric Theory I A Primer on Asymptotics Eric Zivot January 14, 2013 The two main concepts in asymptotic theory that we will use are Consistency Asymptotic Normality Intuition consistency:

More information

Financial Econometrics Return Predictability

Financial Econometrics Return Predictability Financial Econometrics Return Predictability Eric Zivot March 30, 2011 Lecture Outline Market Efficiency The Forms of the Random Walk Hypothesis Testing the Random Walk Hypothesis Reading FMUND, chapter

More information

Autoregressive Moving Average (ARMA) Models and their Practical Applications

Autoregressive Moving Average (ARMA) Models and their Practical Applications Autoregressive Moving Average (ARMA) Models and their Practical Applications Massimo Guidolin February 2018 1 Essential Concepts in Time Series Analysis 1.1 Time Series and Their Properties Time series:

More information

A Primer on Asymptotics

A Primer on Asymptotics A Primer on Asymptotics Eric Zivot Department of Economics University of Washington September 30, 2003 Revised: October 7, 2009 Introduction The two main concepts in asymptotic theory covered in these

More information

THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41202, Spring Quarter 2003, Mr. Ruey S. Tsay

THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41202, Spring Quarter 2003, Mr. Ruey S. Tsay THE UNIVERSITY OF CHICAGO Graduate School of Business Business 41202, Spring Quarter 2003, Mr. Ruey S. Tsay Solutions to Homework Assignment #4 May 9, 2003 Each HW problem is 10 points throughout this

More information

Asymptotic distribution of the sample average value-at-risk

Asymptotic distribution of the sample average value-at-risk Asymptotic distribution of the sample average value-at-risk Stoyan V. Stoyanov Svetlozar T. Rachev September 3, 7 Abstract In this paper, we prove a result for the asymptotic distribution of the sample

More information

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis Introduction to Time Series Analysis 1 Contents: I. Basics of Time Series Analysis... 4 I.1 Stationarity... 5 I.2 Autocorrelation Function... 9 I.3 Partial Autocorrelation Function (PACF)... 14 I.4 Transformation

More information

Nonlinear Time Series Modeling

Nonlinear Time Series Modeling Nonlinear Time Series Modeling Part II: Time Series Models in Finance Richard A. Davis Colorado State University (http://www.stat.colostate.edu/~rdavis/lectures) MaPhySto Workshop Copenhagen September

More information

GARCH Models Estimation and Inference

GARCH Models Estimation and Inference GARCH Models Estimation and Inference Eduardo Rossi University of Pavia December 013 Rossi GARCH Financial Econometrics - 013 1 / 1 Likelihood function The procedure most often used in estimating θ 0 in

More information

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications

Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Lecture 3: Autoregressive Moving Average (ARMA) Models and their Practical Applications Prof. Massimo Guidolin 20192 Financial Econometrics Winter/Spring 2018 Overview Moving average processes Autoregressive

More information

GARCH Models. Eduardo Rossi University of Pavia. December Rossi GARCH Financial Econometrics / 50

GARCH Models. Eduardo Rossi University of Pavia. December Rossi GARCH Financial Econometrics / 50 GARCH Models Eduardo Rossi University of Pavia December 013 Rossi GARCH Financial Econometrics - 013 1 / 50 Outline 1 Stylized Facts ARCH model: definition 3 GARCH model 4 EGARCH 5 Asymmetric Models 6

More information

Extreme Value Theory.

Extreme Value Theory. Bank of England Centre for Central Banking Studies CEMLA 2013 Extreme Value Theory. David G. Barr November 21, 2013 Any views expressed are those of the author and not necessarily those of the Bank of

More information

Lecture 3: Statistical sampling uncertainty

Lecture 3: Statistical sampling uncertainty Lecture 3: Statistical sampling uncertainty c Christopher S. Bretherton Winter 2015 3.1 Central limit theorem (CLT) Let X 1,..., X N be a sequence of N independent identically-distributed (IID) random

More information

Econ 423 Lecture Notes: Additional Topics in Time Series 1

Econ 423 Lecture Notes: Additional Topics in Time Series 1 Econ 423 Lecture Notes: Additional Topics in Time Series 1 John C. Chao April 25, 2017 1 These notes are based in large part on Chapter 16 of Stock and Watson (2011). They are for instructional purposes

More information

Regression Analysis. y t = β 1 x t1 + β 2 x t2 + β k x tk + ϵ t, t = 1,..., T,

Regression Analysis. y t = β 1 x t1 + β 2 x t2 + β k x tk + ϵ t, t = 1,..., T, Regression Analysis The multiple linear regression model with k explanatory variables assumes that the tth observation of the dependent or endogenous variable y t is described by the linear relationship

More information

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment:

Stochastic Processes: I. consider bowl of worms model for oscilloscope experiment: Stochastic Processes: I consider bowl of worms model for oscilloscope experiment: SAPAscope 2.0 / 0 1 RESET SAPA2e 22, 23 II 1 stochastic process is: Stochastic Processes: II informally: bowl + drawing

More information

MODELLING TIME SERIES WITH CONDITIONAL HETEROSCEDASTICITY

MODELLING TIME SERIES WITH CONDITIONAL HETEROSCEDASTICITY MODELLING TIME SERIES WITH CONDITIONAL HETEROSCEDASTICITY The simple ARCH Model Eva Rubliková Ekonomická univerzita Bratislava Manuela Magalhães Hill Department of Quantitative Methods, INSTITUTO SUPERIOR

More information

Econometría 2: Análisis de series de Tiempo

Econometría 2: Análisis de series de Tiempo Econometría 2: Análisis de series de Tiempo Karoll GOMEZ kgomezp@unal.edu.co http://karollgomez.wordpress.com Segundo semestre 2016 II. Basic definitions A time series is a set of observations X t, each

More information

Multivariate Asset Return Prediction with Mixture Models

Multivariate Asset Return Prediction with Mixture Models Multivariate Asset Return Prediction with Mixture Models Swiss Banking Institute, University of Zürich Introduction The leptokurtic nature of asset returns has spawned an enormous amount of research into

More information

Minitab Project Report - Assignment 6

Minitab Project Report - Assignment 6 .. Sunspot data Minitab Project Report - Assignment Time Series Plot of y Time Series Plot of X y X 7 9 7 9 The data have a wavy pattern. However, they do not show any seasonality. There seem to be an

More information

Minitab Project Report Assignment 3

Minitab Project Report Assignment 3 3.1.1 Simulation of Gaussian White Noise Minitab Project Report Assignment 3 Time Series Plot of zt Function zt 1 0. 0. zt 0-1 0. 0. -0. -0. - -3 1 0 30 0 50 Index 0 70 0 90 0 1 1 1 1 0 marks The series

More information

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis

Ch 8. MODEL DIAGNOSTICS. Time Series Analysis Model diagnostics is concerned with testing the goodness of fit of a model and, if the fit is poor, suggesting appropriate modifications. We shall present two complementary approaches: analysis of residuals

More information

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation

Variations. ECE 6540, Lecture 10 Maximum Likelihood Estimation Variations ECE 6540, Lecture 10 Last Time BLUE (Best Linear Unbiased Estimator) Formulation Advantages Disadvantages 2 The BLUE A simplification Assume the estimator is a linear system For a single parameter

More information

Ch3. TRENDS. Time Series Analysis

Ch3. TRENDS. Time Series Analysis 3.1 Deterministic Versus Stochastic Trends The simulated random walk in Exhibit 2.1 shows a upward trend. However, it is caused by a strong correlation between the series at nearby time points. The true

More information

Econometrics of Panel Data

Econometrics of Panel Data Econometrics of Panel Data Jakub Mućk Meeting # 9 Jakub Mućk Econometrics of Panel Data Meeting # 9 1 / 22 Outline 1 Time series analysis Stationarity Unit Root Tests for Nonstationarity 2 Panel Unit Root

More information

Lecture 2: CDF and EDF

Lecture 2: CDF and EDF STAT 425: Introduction to Nonparametric Statistics Winter 2018 Instructor: Yen-Chi Chen Lecture 2: CDF and EDF 2.1 CDF: Cumulative Distribution Function For a random variable X, its CDF F () contains all

More information

EE/CpE 345. Modeling and Simulation. Fall Class 9

EE/CpE 345. Modeling and Simulation. Fall Class 9 EE/CpE 345 Modeling and Simulation Class 9 208 Input Modeling Inputs(t) Actual System Outputs(t) Parameters? Simulated System Outputs(t) The input data is the driving force for the simulation - the behavior

More information

Chapter 6. Random Processes

Chapter 6. Random Processes Chapter 6 Random Processes Random Process A random process is a time-varying function that assigns the outcome of a random experiment to each time instant: X(t). For a fixed (sample path): a random process

More information

Applied Probability and Stochastic Processes

Applied Probability and Stochastic Processes Applied Probability and Stochastic Processes In Engineering and Physical Sciences MICHEL K. OCHI University of Florida A Wiley-Interscience Publication JOHN WILEY & SONS New York - Chichester Brisbane

More information

If we want to analyze experimental or simulated data we might encounter the following tasks:

If we want to analyze experimental or simulated data we might encounter the following tasks: Chapter 1 Introduction If we want to analyze experimental or simulated data we might encounter the following tasks: Characterization of the source of the signal and diagnosis Studying dependencies Prediction

More information

Empirical Market Microstructure Analysis (EMMA)

Empirical Market Microstructure Analysis (EMMA) Empirical Market Microstructure Analysis (EMMA) Lecture 3: Statistical Building Blocks and Econometric Basics Prof. Dr. Michael Stein michael.stein@vwl.uni-freiburg.de Albert-Ludwigs-University of Freiburg

More information

+ Specify 1 tail / 2 tail

+ Specify 1 tail / 2 tail Week 2: Null hypothesis Aeroplane seat designer wonders how wide to make the plane seats. He assumes population average hip size μ = 43.2cm Sample size n = 50 Question : Is the assumption μ = 43.2cm reasonable?

More information

f (1 0.5)/n Z =

f (1 0.5)/n Z = Math 466/566 - Homework 4. We want to test a hypothesis involving a population proportion. The unknown population proportion is p. The null hypothesis is p = / and the alternative hypothesis is p > /.

More information

The Chi-Square Distributions

The Chi-Square Distributions MATH 183 The Chi-Square Distributions Dr. Neal, WKU The chi-square distributions can be used in statistics to analyze the standard deviation σ of a normally distributed measurement and to test the goodness

More information

AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY

AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY Econometrics Working Paper EWP0401 ISSN 1485-6441 Department of Economics AN EMPIRICAL LIKELIHOOD RATIO TEST FOR NORMALITY Lauren Bin Dong & David E. A. Giles Department of Economics, University of Victoria

More information

Normal Probability Plot Probability Probability

Normal Probability Plot Probability Probability Modelling multivariate returns Stefano Herzel Department ofeconomics, University of Perugia 1 Catalin Starica Department of Mathematical Statistics, Chalmers University of Technology Reha Tutuncu Department

More information

1/24/2008. Review of Statistical Inference. C.1 A Sample of Data. C.2 An Econometric Model. C.4 Estimating the Population Variance and Other Moments

1/24/2008. Review of Statistical Inference. C.1 A Sample of Data. C.2 An Econometric Model. C.4 Estimating the Population Variance and Other Moments /4/008 Review of Statistical Inference Prepared by Vera Tabakova, East Carolina University C. A Sample of Data C. An Econometric Model C.3 Estimating the Mean of a Population C.4 Estimating the Population

More information

Solutions of the Financial Risk Management Examination

Solutions of the Financial Risk Management Examination Solutions of the Financial Risk Management Examination Thierry Roncalli January 9 th 03 Remark The first five questions are corrected in TR-GDR and in the document of exercise solutions, which is available

More information

Lecture 6: Univariate Volatility Modelling: ARCH and GARCH Models

Lecture 6: Univariate Volatility Modelling: ARCH and GARCH Models Lecture 6: Univariate Volatility Modelling: ARCH and GARCH Models Prof. Massimo Guidolin 019 Financial Econometrics Winter/Spring 018 Overview ARCH models and their limitations Generalized ARCH models

More information

Heteroskedasticity in Time Series

Heteroskedasticity in Time Series Heteroskedasticity in Time Series Figure: Time Series of Daily NYSE Returns. 206 / 285 Key Fact 1: Stock Returns are Approximately Serially Uncorrelated Figure: Correlogram of Daily Stock Market Returns.

More information

STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05

STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05 STAT 520 FORECASTING AND TIME SERIES 2013 FALL Homework 05 1. ibm data: The random walk model of first differences is chosen to be the suggest model of ibm data. That is (1 B)Y t = e t where e t is a mean

More information

Hypothesis Testing One Sample Tests

Hypothesis Testing One Sample Tests STATISTICS Lecture no. 13 Department of Econometrics FEM UO Brno office 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 12. 1. 2010 Tests on Mean of a Normal distribution Tests on Variance of a Normal

More information

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them.

Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book; you are not tested on them. TS Module 1 Time series overview (The attached PDF file has better formatting.)! Model building! Time series plots Read Section 1.1, Examples of time series, on pages 1-8. These example introduce the book;

More information

SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions

SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu

More information

DISCRIMINATING BETWEEN THE NORMAL INVERSE GAUSSIAN AND GENERALIZED HYPERBOLIC SKEW-T DISTRIBUTIONS WITH A FOLLOW-UP THE STOCK EXCHANGE DATA

DISCRIMINATING BETWEEN THE NORMAL INVERSE GAUSSIAN AND GENERALIZED HYPERBOLIC SKEW-T DISTRIBUTIONS WITH A FOLLOW-UP THE STOCK EXCHANGE DATA Yugoslav Journal of Operations Research 8 (018), Number, 185 199 DOI: https://doi.org/10.98/yjor170815013p DISCRIMINATING BETWEEN THE NORMAL INVERSE GAUSSIAN AND GENERALIZED HYPERBOLIC SKEW-T DISTRIBUTIONS

More information

On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y).

On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y). On 1.9, you will need to use the facts that, for any x and y, sin(x+y) = sin(x) cos(y) + cos(x) sin(y). cos(x+y) = cos(x) cos(y) - sin(x) sin(y). (sin(x)) 2 + (cos(x)) 2 = 1. 28 1 Characteristics of Time

More information

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity.

LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. LECTURES 2-3 : Stochastic Processes, Autocorrelation function. Stationarity. Important points of Lecture 1: A time series {X t } is a series of observations taken sequentially over time: x t is an observation

More information

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION

APPLIED ECONOMETRIC TIME SERIES 4TH EDITION APPLIED ECONOMETRIC TIME SERIES 4TH EDITION Chapter 2: STATIONARY TIME-SERIES MODELS WALTER ENDERS, UNIVERSITY OF ALABAMA Copyright 2015 John Wiley & Sons, Inc. Section 1 STOCHASTIC DIFFERENCE EQUATION

More information

Determining and Forecasting High-Frequency Value-at-Risk by Using Lévy Processes

Determining and Forecasting High-Frequency Value-at-Risk by Using Lévy Processes Determining and Forecasting High-Frequency Value-at-Risk by Using Lévy Processes W ei Sun 1, Svetlozar Rachev 1,2, F rank J. F abozzi 3 1 Institute of Statistics and Mathematical Economics, University

More information

STAT 461/561- Assignments, Year 2015

STAT 461/561- Assignments, Year 2015 STAT 461/561- Assignments, Year 2015 This is the second set of assignment problems. When you hand in any problem, include the problem itself and its number. pdf are welcome. If so, use large fonts and

More information

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making

Modeling conditional distributions with mixture models: Applications in finance and financial decision-making Modeling conditional distributions with mixture models: Applications in finance and financial decision-making John Geweke University of Iowa, USA Journal of Applied Econometrics Invited Lecture Università

More information

Institute of Actuaries of India

Institute of Actuaries of India Institute of Actuaries of India Subject CT3 Probability & Mathematical Statistics May 2011 Examinations INDICATIVE SOLUTION Introduction The indicative solution has been written by the Examiners with the

More information

ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications

ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications Yongmiao Hong Department of Economics & Department of Statistical Sciences Cornell University Spring 2019 Time and uncertainty

More information

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility

The Slow Convergence of OLS Estimators of α, β and Portfolio. β and Portfolio Weights under Long Memory Stochastic Volatility The Slow Convergence of OLS Estimators of α, β and Portfolio Weights under Long Memory Stochastic Volatility New York University Stern School of Business June 21, 2018 Introduction Bivariate long memory

More information

Econ 583 Final Exam Fall 2008

Econ 583 Final Exam Fall 2008 Econ 583 Final Exam Fall 2008 Eric Zivot December 11, 2008 Exam is due at 9:00 am in my office on Friday, December 12. 1 Maximum Likelihood Estimation and Asymptotic Theory Let X 1,...,X n be iid random

More information

Testing for Normality

Testing for Normality Testing for Normality For each mean and standard deviation combination a theoretical normal distribution can be determined. This distribution is based on the proportions shown below. This theoretical normal

More information

Multivariate Distributions

Multivariate Distributions IEOR E4602: Quantitative Risk Management Spring 2016 c 2016 by Martin Haugh Multivariate Distributions We will study multivariate distributions in these notes, focusing 1 in particular on multivariate

More information

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11

Econometrics A. Simple linear model (2) Keio University, Faculty of Economics. Simon Clinet (Keio University) Econometrics A October 16, / 11 Econometrics A Keio University, Faculty of Economics Simple linear model (2) Simon Clinet (Keio University) Econometrics A October 16, 2018 1 / 11 Estimation of the noise variance σ 2 In practice σ 2 too

More information

Probability and Statistics for Final Year Engineering Students

Probability and Statistics for Final Year Engineering Students Probability and Statistics for Final Year Engineering Students By Yoni Nazarathy, Last Updated: May 24, 2011. Lecture 6p: Spectral Density, Passing Random Processes through LTI Systems, Filtering Terms

More information

Testing for Normality

Testing for Normality Testing for Normality For each mean and standard deviation combination a theoretical normal distribution can be determined. This distribution is based on the proportions shown below. This theoretical normal

More information

EE/CpE 345. Modeling and Simulation. Fall Class 10 November 18, 2002

EE/CpE 345. Modeling and Simulation. Fall Class 10 November 18, 2002 EE/CpE 345 Modeling and Simulation Class 0 November 8, 2002 Input Modeling Inputs(t) Actual System Outputs(t) Parameters? Simulated System Outputs(t) The input data is the driving force for the simulation

More information

H 2 : otherwise. that is simply the proportion of the sample points below level x. For any fixed point x the law of large numbers gives that

H 2 : otherwise. that is simply the proportion of the sample points below level x. For any fixed point x the law of large numbers gives that Lecture 28 28.1 Kolmogorov-Smirnov test. Suppose that we have an i.i.d. sample X 1,..., X n with some unknown distribution and we would like to test the hypothesis that is equal to a particular distribution

More information

Problem 1 (20) Log-normal. f(x) Cauchy

Problem 1 (20) Log-normal. f(x) Cauchy ORF 245. Rigollet Date: 11/21/2008 Problem 1 (20) f(x) f(x) 0.0 0.1 0.2 0.3 0.4 0.0 0.2 0.4 0.6 0.8 4 2 0 2 4 Normal (with mean -1) 4 2 0 2 4 Negative-exponential x x f(x) f(x) 0.0 0.1 0.2 0.3 0.4 0.5

More information

1 Appendix A: Matrix Algebra

1 Appendix A: Matrix Algebra Appendix A: Matrix Algebra. Definitions Matrix A =[ ]=[A] Symmetric matrix: = for all and Diagonal matrix: 6=0if = but =0if 6= Scalar matrix: the diagonal matrix of = Identity matrix: the scalar matrix

More information

Lesson 8: Testing for IID Hypothesis with the correlogram

Lesson 8: Testing for IID Hypothesis with the correlogram Lesson 8: Testing for IID Hypothesis with the correlogram Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università dell Aquila, umberto.triacca@ec.univaq.it Testing for i.i.d. Hypothesis

More information

Lecture 6a: Unit Root and ARIMA Models

Lecture 6a: Unit Root and ARIMA Models Lecture 6a: Unit Root and ARIMA Models 1 2 Big Picture A time series is non-stationary if it contains a unit root unit root nonstationary The reverse is not true. For example, y t = cos(t) + u t has no

More information

End-Semester Examination MA 373 : Statistical Analysis on Financial Data

End-Semester Examination MA 373 : Statistical Analysis on Financial Data End-Semester Examination MA 373 : Statistical Analysis on Financial Data Instructor: Dr. Arabin Kumar Dey, Department of Mathematics, IIT Guwahati Note: Use the results in Section- III: Data Analysis using

More information

When is a copula constant? A test for changing relationships

When is a copula constant? A test for changing relationships When is a copula constant? A test for changing relationships Fabio Busetti and Andrew Harvey Bank of Italy and University of Cambridge November 2007 usetti and Harvey (Bank of Italy and University of Cambridge)

More information

White Noise Processes (Section 6.2)

White Noise Processes (Section 6.2) White Noise Processes (Section 6.) Recall that covariance stationary processes are time series, y t, such. E(y t ) = µ for all t. Var(y t ) = σ for all t, σ < 3. Cov(y t,y t-τ ) = γ(τ) for all t and τ

More information

Stochastic Processes

Stochastic Processes Elements of Lecture II Hamid R. Rabiee with thanks to Ali Jalali Overview Reading Assignment Chapter 9 of textbook Further Resources MIT Open Course Ware S. Karlin and H. M. Taylor, A First Course in Stochastic

More information

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER.

Three hours. To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER. Three hours To be supplied by the Examinations Office: Mathematical Formula Tables and Statistical Tables THE UNIVERSITY OF MANCHESTER EXTREME VALUES AND FINANCIAL RISK Examiner: Answer QUESTION 1, QUESTION

More information

GARCH Models Estimation and Inference

GARCH Models Estimation and Inference Università di Pavia GARCH Models Estimation and Inference Eduardo Rossi Likelihood function The procedure most often used in estimating θ 0 in ARCH models involves the maximization of a likelihood function

More information

Efficient estimation of a semiparametric dynamic copula model

Efficient estimation of a semiparametric dynamic copula model Efficient estimation of a semiparametric dynamic copula model Christian Hafner Olga Reznikova Institute of Statistics Université catholique de Louvain Louvain-la-Neuve, Blgium 30 January 2009 Young Researchers

More information

Multivariate Time Series

Multivariate Time Series Multivariate Time Series Notation: I do not use boldface (or anything else) to distinguish vectors from scalars. Tsay (and many other writers) do. I denote a multivariate stochastic process in the form

More information

On the Power of Tests for Regime Switching

On the Power of Tests for Regime Switching On the Power of Tests for Regime Switching joint work with Drew Carter and Ben Hansen Douglas G. Steigerwald UC Santa Barbara May 2015 D. Steigerwald (UCSB) Regime Switching May 2015 1 / 42 Motivating

More information

Random Number Generation. CS1538: Introduction to simulations

Random Number Generation. CS1538: Introduction to simulations Random Number Generation CS1538: Introduction to simulations Random Numbers Stochastic simulations require random data True random data cannot come from an algorithm We must obtain it from some process

More information

Terminology Suppose we have N observations {x(n)} N 1. Estimators as Random Variables. {x(n)} N 1

Terminology Suppose we have N observations {x(n)} N 1. Estimators as Random Variables. {x(n)} N 1 Estimation Theory Overview Properties Bias, Variance, and Mean Square Error Cramér-Rao lower bound Maximum likelihood Consistency Confidence intervals Properties of the mean estimator Properties of the

More information

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends

Reliability and Risk Analysis. Time Series, Types of Trend Functions and Estimates of Trends Reliability and Risk Analysis Stochastic process The sequence of random variables {Y t, t = 0, ±1, ±2 } is called the stochastic process The mean function of a stochastic process {Y t} is the function

More information

2008 Winton. Statistical Testing of RNGs

2008 Winton. Statistical Testing of RNGs 1 Statistical Testing of RNGs Criteria for Randomness For a sequence of numbers to be considered a sequence of randomly acquired numbers, it must have two basic statistical properties: Uniformly distributed

More information

Introduction to Maximum Likelihood Estimation

Introduction to Maximum Likelihood Estimation Introduction to Maximum Likelihood Estimation Eric Zivot July 26, 2012 The Likelihood Function Let 1 be an iid sample with pdf ( ; ) where is a ( 1) vector of parameters that characterize ( ; ) Example:

More information

Lecture 35. Summarizing Data - II

Lecture 35. Summarizing Data - II Math 48 - Mathematical Statistics Lecture 35. Summarizing Data - II April 26, 212 Konstantin Zuev (USC) Math 48, Lecture 35 April 26, 213 1 / 18 Agenda Quantile-Quantile Plots Histograms Kernel Probability

More information

Handling data with R

Handling data with R Handling data with R fitting distributions, time-series analysis, and analysis of variance Prof. Steve Uhlig Professor of Networks steve@eecs.qmul.ac.uk Steve Uhlig 1 R What is R? Open-source statistical

More information

Distribution Fitting (Censored Data)

Distribution Fitting (Censored Data) Distribution Fitting (Censored Data) Summary... 1 Data Input... 2 Analysis Summary... 3 Analysis Options... 4 Goodness-of-Fit Tests... 6 Frequency Histogram... 8 Comparison of Alternative Distributions...

More information

Final Examination 7/6/2011

Final Examination 7/6/2011 The Islamic University of Gaza Faculty of Commerce Department of Economics & Applied Statistics Time Series Analysis - Dr. Samir Safi Spring Semester 211 Final Examination 7/6/211 Name: ID: INSTRUCTIONS:

More information

Modelling using ARMA processes

Modelling using ARMA processes Modelling using ARMA processes Step 1. ARMA model identification; Step 2. ARMA parameter estimation Step 3. ARMA model selection ; Step 4. ARMA model checking; Step 5. forecasting from ARMA models. 33

More information

Problem set 1 - Solutions

Problem set 1 - Solutions EMPIRICAL FINANCE AND FINANCIAL ECONOMETRICS - MODULE (8448) Problem set 1 - Solutions Exercise 1 -Solutions 1. The correct answer is (a). In fact, the process generating daily prices is usually assumed

More information

Small Sample Properties of Alternative Tests for Martingale Difference Hypothesis

Small Sample Properties of Alternative Tests for Martingale Difference Hypothesis Small Sample Properties of Alternative Tests for Martingale Difference Hypothesis Amélie Charles, Olivier Darné, Jae Kim To cite this version: Amélie Charles, Olivier Darné, Jae Kim. Small Sample Properties

More information