Non-equilibrium quantum phase transition with ultracold atoms in optical cavity

Size: px
Start display at page:

Download "Non-equilibrium quantum phase transition with ultracold atoms in optical cavity"

Transcription

1 Non-equilibrium quantum phase transition with ultracold atoms in optical cavity P. Domokos, D. Nagy, G. Kónya, G. Szirmai J. Asbóth, A. Vukics H. Ritsch (Innsbruck) MTA Szilárdtestfizikai és Optikai Kutatóintézete Ortvay Kollokvium,. április 7., ELTE Fizikai Intézet / 8

2 Many-body physics with ultracold gases / 8

3 Many-body physics with ultracold gases Ultracold atoms weakly interacting many-body system (dilute gas) / 8

4 Many-body physics with ultracold gases Ultracold atoms weakly interacting many-body system (dilute gas) T/T crit Bose-Einstein condensate (BEC) coherent, macroscopic matter wave (Gross-Pitaevskii PDE + Bogoliubov quasi-particle excitations) / 8

5 Many-body physics with ultracold gases Ultracold atoms weakly interacting many-body system (dilute gas) T/T crit Bose-Einstein condensate (BEC) coherent, macroscopic matter wave (Gross-Pitaevskii PDE + Bogoliubov quasi-particle excitations) Internal degrees of freedom / 8

6 Many-body physics with ultracold gases Ultracold atoms weakly interacting many-body system (dilute gas) T/T crit Bose-Einstein condensate (BEC) coherent, macroscopic matter wave (Gross-Pitaevskii PDE + Bogoliubov quasi-particle excitations) 8*+&$'",(9"$4(!$:$&4$&,$ Internal degrees of freedom magnetic field Feshbach resonance tune the interaction strength!b!"##$%$&'()*+&$'",()-)$&'.( /$'$$&(*'-).)-$,3$. a( B) + a (! & n * ' B ) B!" "4'5(-#(%$.-&*&,$ % # $ 6 7 %$.-&*&'()*+&$'",(#"$4 ;<<(=(9$.5/*,5 >$.-&*&,$(?< A5$.".( 5'':BC"*D,--%*4-D$43:3/.'5$.".,*3..$& / 8

7 Many-body physics with ultracold gases Ultracold atoms weakly interacting many-body system (dilute gas) T/T crit Bose-Einstein condensate (BEC) coherent, macroscopic matter wave (Gross-Pitaevskii PDE + Bogoliubov quasi-particle excitations) Internal degrees of freedom 8*+&$'",(9"$4(!$:$&4$&,$ magnetic field Feshbach resonance tune the interaction strength optical dipole potentials change the dimensionality (3D, D, D, optical lattices)!b!"##$%$&'()*+&$'",()-)$&'.( /$'$$&(*'-).)-$,3$. a( B) + a (! & n * ' B ) B!" "4'5(-#(%$.-&*&,$ % # $ 6 7 %$.-&*&'()*+&$'",(#"$4 ;<<(=(9$.5/*,5 >$.-&*&,$(?< A5$.".( 5'':BC"*D,--%*4-D$43:3/.'5$.".,*3..$& / 8

8 Many-body physics with ultracold gases Ultracold atoms weakly interacting many-body system (dilute gas) T/T crit Bose-Einstein condensate (BEC) coherent, macroscopic matter wave (Gross-Pitaevskii PDE + Bogoliubov quasi-particle excitations) Internal degrees of freedom magnetic field Feshbach resonance tune the interaction strength optical dipole potentials change the dimensionality (3D, D, D, optical lattices) strongly correlated matter So far, a field reserved to strongly interacting quantum liquids and nuclear physics (note: table top ke) / 8

9 Many-body physics with ultracold gases Ultracold atoms weakly interacting many-body system (dilute gas) T/T crit Bose-Einstein condensate (BEC) coherent, macroscopic matter wave (Gross-Pitaevskii PDE + Bogoliubov quasi-particle excitations) Internal degrees of freedom magnetic field Feshbach resonance tune the interaction strength optical dipole potentials change the dimensionality (3D, D, D, optical lattices) strongly correlated matter So far, a field reserved to strongly interacting quantum liquids and nuclear physics (note: table top ke) Examples (experiments): QPT from superfluid to Mott-insulator phase [Greiner et al., Nature 45, 39 ()] Tonks-Girardeau hard-core Bose gas in D [Kinoshita et al., Science 35, 5 (4)] 3 Kosterlitz-Thouless crossover in D [Hadzibabic et al., Nature 44, 8 (6)] 4 Fermi degeneracy [DeMarco, Science 85, 73 (999)] 5 molecular BEC-BCS pair crossover [Chin et al., Science 35, 8 (4)] / 8

10 Many-body physics with ultracold gases Ultracold atoms weakly interacting many-body system (dilute gas) T/T crit Bose-Einstein condensate (BEC) coherent, macroscopic matter wave (Gross-Pitaevskii PDE + Bogoliubov quasi-particle excitations) Internal degrees of freedom magnetic field Feshbach resonance tune the interaction strength optical dipole potentials change the dimensionality (3D, D, D, optical lattices) strongly correlated matter So far, a field reserved to strongly interacting quantum liquids and nuclear physics (note: table top ke) Examples (experiments): QPT from superfluid to Mott-insulator phase [Greiner et al., Nature 45, 39 ()] Tonks-Girardeau hard-core Bose gas in D [Kinoshita et al., Science 35, 5 (4)] 3 Kosterlitz-Thouless crossover in D [Hadzibabic et al., Nature 44, 8 (6)] 4 Fermi degeneracy [DeMarco, Science 85, 73 (999)] 5 molecular BEC-BCS pair crossover [Chin et al., Science 35, 8 (4)] This talk is focussed on one particular many-body effect related to non-equilibrium quantum phase transitions / 8

11 Bose-Einstein condensate in an optical resonator Cavity QED experiment [Brennecke,...,Esslinger, Nature 45, 68 (7)] ETH (Zürich), Berkeley, ENS (Paris), MIT, Urbana Champaign, Barcelona, London, Hamburg, Tübingen,... 3 / 8

12 Bose-Einstein condensate in an optical resonator Cavity QED experiment Strong light-matter coupling input laser η, ω α α γ α : atom at nodes α : atom at antinodes output κ [Brennecke,...,Esslinger, Nature 45, 68 (7)] ETH (Zürich), Berkeley, ENS (Paris), MIT, Urbana Champaign, Barcelona, London, Hamburg, Tübingen,... 3 / 8

13 Bose-Einstein condensate in an optical resonator Cavity QED experiment Strong light-matter coupling input laser η, ω α α γ α : atom at nodes α : atom at antinodes output κ atom-photon molecule rendszer paraméterek atom γ A= ω ω A g [Brennecke,...,Esslinger, Nature 45, 68 (7)] ETH (Zürich), Berkeley, ENS (Paris), MIT, Urbana Champaign, Barcelona, London, Hamburg, Tübingen,... rezonátor κ lézer ω C = ω ω C 3 / 8

14 Bose-Einstein condensate in an optical resonator Cavity QED experiment Polarizability U = ω C V χ g A Γ = ω C V χ γ g A atom-photon molecule rendszer paraméterek atom γ A= ω ω A g [Brennecke,...,Esslinger, Nature 45, 68 (7)] ETH (Zürich), Berkeley, ENS (Paris), MIT, Urbana Champaign, Barcelona, London, Hamburg, Tübingen,... rezonátor κ lézer ω C = ω ω C 3 / 8

15 Many-body physics with atoms in optical resonators... in optical lattices 4 / 8

16 Many-body physics with atoms in optical resonators... in optical lattices radiative interaction collisional interaction 4 / 8

17 Many-body physics with atoms in optical resonators... in optical lattices radiative interaction long-range ( infinite, round-trip effect) collisional interaction short range (but: tunability, Feshbach) 4 / 8

18 Many-body physics with atoms in optical resonators... in optical lattices radiative interaction long-range ( infinite, round-trip effect) global coupling collisional interaction short range (but: tunability, Feshbach) pairwise 4 / 8

19 Many-body physics with atoms in optical resonators... in optical lattices radiative interaction long-range ( infinite, round-trip effect) global coupling Kuramoto-model, Lipkin Meshkov Glick-model collisional interaction short range (but: tunability, Feshbach) pairwise Hubbard-type models 4 / 8

20 Many-body physics with atoms in optical resonators... in optical lattices radiative interaction long-range ( infinite, round-trip effect) global coupling Kuramoto-model, Lipkin Meshkov Glick-model driven-damped system (non-equilibrim) collisional interaction short range (but: tunability, Feshbach) pairwise Hubbard-type models conservative system 4 / 8

21 Scattering into the cavity phase difference π pumping cos kz 5 / 8

22 Scattering into the cavity phase difference π pumping cos kz atom-atom coupling by interference x x = (n + ) λ/ destructive interference α = 5 / 8

23 Scattering into the cavity phase difference π pumping cos kz atom-atom coupling by interference x x = (n + ) λ/ destructive interference α = x x = n λ/ constructive interference α 4η t (superradiance) 5 / 8

24 Scattering into the cavity phase difference π pumping cos kz atom-atom coupling by interference x x = (n + ) λ/ destructive interference Full contrast for arbitrary small χ U α = x x = n λ/ constructive interference α 4η t (superradiance) 5 / 8

25 Spatial self-organization of atom clouds homogeneous cloud ηt < ηcrit mode function cos(kx) BEC pump laser 6 / 8

26 Spatial self-organization of atom clouds homogeneous cloud ηt < ηcrit crystalline order ηt > ηcrit mode function cos(kx) outcoupled field κ BEC pump laser 6 / 8

27 Spatial self-organization of atom clouds homogeneous cloud crystalline order ηt < ηcrit ηt > ηcrit mode function cos(kx) outcoupled field κ BEC pump laser [P. Domokos, H. Ritsch, PRL 89, 533 ()] thermal gas of atoms [A.T. Black, H.W. Chan, V. Vuletic, PRL 9, 3 (3)] experimental observation [Nagy, Szirmai, Domokos, EPJD 48, 7 (8))] T=, BEC [K. Baumann, C. Guerlin, F. Brennecke, T. Esslinger, Nature 464, 3 ()] experimental observation 6 / 8

28 Quantized atom field in a single-mode resonator One-dimensional toy model for coupled matter and light fields H = C â â + iη (â â) + [ ˆΨ (x) m d dx + Ng c ˆΨ (x) ˆΨ(x) ] + U â â cos (kx) + iη t cos kx(â â) ˆΨ(x)dx, a, a C cos(kx) κ ˆΨ(x) η t,ω pump laser 7 / 8

29 Quantized atom field in a single-mode resonator One-dimensional toy model for coupled matter and light fields H = C â â + iη (â â) + [ ˆΨ (x) m d dx + Ng c ˆΨ (x) ˆΨ(x) ] + U â â cos (kx) + iη t cos kx(â â) ˆΨ(x)dx, a, a C cos(kx) ˆΨ(x) η t,ω pump laser κ scattering processes (four-wave mixing) absorption and induced emission of cavity photons absorption of a pump photon and emission into the cavity 7 / 8

30 Quantized atom field in a single-mode resonator One-dimensional toy model for coupled matter and light fields H = C â â + iη (â â) + [ ˆΨ (x) m d dx + Ng c ˆΨ (x) ˆΨ(x) ] + U â â cos (kx) + iη t cos kx(â â) ˆΨ(x)dx, a, a C cos(kx) ˆΨ(x) η t,ω pump laser κ scattering processes (four-wave mixing) absorption and induced emission of cavity photons absorption of a pump photon and emission into the cavity dissipation and noise (k B T = ) d dt â = i [â, H] κâ + ˆξ ˆξ(t)ˆξ (t ) = κδ(t t ) 7 / 8

31 Hamiltonian dynamics, quantum criticality Two-mode description of atoms ˆΨ(x) = c + L L c cos kx [ ci, c i ] = i =, Number of particles: c c + c c = N [Nagy, Kónya, Szirmai, Domokos, PRL 4, 34 ()] 8 / 8

32 Hamiltonian dynamics, quantum criticality Two-mode description of atoms Spin representation ˆΨ(x) = L c + [ ci, c i L c cos kx ] = i =, Number of particles: c c + c c = N Ŝ x = (c c + c c ) Ŝ y = i (c c c c ) Ŝ z = (c c c c ) [Nagy, Kónya, Szirmai, Domokos, PRL 4, 34 ()] 8 / 8

33 Hamiltonian dynamics, quantum criticality Two-mode description of atoms Spin representation ˆΨ(x) = L c + [ ci, c i L c cos kx ] = i =, Number of particles: c c + c c = N Ŝ x = (c c + c c ) Ŝ y = i (c c c c ) Ŝ z = (c c c c ) Dicke-type Hamiltonian H/ = δ C a a + ω R Ŝ z + iy(a a)ŝ x / N + ua a ( + Ŝ z /N ) ω R = k /m δ C = C u < u = N U /4 y = Nη t tunable [Nagy, Kónya, Szirmai, Domokos, PRL 4, 34 ()] 8 / 8

34 Hamiltonian dynamics, quantum criticality Two-mode description of atoms Spin representation ˆΨ(x) = L c + [ ci, c i L c cos kx ] = i =, Number of particles: c c + c c = N Ŝ x = (c c + c c ) Ŝ y = i (c c c c ) Ŝ z = (c c c c ) Dicke-type Hamiltonian H/ = δ C a a + ω R Ŝ z + iy(a a)ŝ x / N + ua a ( + Ŝ z /N ) ω R = k /m δ C = C u < u = N U /4 y = Nη t tunable Critical point y crit = δ C ω R [Nagy, Kónya, Szirmai, Domokos, PRL 4, 34 ()] 8 / 8

35 Hamiltonian dynamics, quantum criticality Two-mode description of atoms Spin representation ˆΨ(x) = L c + [ ci, c i L c cos kx ] = i =, Number of particles: c c + c c = N Ŝ x = (c c + c c ) Ŝ y = i (c c c c ) Ŝ z = (c c c c ) Dicke-type Hamiltonian H/ = δ C a a + ω R Ŝ z + iy(a a)ŝ x / N + ua a ( + Ŝ z /N ) ω R = k /m δ C = C u < u = N U /4 y = Nη t tunable Critical point y crit = δ C ω R Originally: photons and atomic excitations [Nagy, Kónya, Szirmai, Domokos, PRL 4, 34 ()] 8 / 8

36 Ground state in the thermodynamic limit Holstein-Primakoff Ŝ + = b N b b Ŝ = N b b b Ŝ z = b b N Spontaneous symmetry breaking for y < y ˆb = β = crit δ Cu δ u y y crit C y u for y > y crit δ C y crit 9 / 8

37 Ground state in the thermodynamic limit Holstein-Primakoff Ŝ + = b N b b Ŝ = N b b b Ŝ z = b b N Spontaneous symmetry breaking for y < y ˆb = β = crit δ Cu δ u y y crit C y u for y > y crit δ C y crit populations.6 β α.5.5 y/y c.5 9 / 8

38 Ground state in the thermodynamic limit Holstein-Primakoff Ŝ + = b N b b Ŝ = N b b b Ŝ z = b b N Spontaneous symmetry breaking for y < y ˆb = β = crit δ Cu δ u y y crit C y u for y > y crit δ C y crit Two boson mode Hamiltonian populations H/ = (δ C uβ )a a + + i Mc (a a)(b + b) + Mx My 4 Mx +My b b (b + b ) β y/y c α β 3 β M c = y ( ) + uα β / β M x = ω R yα β ( ) M β 3/ y = ω R yα β ( ) β / 9 / 8

39 Ground state in the thermodynamic limit Holstein-Primakoff Ŝ + = b N b b Ŝ = N b b b Ŝ z = b b N Spontaneous symmetry breaking for y < y ˆb = β = crit δ Cu δ u y y crit C y u for y > y crit δ C y crit Two boson mode Hamiltonian populations H/ = (δ C uβ )a a + + i Mc (a a)(b + b) + Mx My 4 Mx +My b b (b + b ) b b y/yc a a β 3 β M c = y ( ) + uα β / β M x = ω R yα β ( ) M β 3/ y = ω R yα β ( ) β / 9 / 8

40 Non-equilibrium dynamics (mean field) Mean-field approach â(t) = α(t) + δâ(t) ˆΨ(x, t) = Nϕ(x, t) + δ ˆΨ(x, t) / 8

41 Non-equilibrium dynamics (mean field) Mean-field approach â(t) = α(t) + δâ(t) ˆΨ(x, t) = Nϕ(x, t) + δ ˆΨ(x, t) Gross Pitaevskii-type equation i { } t α = C + NU cos (kx) iκ α + Nη t cos(kx) i t ϕ(x, t) = { m x + α(t) U cos (kx) + Re{α(t)}η t cos(kx) + Ng c ϕ(x, t) }ϕ(x, t) / 8

42 Non-equilibrium dynamics (mean field) Mean-field approach â(t) = α(t) + δâ(t) ˆΨ(x, t) = Nϕ(x, t) + δ ˆΨ(x, t) Gross Pitaevskii-type equation i { } t α = C + NU cos (kx) iκ α + Nη t cos(kx) i t ϕ(x, t) = { m x + α(t) U cos (kx) + Re{α(t)}η t cos(kx) + Ng c ϕ(x, t) }ϕ(x, t) Kuramoto-model Θ i = ω i + K N ( ) sin Θ i Θ j N j= mean-field ρ(θ, ω, t) ρ + { } [ω + Kr sin(ψ Θ)] ρ = t Θ π re iψ = e iθ ρ(θ, ω, t) g(ω)dωdθ π / 8

43 Mean-field self-organization of a BEC in a cavity order parameter Θ = ϕ cos kx ϕ order parameter Θ N η [in units of ωr] 95 [Nagy, Szirmai, Domokos, EPJD 48, 7 (8))] / 8

44 Mean-field self-organization of a BEC in a cavity order parameter steady-states order parameter Θ Θ = ϕ cos kx ϕ N η [in units of ωr] ψ(x) [units of /λ] cavity axis x/λ lattice potential [units of ωr] [Nagy, Szirmai, Domokos, EPJD 48, 7 (8))] / 8

45 Mean-field self-organization of a BEC in a cavity order parameter order parameter Θ threshold Θ = ϕ cos kx ϕ 65 3 N η [in units of ωr] 95 Nηc = δ C + κ δ C steady-states ψ(x) [units of /λ] ωr + Ng c.5.5 cavity axis x/λ lattice potential [units of ωr] [Nagy, Szirmai, Domokos, EPJD 48, 7 (8))] / 8

46 Mean-field self-organization of a BEC in a cavity order parameter order parameter Θ threshold Θ = ϕ cos kx ϕ 65 3 N η [in units of ωr] 95 Nηc = δ C + κ δ C steady-states ψ(x) [units of /λ] ωr + Ng c.5.5 cavity axis x/λ relation to Dicke-H: κ and g c = (applies to the mean-field wavefunction, too) lattice potential [units of ωr] [Nagy, Szirmai, Domokos, EPJD 48, 7 (8))] / 8

47 Mean-field self-organization of a BEC in a cavity order parameter order parameter Θ threshold Θ = ϕ cos kx ϕ 65 3 N η [in units of ωr] 95 Nηc = δ C + κ δ C steady-states ψ(x) [units of /λ] ωr + Ng c.5.5 cavity axis x/λ relation to Dicke-H: κ and g c = (applies to the mean-field wavefunction, too) relation to classical gas: temperature kinetic energy + collision lattice potential [units of ωr] [Nagy, Szirmai, Domokos, EPJD 48, 7 (8))] / 8

48 Experimental mapping of the phase diagram Pump lattice depth (E r) a Pump-cavity detuning (MHz) 3 4 n b Time (ms) c 3 Time (ms) Mean photon number n Pump power (µw) [Baumann, Guerlin, Brennecke, Esslinger, Nature 464, 3 ()] / 8

49 Classes of non-equilibrium systems Thermodynamics Quantum states Equilibrium Non-equilibrium criticality example 3 / 8

50 Classes of non-equilibrium systems Thermodynamics Quantum states Equilibrium Non-equilibrium criticality example Rayleigh-Be nard convection 3 / 8

51 Classes of non-equilibrium systems Thermodynamics Quantum states Equilibrium Non-equilibrium T criticality example Rayleigh-Be nard convection superfluid vortices spin current a la Ra cz 3 / 8

52 Classes of non-equilibrium systems Thermodynamics Quantum states Equilibrium Non-equilibrium T criticality example Rayleigh-Be nard convection superfluid vortices spin current a la Ra cz selforganization BEC in a cavity 3 / 8

53 Spectrum of fluctuations linearized equations ˆR = im ˆR + ˆξ t ˆR [δâ, δâ, δ ˆΨ, δ ˆΨ ] M = M(α, ϕ (x), µ) ˆξ = [ˆξ, ˆξ,, ] 4 / 8

54 Spectrum of fluctuations 6 linearized equations excitation frequencies [ωr] a) ˆR = im ˆR + ˆξ t ˆR [δâ, δâ, δ ˆΨ, δ ˆΨ ] M = M(α, ϕ (x), µ) ˆξ = [ˆξ, ˆξ,, ] N η [in units of ωr] 45 4 / 8

55 Spectrum of fluctuations 6 linearized equations excitation frequencies [ωr] a) ˆR = im ˆR + ˆξ t ˆR [δâ, δâ, δ ˆΨ, δ ˆΨ ] M = M(α, ϕ (x), µ) ˆξ = [ˆξ, ˆξ,, ] N η [in units of ωr] b) decay rates [ωr] N η [in units of ωr] 45 4 / 8

56 Spectrum of fluctuations 6 linearized equations excitation frequencies [ωr] a) ˆR = im ˆR + ˆξ t ˆR [δâ, δâ, δ ˆΨ, δ ˆΨ ] M = M(α, ϕ (x), µ) ˆξ = [ˆξ, ˆξ,, ] N η [in units of ωr] 45 critical point interval.8.7 b) decay rates [ωr] eigenvalues N η [in units of ωr] y/y c 4 / 8

57 Linearized dynamics of quantum fluctuations Normal mode decomposition ˆR = im ˆR t + ˆξ left and right eigenvectors of M ( l (k), r (l) ) = δ k,l normal modes ˆρ k = ( l (k), ˆR) t ˆρ k = iω k ˆρ k + ˆQk projected noise ˆQk ( l (k), ˆξ) 5 / 8

58 Linearized dynamics of quantum fluctuations Normal mode decomposition Second-order correlation functions ˆR = im ˆR t + ˆξ left and right eigenvectors of M ( l (k), r (l) ) = δ k,l normal modes ˆρ k = ( l (k), ˆR) t ˆρ k = iω k ˆρ k + ˆQk projected noise ˆQk ( l (k), ˆξ) ˆξ(t)ˆξ (t ) = κδ(t t ) for T = ˆρk (t)ˆρ l (t) = ˆρ k ()ˆρ l () e i(ω k +ω l )t + κ e i(ω k +ω l )t i(ω k + ω l ) l (k) (l) l 5 / 8

59 Linearized dynamics of quantum fluctuations Normal mode decomposition Second-order correlation functions ˆR = im ˆR t + ˆξ left and right eigenvectors of M ( l (k), r (l) ) = δ k,l normal modes ˆρ k = ( l (k), ˆR) t ˆρ k = iω k ˆρ k + ˆQk projected noise ˆQk ( l (k), ˆξ) ˆξ(t)ˆξ (t ) = κδ(t t ) for T = ˆρk (t)ˆρ l (t) = ˆρ k ()ˆρ l () e i(ω k +ω l )t + κ e i(ω k +ω l )t i(ω k + ω l ) l (k) (l) l κ steady-state i(ω k + ω l ) l(k) (l) l 5 / 8

60 Linearized dynamics of quantum fluctuations Normal mode decomposition Second-order correlation functions ˆR = im ˆR t + ˆξ left and right eigenvectors of M ( l (k), r (l) ) = δ k,l normal modes ˆρ k = ( l (k), ˆR) t ˆρ k = iω k ˆρ k + ˆQk projected noise ˆQk ( l (k), ˆξ) ˆξ(t)ˆξ (t ) = κδ(t t ) for T = ˆρk (t)ˆρ l (t) = ˆρ k ()ˆρ l () e i(ω k +ω l )t + κ e i(ω k +ω l )t i(ω k + ω l ) l (k) (l) l κ steady-state i(ω k + ω l ) l(k) (l) l Quantum depletion of the condensate δ δn(t) = ˆΨ (x, t) δ ˆΨ(x, t) dx = ˆρ k (t)ˆρ l (t) k,l r (k) 4 (x) r (l) (x) dx 3 5 / 8

61 Quantum features of the steady-state: singularity BEC depletion δb δb.5.3. β.5..5 y/yc.5 photon number δa δa α...5 y/yc.5 6 / 8

62 Quantum features of the steady-state: singularity BEC depletion 3.5 Critical exponent = δb δb y/yc β log δb δb log y/yc -6 photon number δa δa α...5 y/yc.5 6 / 8

63 Quantum features of the steady-state: singularity BEC depletion 3.5 Critical exponent = δb δb y/yc β log δb δb log y/yc -6 Analytical result below threshold (ω R κ, C ) photon number δn ( C NU /) + κ (y/yc ) 8ω R ( C + NU /) (y/y c ) δa δa α...5 y/yc.5 6 / 8

64 Quantum features of the steady-state: singularity BEC depletion 3.5 Critical exponent = δb δb y/yc β log δb δb log y/yc -6 Analytical result below threshold (ω R κ, C ) photon number.5 δn ( C NU /) + κ (y/yc ) 8ω R ( C + NU /) (y/y c ) δa δa α two-mode squeezing b b ( y/y c )...5 y/yc.5 6 / 8

65 Quantum features of the steady-state: singularity BEC depletion 3.5 Critical exponent = δb δb y/yc β log δb δb log y/yc -6 Analytical result below threshold (ω R κ, C ) photon number.5 δn ( C NU /) + κ (y/yc ) 8ω R ( C + NU /) (y/y c ).8.4 two-mode squeezing b b ( y/y c ) δa δa α Excess noise depletion.. y δn = O(κ/ω R, C /ω R ).5 y/yc.5 [Szirmai, Nagy, Domokos, PRL, 84 (9)] 6 / 8

66 Evolution towards the steady state System prepared in the mean-field solution: diffuses out towards the steady-state 7 / 8

67 Evolution towards the steady state System prepared in the mean-field solution: diffuses out towards the steady-state Depletion rate. Diffusion [units of κ] y/y c / 8

68 Evolution towards the steady state System prepared in the mean-field solution: diffuses out towards the steady-state Depletion rate. Diffusion [units of κ].5..5 Coarse graining ( δ C + κ) / δt ω R δn(t) δt = κ M c δ C + κ < κω R δ C with M c = y below threshold.5.5 y/y c.5 3 [Nagy, Domokos, Vukics, Ritsch, EPJD 55, 659 (9)] 7 / 8

69 Summary Many-body effects in the motion of atoms in a cavity global coupling (Dicke model) LMG-model (each spin interacts identically with every other) [Lipkin, Meshkov, Glick, Nucl. Phys. 6, 88 (965)] H LMG = hs z y N (S x + γs y ) How to obtain it: [Morrison and Parkins, PRL, 443 (8)] self-organization: a non-equilibrium phase transition (classical vs. quantum) ground state of the Hamiltonian : criticality experimental realization of the Dicke-type quantum phase transition steady-state of the driven-damped system: criticality, other exponent Outlook finite size scaling modeling the non-equilibrium dynamics (beyond linearization) 8 / 8

Self organization of a Bose Einstein Condensate in an optical cavity

Self organization of a Bose Einstein Condensate in an optical cavity Self organization of a Bose Einstein Condensate in an optical cavity Mayukh Nilay Khan December 14, 2011 Abstract Here, we discuss the spatial self organization of a BEC in a single mode optical cavity

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

From cavity optomechanics to the Dicke quantum phase transition

From cavity optomechanics to the Dicke quantum phase transition From cavity optomechanics to the Dicke quantum phase transition (~k; ~k)! p Rafael Mottl Esslinger Group, ETH Zurich Cavity Optomechanics Conference 2013, Innsbruck Motivation & Overview Engineer optomechanical

More information

Towards new states of matter with atoms and photons

Towards new states of matter with atoms and photons Towards new states of matter with atoms and photons Jonas Larson Stockholm University and Universität zu Köln Aarhus Cold atoms and beyond 26/6-2014 Motivation Optical lattices + control quantum simulators.

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Quantum structures of photons and atoms

Quantum structures of photons and atoms Quantum structures of photons and atoms Giovanna Morigi Universität des Saarlandes Why quantum structures The goal: creation of mesoscopic quantum structures robust against noise and dissipation Why quantum

More information

Prospects for a superradiant laser

Prospects for a superradiant laser Prospects for a superradiant laser M. Holland murray.holland@colorado.edu Dominic Meiser Jun Ye Kioloa Workshop D. Meiser, Jun Ye, D. Carlson, and MH, PRL 102, 163601 (2009). D. Meiser and MH, PRA 81,

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

BEC meets Cavity QED

BEC meets Cavity QED BEC meets Cavity QED Tilman Esslinger ETH ZürichZ Funding: ETH, EU (OLAQUI, Scala), QSIT, SNF www.quantumoptics.ethz.ch Superconductivity BCS-Theory Model Experiment Fermi-Hubbard = J cˆ ˆ U nˆ ˆ i, σ

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 2 Previous lecture 1 Classical optics light waves material

More information

arxiv: v1 [physics.atom-ph] 9 Nov 2013

arxiv: v1 [physics.atom-ph] 9 Nov 2013 Beyond the Dicke Quantum Phase Transition with a Bose-Einstein Condensate in an Optical Ring Resonator D. Schmidt, H. Tomczyk, S. Slama, C. Zimmermann Physikalisches Institut, Eberhard-Karls-Universität

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Microcavity Exciton-Polariton

Microcavity Exciton-Polariton Microcavity Exciton-Polariton Neil Na ( 那允中 ) Institute of Photonics Technologies National Tsing-Hua University 5/3/2012 Outline Microcavity Exciton-polariton QW excitons Microcavity photons Strong coupling

More information

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons

Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Spectroscopy of a non-equilibrium Tonks-Girardeau gas of strongly interacting photons Iacopo Carusotto BEC CNR-INFM and Università di Trento, Italy Institute of Quantum Electronics, ETH Zürich, Switzerland

More information

Spontaneous crystallization of light and ultracold atoms

Spontaneous crystallization of light and ultracold atoms Spontaneous crystallization of light and ultracold atoms COST MP1403 NANOSCALE QUANTUM OPTICS Helmut Ritsch Theoretische Physik Universität Innsbruck QLIGHTCRETE, Kreta, June 2016 People Claudiu Genes

More information

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

Collective Dynamics of a Generalized Dicke Model

Collective Dynamics of a Generalized Dicke Model Collective Dynamics of a Generalized Dicke Model J. Keeling, J. A. Mayoh, M. J. Bhaseen, B. D. Simons Harvard, January 212 Funding: Jonathan Keeling Collective dynamics Harvard, January 212 1 / 25 Coupling

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

Non-Equilibrium Physics with Quantum Gases

Non-Equilibrium Physics with Quantum Gases Non-Equilibrium Physics with Quantum Gases David Weiss Yang Wang Laura Adams Cheng Tang Lin Xia Aishwarya Kumar Josh Wilson Teng Zhang Tsung-Yao Wu Neel Malvania NSF, ARO, DARPA, Outline Intro: cold atoms

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Bose-Einstein condensates in optical lattices

Bose-Einstein condensates in optical lattices Bose-Einstein condensates in optical lattices Creating number squeezed states of atoms Matthew Davis University of Queensland p.1 Overview What is a BEC? What is an optical lattice? What happens to a BEC

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Loop current order in optical lattices

Loop current order in optical lattices JQI Summer School June 13, 2014 Loop current order in optical lattices Xiaopeng Li JQI/CMTC Outline Ultracold atoms confined in optical lattices 1. Why we care about lattice? 2. Band structures and Berry

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016 Ana Maria Rey Okinawa School in Physics 016: Coherent Quantum Dynamics Okinawa, Japan, Oct 4-5, 016 What can we do with ultra-cold matter? Quantum Computers Lecture II-III Clocks and sensors Synthetic

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT

ICAP Summer School, Paris, Three lectures on quantum gases. Wolfgang Ketterle, MIT ICAP Summer School, Paris, 2012 Three lectures on quantum gases Wolfgang Ketterle, MIT Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

Quantum optics of many-body systems

Quantum optics of many-body systems Quantum optics of many-body systems Igor Mekhov Université Paris-Saclay (SPEC CEA) University of Oxford, St. Petersburg State University Lecture 4 Previous lectures Classical optics light waves material

More information

arxiv: v3 [quant-ph] 30 Jul 2013

arxiv: v3 [quant-ph] 30 Jul 2013 Bloch Oscillations of Cold Atoms in a Cavity: Effects of Quantum Noise arxiv:1212.3594v3 [quant-ph] 3 Jul 213 B. Prasanna Venkatesh 1 and D. H. J. O Dell 1 1 Department of Physics and Astronomy, McMaster

More information

Polariton Condensation

Polariton Condensation Polariton Condensation Marzena Szymanska University of Warwick Windsor 2010 Collaborators Theory J. Keeling P. B. Littlewood F. M. Marchetti Funding from Macroscopic Quantum Coherence Macroscopic Quantum

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14

Super Efimov effect. Sergej Moroz University of Washington. together with Yusuke Nishida and Dam Thanh Son. Tuesday, April 1, 14 Super Efimov effect together with Yusuke Nishida and Dam Thanh Son Sergej Moroz University of Washington Few-body problems They are challenging but useful: Newton gravity Quantum atoms Quantum molecules

More information

Photon-atom scattering

Photon-atom scattering Photon-atom scattering Aussois 005 Part Ohad Assaf and Aharon Gero Technion Photon-atom scattering Complex system: Spin of the photon: dephasing Internal atomic degrees of freedom (Zeeman sublevels): decoherence

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008 New Physics with Interacting Cold Atomic Gases California Condensed Matter Theory Meeting UC Riverside November 2, 2008 Ryan Barnett Caltech Collaborators: H.P. Buchler, E. Chen, E. Demler, J. Moore, S.

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

NanoKelvin Quantum Engineering

NanoKelvin Quantum Engineering NanoKelvin Quantum Engineering Few x 10 5 Yb atoms 250mm 400 nk 250 nk < 200 nk Control of atomic c.m. position and momentum. Today: Bose-Fermi double superfluid Precision BEC interferometry Ultracold

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

BEC in one dimension

BEC in one dimension BEC in one dimension Tilmann John 11. Juni 2013 Outline 1 one-dimensional BEC 2 theoretical description Tonks-Girardeau gas Interaction exact solution (Lieb and Liniger) 3 experimental realization 4 conclusion

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

arxiv: v2 [cond-mat.quant-gas] 25 Jul 2017

arxiv: v2 [cond-mat.quant-gas] 25 Jul 2017 Disorder-Driven Density and Spin Self-Ordering of a Bose-Einstein Condensate in a Cavity Farokh Mivehvar, 1, Francesco Piazza, 2 and Helmut Ritsch 1 1 Institut für Theoretische Physik, Universität Innsbruck,

More information

Condensate fraction for a polarized three-dimensional Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas Condensate fraction for a polarized three-dimensional Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Camerino, June 26, 2014 Collaboration with:

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

OIST, April 16, 2014

OIST, April 16, 2014 C3QS @ OIST, April 16, 2014 Brian Muenzenmeyer Dissipative preparation of squeezed states with ultracold atomic gases GW & Mäkelä, Phys. Rev. A 85, 023604 (2012) Caballar et al., Phys. Rev. A 89, 013620

More information

Nonlinear and chaotic dynamics of a Bose-Einstein condensate in an optical cavity

Nonlinear and chaotic dynamics of a Bose-Einstein condensate in an optical cavity Nonlinear and chaotic dynamics of a Bose-Einstein condensate in an optical cavity M. Diver, G.R.M. Robb, and G.-L. Oppo Institute of Complex Systems, SUPA, and Department of Physics, University of Strathclyde,

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

When superfluids are a drag

When superfluids are a drag When superfluids are a drag KITP October 2008 David Roberts Los Alamos National Laboratory In collaboration with Yves Pomeau (ENS), Andrew Sykes (Queensland), Matt Davis (Queensland), What makes superfluids

More information

High-Temperature Superfluidity

High-Temperature Superfluidity High-Temperature Superfluidity Tomoki Ozawa December 10, 2007 Abstract With the recent advancement of the technique of cooling atomic gases, it is now possible to make fermionic atom gases into superfluid

More information

Many-body physics 2: Homework 8

Many-body physics 2: Homework 8 Last update: 215.1.31 Many-body physics 2: Homework 8 1. (1 pts) Ideal quantum gases (a)foranidealquantumgas,showthatthegrandpartitionfunctionz G = Tre β(ĥ µ ˆN) is given by { [ ] 1 Z G = i=1 for bosons,

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Experimental realization of Bose Einstein condensation (BEC) of dilute atomic gases [Anderson, et al. (1995); Davis, et al. (1995); Bradley, et al. (1995, 1997)] has ignited a virtual explosion of research.

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Alain Aspect, Adilet Imambekov, Vladimir Gritsev, Takuya Kitagawa,

More information

From Optical Pumping to Quantum Gases

From Optical Pumping to Quantum Gases From Optical Pumping to Quantum Gases Claude Cohen-Tannoudji 22 nd International Conference on Atomic Physics Cairns, Australia, 26 July 2010 Collège de France 1 2010 : three anniversaries 60 th anniversary

More information

Quantum Computation with Neutral Atoms Lectures 14-15

Quantum Computation with Neutral Atoms Lectures 14-15 Quantum Computation with Neutral Atoms Lectures 14-15 15 Marianna Safronova Department of Physics and Astronomy Back to the real world: What do we need to build a quantum computer? Qubits which retain

More information

Interference between quantum gases

Interference between quantum gases Anderson s question, and its answer Interference between quantum gases P.W. Anderson: do two superfluids which have never "seen" one another possess a relative phase? MIT Jean Dalibard, Laboratoire Kastler

More information

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014

NanoKelvin Quantum Engineering. Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering Subhadeep Gupta UW NSF-INT Phys REU, 28 th July 2014 NanoKelvin Quantum Engineering with Ultracold Atoms < 200 nk Our group: Precision BEC interferometry. Ultracold Mixtures

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

1 Fluctuations of the number of particles in a Bose-Einstein condensate

1 Fluctuations of the number of particles in a Bose-Einstein condensate Exam of Quantum Fluids M1 ICFP 217-218 Alice Sinatra and Alexander Evrard The exam consists of two independant exercises. The duration is 3 hours. 1 Fluctuations of the number of particles in a Bose-Einstein

More information

Strongly correlated systems: from electronic materials to cold atoms

Strongly correlated systems: from electronic materials to cold atoms Strongly correlated systems: from electronic materials to cold atoms Eugene Demler Harvard University Collaborators: E. Altman, R. Barnett, I. Cirac, L. Duan, V. Gritsev, W. Hofstetter, A. Imambekov, M.

More information

Infinitely long-range nonlocal potentials and the Bose-Einstein supersolid phase

Infinitely long-range nonlocal potentials and the Bose-Einstein supersolid phase Armenian Journal of Physics, 8, vol., issue 3, pp.7-4 Infinitely long-range nonlocal potentials and the Bose-Einstein supersolid phase Moorad Alexanian Department of Physics and Physical Oceanography University

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

Many-Body Problems and Quantum Field Theory

Many-Body Problems and Quantum Field Theory Philippe A. Martin Francois Rothen Many-Body Problems and Quantum Field Theory An Introduction Translated by Steven Goldfarb, Andrew Jordan and Samuel Leach Second Edition With 102 Figures, 7 Tables and

More information

Quantum Reservoir Engineering

Quantum Reservoir Engineering Departments of Physics and Applied Physics, Yale University Quantum Reservoir Engineering Towards Quantum Simulators with Superconducting Qubits SMG Claudia De Grandi (Yale University) Siddiqi Group (Berkeley)

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

Landau Theory of Fermi Liquids : Equilibrium Properties

Landau Theory of Fermi Liquids : Equilibrium Properties Quantum Liquids LECTURE I-II Landau Theory of Fermi Liquids : Phenomenology and Microscopic Foundations LECTURE III Superfluidity. Bogoliubov theory. Bose-Einstein condensation. LECTURE IV Luttinger Liquids.

More information

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın

Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Quantum entanglement and light propagation through Bose-Einstein condensate (BEC) M. Emre Taşgın Advisor: M. Özgür Oktel Co-Advisor: Özgür E. Müstecaplıoğlu Outline Superradiance and BEC Superradiance

More information

Quantum noise studies of ultracold atoms

Quantum noise studies of ultracold atoms Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli Polkovnikov Funded by NSF,

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases

Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Laboratoire Charles Fabry, Palaiseau, France Atom Optics Group (Prof. A. Aspect) Direct observation of quantum phonon fluctuations in ultracold 1D Bose gases Julien Armijo* * Now at Facultad de ciencias,

More information

Explana'on of the Higgs par'cle

Explana'on of the Higgs par'cle Explana'on of the Higgs par'cle Condensed ma7er physics: The Anderson- Higgs excita'on Press release of Nature magazine Unity of Physics laws fev pev nev µev mev ev kev MeV GeV TeV pk nk µk mk K Cold atoms

More information

Learning about order from noise

Learning about order from noise Learning about order from noise Quantum noise studies of ultracold atoms Eugene Demler Harvard University Collaborators: Ehud Altman, Robert Cherng, Adilet Imambekov, Vladimir Gritsev, Mikhail Lukin, Anatoli

More information

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014

Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, (2013) HRI, Allahabad,Cold Atom Workshop, February, 2014 Cavity Optomechanics with synthetic Landau Levels of ultra cold atoms: Sankalpa Ghosh, Physics Department, IIT Delhi Ref: Bikash Padhi, and SG, Phys. Rev. Lett, 111, 043603 (2013)! HRI, Allahabad,Cold

More information

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics

Studies of Ultracold. Ytterbium and Lithium. Anders H. Hansen University of Washington Dept of Physics Studies of Ultracold Ytterbium and Lithium Anders H. Hansen University of Washington Dept of Physics U. Washington CDO Networking Days 11/18/2010 Why Ultracold Atoms? Young, active discipline Two Nobel

More information

Strongly Correlated Physics With Ultra-Cold Atoms

Strongly Correlated Physics With Ultra-Cold Atoms Strongly Correlated Physics With Ultra-Cold Atoms Predrag Nikolić Rice University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Sponsors W.M.Keck Program in Quantum

More information

Controlling discrete and continuous symmetries in superradiant phase transitions

Controlling discrete and continuous symmetries in superradiant phase transitions Controlling discrete and continuous symmetries in superradiant phase transitions Alexandre Baksic, Cristiano Ciuti To cite this version: Alexandre Baksic, Cristiano Ciuti. Controlling discrete and continuous

More information

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES

Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC FERMI GASES 1 INTERNATIONAL SCHOOL OF PHYSICS "ENRICO FERMI" Varenna, July 1st - July 11 th 2008 " QUANTUM COHERENCE IN SOLID STATE SYSTEMS " Introduction to Bose-Einstein condensation 4. STRONGLY INTERACTING ATOMIC

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne

Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Spin- and heat pumps from approximately integrable spin-chains Achim Rosch, Cologne Zala Lenarčič, Florian Lange, Achim Rosch University of Cologne theory of weakly driven quantum system role of approximate

More information

Disordered Ultracold Gases

Disordered Ultracold Gases Disordered Ultracold Gases 1. Ultracold Gases: basic physics 2. Methods: disorder 3. Localization and Related Measurements Brian DeMarco, University of Illinois bdemarco@illinois.edu Localization & Related

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

Simulation of Quantum Transport in Periodic and Disordered Systems with Ultracold Atoms

Simulation of Quantum Transport in Periodic and Disordered Systems with Ultracold Atoms Simulation of Quantum Transport in Periodic and Disordered Systems with Ultracold Atoms Laurent Sanchez-Palencia Center for Theoretical Physics Ecole Polytechnique, CNRS, Univ. Paris-Saclay F-91128 Palaiseau,

More information