10 October 2012 The Non Linear Behaviour of the Microplane Model in COMSOL. A. Frigerio. COMSOL Conference 2012 Milan (Italy)

Size: px
Start display at page:

Download "10 October 2012 The Non Linear Behaviour of the Microplane Model in COMSOL. A. Frigerio. COMSOL Conference 2012 Milan (Italy)"

Transcription

1 0 October 202 The Non Linear Behaviour of the Microplane Model in COMSOL A. Frigerio COMSOL Conference 202 Milan (Italy) Excerpt from the Proceedings of the 202 COMSOL Conference in Milan

2 Agenda Aims of the wor The Microplane Model A few hints on the main theory aspects The non-linear behaviour Implementation process of the non-linear behaviour within COMSOL Conclusions

3 Aims of the wor Why the need to have another constitutive model for concrete? Classical constitutive models are able to properly simulate only a few specific characteristic of concrete The Microplane Model is a promising alternative approach able to simulate the overall behaviour of concrete

4 The Microplane Model: theory Logical scheme of the linear elastic behaviour of the Microplane Model compared with that of classical approaches

5 The Microplane model: the non-linear behaviour (/2) The non-linear behaviour is based on the definition of stress-strain boundaries at the microplane level: Within the domain these boundaries mar out the material response is incremental elastic Movements along these boundaries are permitted only if strain and stress increments have the same sign, otherwise elastic unloading occurs

6 The Microplane model: the non-linear behaviour (2/2) Damage can be modelled reducing progressively the elastic moduli of the incremental laws within the elastic domain The boundaries are characterized by 7 constant material parameters and 4 free parameters c, c 2 c 7 &, 2 4 The constant parameters should be ept fixed for all types of concrete The free parameters should be identified fitting test data

7 The stress-strain boundaries Tensile normal boundary N D olumetric boundaries E Deviatoric boundaries D E D D Frictional yield boundary T 2 M 2 L M EM M E L L L

8 Implementation within COMSOL Model Builder window Model Definitions node SigmaN

9 Tensile normal boundary b N E c exp c 3 N c c c 4 2 / E The initial descending part describes the tensile cracing parallel to the microplane The tail defines the frictional pullout of fragments bridging the crac surfaces snb = Young**c*exp(-max(eNint-c*c2*,0.)/(*c3+max(-c4*(sc/E),0.))) sn = min(snb,sc+sdc)

10 olumetric boundaries b E3 exp 4 b c / c 2 4 E c 3 3 A tensile volumetric boundary is needed to prevent unreasonable lateral strains in post pea softening under uniaxial, unconfined, tension Under hydrostatic pressure a progressive stronger hardening is considered to primarily represent the collapse and closure of pores sbn = -Young**3*exp(-eint/(*4)) sbp = Young**c3/(+(c4/)*max(eint-*c3,0.))^2 sc = (s>=0)*min(sbp,s)+(s<0)*max(sbn,s)

11 Deviatoric boundaries The compressive deviatoric curve controls the axial crushing strain of concrete in compression when lateral confinement is too wea to prevent crushing The tensile deviatoric curve: simulates transverse crac opening of axial distributed cracs in compression controls the volumetric expansion and lateral strains in unconfined compression tests b D c c / c 2 D E 8 c b D c c / c c 2 D E 5 6 c sdbn = -Young**c8/(+(max(-eDint-c8*c9*,0.)/(*c7))^2) sdbp = Young**c5/(+(max(eDint-c5*c6*,0.)/(*c7*c7))^2) sdc = (sd>=0)*min(sdbp,sd)+(sd<0)**max(sdbn,sd)

12 Frictional yield boundary lim N E b T T E E T T 2 2 c T 0 c At very high confining pressures, concrete becomes a plastic but frictionless material 0 2 N N 0 N 0 N E 0 T N c2 c d T d N N 0 c For small volumetric strain, a finite cohesive stress, which decreases to zero with increasing volumetric strain, is provided 0 snt = ET**c/(+c2*max(eint,0.)) stb = ET**2*c0*max(-sN+sNT,0.)/(ET**2+c0*max(-sN+sNT,0.)) st =(sm^2+sl^2)^0.5 smc = if(st>stb,sm*stb/st,sm) slc = if(st>stb,sl*stb/st,sl)

13 alidation of the model Compression test Results in terms of stress

14 alidation of the model Non-linear boundaries chec during a compression/traction test

15 Conclusions An accurate identification of the free material parameters and the constant ones is needed Applying the Microplane Model to simulate the concrete behaviour of large structures, such as dams, presenting an evident crac pattern

16 The end

The Non Linear Behavior of the Microplane Model in COMSOL

The Non Linear Behavior of the Microplane Model in COMSOL The on Linear Behavior of the Microplane Model in COMSOL A. Frigerio 1 1 RSE S.p.A. *via Ruattino, 54 20134 Milan (Italy), antonella.frigerio@rse-we.it Astract: umerical models ased on the Finite Element

More information

Particle flow simulation of sand under biaxial test

Particle flow simulation of sand under biaxial test 5th International Conference on Civil Engineering and Transportation (ICCET 2015) Particle flow simulation of sand under biaxial test Xiao-li Dong1,2, a *,Wei-hua Zhang1,a 1 Beijing City University, China

More information

Microplane Model formulation ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary

Microplane Model formulation ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Microplane Model formulation 2010 ANSYS, Inc. All rights reserved. 1 ANSYS, Inc. Proprietary Table of Content Engineering relevance Theory Material model input in ANSYS Difference with current concrete

More information

Table of Contents. Foreword... xiii Introduction... xv

Table of Contents. Foreword... xiii Introduction... xv Foreword.... xiii Introduction.... xv Chapter 1. Controllability of Geotechnical Tests and their Relationship to the Instability of Soils... 1 Roberto NOVA 1.1. Introduction... 1 1.2. Load control... 2

More information

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials

A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials Dublin, October 2010 A Constitutive Framework for the Numerical Analysis of Organic Soils and Directionally Dependent Materials FracMan Technology Group Dr Mark Cottrell Presentation Outline Some Physical

More information

Experimental and theoretical characterization of Li 2 TiO 3 and Li 4 SiO 4 pebbles

Experimental and theoretical characterization of Li 2 TiO 3 and Li 4 SiO 4 pebbles Experimental and theoretical characterization of Li 2 TiO 3 and Li 4 SiO 4 s D. Aquaro 1 N. Zaccari ABSTRACT Dipartimento di Ingegneria Meccanica Nucleare e della Produzione University of Pisa (Italy)

More information

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Uniaxial Model: Strain-Driven Format of Elastoplasticity

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Uniaxial Model: Strain-Driven Format of Elastoplasticity MODELING OF CONCRETE MATERIALS AND STRUCTURES Kaspar Willam University of Colorado at Boulder Class Meeting #3: Elastoplastic Concrete Models Uniaxial Model: Strain-Driven Format of Elastoplasticity Triaxial

More information

Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. II: Calibration and Validation.

Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. II: Calibration and Validation. Lattice Discrete Particle Model (LDPM) for Failure Behavior of Concrete. II: Calibration and Validation. By Gianluca Cusatis 1, Andrea Mencarelli 2, Daniele Pelessone 3, James Baylot 4 A Paper Submitted

More information

Numerical investigation of EDZ development around a deep polymetallic ore mine

Numerical investigation of EDZ development around a deep polymetallic ore mine Paper No. 198 ISMS 2016 Numerical investigation of EDZ development around a deep polymetallic ore mine Mountaka Souley a *, Marwan Al Heib a, Vincent Renaud a a INERIS, c/o Ecole des Mines de Nancy, Campus

More information

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression FAILURE CRITERIA OF ROCK AND ROCK MASSES Contents 5.1 Failure in rocks 5.1.1 Hydrostatic compression 5.1.2 Deviatoric compression 5.1.3 Effect of confining pressure 5.2 Failure modes in rocks 5.3 Complete

More information

Análisis Computacional del Comportamiento de Falla de Hormigón Reforzado con Fibras Metálicas

Análisis Computacional del Comportamiento de Falla de Hormigón Reforzado con Fibras Metálicas San Miguel de Tucuman, Argentina September 14 th, 2011 Seminary on Análisis Computacional del Comportamiento de Falla de Hormigón Reforzado con Fibras Metálicas Antonio Caggiano 1, Guillermo Etse 2, Enzo

More information

Practice Final Examination. Please initial the statement below to show that you have read it

Practice Final Examination. Please initial the statement below to show that you have read it EN175: Advanced Mechanics of Solids Practice Final Examination School of Engineering Brown University NAME: General Instructions No collaboration of any kind is permitted on this examination. You may use

More information

6. NON-LINEAR PSEUDO-STATIC ANALYSIS OF ADOBE WALLS

6. NON-LINEAR PSEUDO-STATIC ANALYSIS OF ADOBE WALLS 6. NON-LINEAR PSEUDO-STATIC ANALYSIS OF ADOBE WALLS Blondet et al. [25] carried out a cyclic test on an adobe wall to reproduce its seismic response and damage pattern under in-plane loads. The displacement

More information

Modified Cam-clay triaxial test simulations

Modified Cam-clay triaxial test simulations 1 Introduction Modified Cam-clay triaxial test simulations This example simulates a series of triaxial tests which can be used to verify that Modified Cam-Clay constitutive model is functioning properly.

More information

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam MODELING OF CONCRETE MATERIALS AND STRUCTURES Class Meeting #1: Fundamentals Kaspar Willam University of Colorado at Boulder Notation: Direct and indicial tensor formulations Fundamentals: Stress and Strain

More information

*MAT_PAPER and *MAT_COHESIVE_PAPER: Two New Models for Paperboard Materials

*MAT_PAPER and *MAT_COHESIVE_PAPER: Two New Models for Paperboard Materials 14 th International LS-DYNA Users Conference Session: Constitutive Modeling *MAT_PAPER and *MAT_COHESIVE_PAPER: Two New Models for Paperboard Materials Jesper Karlsson 1, Mikael Schill 1, Johan Tryding

More information

Verification of the Hyperbolic Soil Model by Triaxial Test Simulations

Verification of the Hyperbolic Soil Model by Triaxial Test Simulations 1 Introduction Verification of the Hyperbolic Soil Model by Triaxial Test Simulations This example simulates a series of triaxial tests that can be used to verify that the Hyperbolic constitutive model

More information

Behaviour of Blast-Induced Damaged Zone Around Underground Excavations in Hard Rock Mass Problem statement Objectives

Behaviour of Blast-Induced Damaged Zone Around Underground Excavations in Hard Rock Mass Problem statement Objectives Behaviour of Blast-Induced Damaged Zone Around Underground Excavations in Hard Rock Mass Problem statement Blast-induced damaged zone can affect the affect stability and performance of tunnel. But, we

More information

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS

EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS EFFECT OF SHEAR REINFORCEMENT ON FAILURE MODE OF RC BRIDGE PIERS SUBJECTED TO STRONG EARTHQUAKE MOTIONS Atsuhiko MACHIDA And Khairy H ABDELKAREEM SUMMARY Nonlinear D FEM was utilized to carry out inelastic

More information

MICROPLANE MODEL M4 FOR CONCRETE. II: ALGORITHM AND CALIBRATION

MICROPLANE MODEL M4 FOR CONCRETE. II: ALGORITHM AND CALIBRATION MICROPLANE MODEL M4 FOR CONCRETE. II: ALGORITHM AND CALIBRATION By Ferhun C. Caner 1 and Zdeněk P. Bažant, 2 Fellow, ASCE ABSTRACT: This paper represents Part II of a two-part study in which a new improved

More information

Discrete Element Modelling of a Reinforced Concrete Structure

Discrete Element Modelling of a Reinforced Concrete Structure Discrete Element Modelling of a Reinforced Concrete Structure S. Hentz, L. Daudeville, F.-V. Donzé Laboratoire Sols, Solides, Structures, Domaine Universitaire, BP 38041 Grenoble Cedex 9 France sebastian.hentz@inpg.fr

More information

Modeling the bond of GFRP and concrete based on a damage evolution approach

Modeling the bond of GFRP and concrete based on a damage evolution approach Modeling the ond of GFRP and concrete ased on a damage evolution approach Mohammadali Rezazadeh 1, Valter Carvelli 2, and Ana Veljkovic 3 1 Dep. Architecture, Built environment and Construction engineering,

More information

MICROPLANE MODEL M4 FOR CONCRETE. I: FORMULATION WITH WORK-CONJUGATE DEVIATORIC STRESS

MICROPLANE MODEL M4 FOR CONCRETE. I: FORMULATION WITH WORK-CONJUGATE DEVIATORIC STRESS MICROPLANE MOEL M4 FOR CONCRETE. I: FORMULATION WITH WORK-CONJUGATE EVIATORIC STRESS By Zdeněk P. Bažant, 1 Fellow, ASCE, Ferhun C. Caner, 2 Ignacio Carol, 3 Mark. Adley, 4 and Stephen A. Akers 5 ABSTRACT:

More information

Card Variable MID RO E PR ECC QH0 FT FC. Type A8 F F F F F F F. Default none none none 0.2 AUTO 0.3 none none

Card Variable MID RO E PR ECC QH0 FT FC. Type A8 F F F F F F F. Default none none none 0.2 AUTO 0.3 none none Note: This is an extended description of MAT_273 input provided by Peter Grassl It contains additional guidance on the choice of input parameters beyond the description in the official LS-DYNA manual Last

More information

Numerical Modelling of Blockwork Prisms Tested in Compression Using Finite Element Method with Interface Behaviour

Numerical Modelling of Blockwork Prisms Tested in Compression Using Finite Element Method with Interface Behaviour 13 th International Brick and Block Masonry Conference Amsterdam, July 4-7, 2004 Numerical Modelling of Blockwork Prisms Tested in Compression Using Finite Element Method with Interface Behaviour H. R.

More information

MASONRY MICRO-MODELLING ADOPTING A DISCONTINUOUS FRAMEWORK

MASONRY MICRO-MODELLING ADOPTING A DISCONTINUOUS FRAMEWORK MASONRY MICRO-MODELLING ADOPTING A DISCONTINUOUS FRAMEWORK J. Pina-Henriques and Paulo B. Lourenço School of Engineering, University of Minho, Guimarães, Portugal Abstract Several continuous and discontinuous

More information

Fluid driven cohesive crack propagation in quasi-brittle materials

Fluid driven cohesive crack propagation in quasi-brittle materials Fluid driven cohesive crack propagation in quasi-brittle materials F. Barpi 1, S. Valente 2 Department of Structural and Geotechnical Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129

More information

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur

Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur Plasticity R. Chandramouli Associate Dean-Research SASTRA University, Thanjavur-613 401 Joint Initiative of IITs and IISc Funded by MHRD Page 1 of 9 Table of Contents 1. Plasticity:... 3 1.1 Plastic Deformation,

More information

Chapter (12) Instructor : Dr. Jehad Hamad

Chapter (12) Instructor : Dr. Jehad Hamad Chapter (12) Instructor : Dr. Jehad Hamad 2017-2016 Chapter Outlines Shear strength in soils Direct shear test Unconfined Compression Test Tri-axial Test Shear Strength The strength of a material is the

More information

On Springback Prediction In Stamping Of AHSS BIW Components Utilizing Advanced Material Models

On Springback Prediction In Stamping Of AHSS BIW Components Utilizing Advanced Material Models On Springback Prediction In Stamping Of AHSS BIW Components Utilizing Advanced Material Models Ming F. Shi and Alex A. Konieczny United States Steel Corporation Introduction Origin of Springback AHSS Springback

More information

THE BEHAVIOUR OF REINFORCED CONCRETE AS DEPICTED IN FINITE ELEMENT ANALYSIS.

THE BEHAVIOUR OF REINFORCED CONCRETE AS DEPICTED IN FINITE ELEMENT ANALYSIS. THE BEHAVIOUR OF REINFORCED CONCRETE AS DEPICTED IN FINITE ELEMENT ANALYSIS. THE CASE OF A TERRACE UNIT. John N Karadelis 1. INTRODUCTION. Aim to replicate the behaviour of reinforced concrete in a multi-scale

More information

1 Introduction. Abstract

1 Introduction. Abstract Abstract This paper presents a three-dimensional numerical model for analysing via finite element method (FEM) the mechanized tunneling in urban areas. The numerical model is meant to represent the typical

More information

CDPM2: A damage-plasticity approach to modelling the failure of concrete

CDPM2: A damage-plasticity approach to modelling the failure of concrete CDPM2: A damage-plasticity approach to modelling the failure of concrete Peter Grassl 1, Dimitrios Xenos 1, Ulrika Nyström 2, Rasmus Rempling 2, Kent Gylltoft 2 arxiv:1307.6998v1 [cond-mat.mtrl-sci] 26

More information

APPENDIX I. Deformation Analysis of the Left Abutment

APPENDIX I. Deformation Analysis of the Left Abutment APPENDIX I Deformation Analysis of the Left Abutment August 25, 2016 Appendix I Deformation Analysis of the Left Abutment TABLE OF CONTENTS I1 INTRODUCTION... 1 I2 MODEL DEVELOPMENT... 2 I2.1 General...

More information

Strain-Based Design Model for FRP-Confined Concrete Columns

Strain-Based Design Model for FRP-Confined Concrete Columns SP-230 57 Strain-Based Design Model for FRP-Confined Concrete Columns by N. Saenz and C.P. Pantelides Synopsis: A constitutive strain-based confinement model is developed herein for circular concrete columns

More information

Using the Abaqus CDP Model in Impact Simulations

Using the Abaqus CDP Model in Impact Simulations SAFIR project (http://safir2018.vtt.fi/) The Finnish Research Programme on Nuclear Power Plant Safety 2015-2018 Using the Abaqus CDP Model in Impact Simulations Alexis Fedoroff Technical reseach centre

More information

Lateral Confinement Needed to Suppress Softening of Concrete in Compression

Lateral Confinement Needed to Suppress Softening of Concrete in Compression Lateral Confinement Needed to Suppress Softening of Concrete in Compression Ferhun C. Caner 1 ; and Zdeněk P.Bažant, F.ASCE 2 Abstract: Suppression of softening in the load-deflection diagram of concrete-filled

More information

(Refer Slide Time: 02:18)

(Refer Slide Time: 02:18) Geology and Soil Mechanics Prof. P. Ghosh Department of Civil Engineering Indian Institute of Technology Kanpur Lecture 40 Shear Strength of Soil - C Keywords: Shear strength of soil, direct shear test,

More information

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2)

ME 582 Advanced Materials Science. Chapter 2 Macromechanical Analysis of a Lamina (Part 2) ME 582 Advanced Materials Science Chapter 2 Macromechanical Analysis of a Lamina (Part 2) Laboratory for Composite Materials Research Department of Mechanical Engineering University of South Alabama, Mobile,

More information

Railroad Concrete Tie Failure Analysis

Railroad Concrete Tie Failure Analysis Railroad Concrete Tie Failure Analysis Hailing Yu, David Jeong, Brian Marquis, and Michael Coltman 2014 International Crosstie & Fastening System Symposium June 3-5, 2014 The National Transportation Systems

More information

.. Microplane finite element analysis of tube-squash test of concrete with shear angles up to 70

.. Microplane finite element analysis of tube-squash test of concrete with shear angles up to 70 INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING Int. 1. Numer. Meth. Engng 2001; 52:1165-1188 (001: 10.1002/nme.253).. Microplane finite element analysis of tube-squash test of concrete with

More information

A generalisation of the Hillerborg s model for the analytical evaluation of ductility of RC beams in bending

A generalisation of the Hillerborg s model for the analytical evaluation of ductility of RC beams in bending Magazine of Concrete Research, 21, 62, No. 8, August, 557 567 doi: 1.168/macr.21.62.8.557 A generalisation of the Hillerborg s model for the analytical evaluation of ductility of RC beams in bending E.

More information

Advanced model for soft soils. Modified Cam-Clay (MCC)

Advanced model for soft soils. Modified Cam-Clay (MCC) Advanced model for soft soils. Modified Cam-Clay (MCC) c ZACE Services Ltd August 2011 1 / 62 2 / 62 MCC: Yield surface F (σ,p c ) = q 2 + M 2 c r 2 (θ) p (p p c ) = 0 Compression meridian Θ = +π/6 -σ

More information

GEO E1050 Finite Element Method Mohr-Coulomb and other constitutive models. Wojciech Sołowski

GEO E1050 Finite Element Method Mohr-Coulomb and other constitutive models. Wojciech Sołowski GEO E050 Finite Element Method Mohr-Coulomb and other constitutive models Wojciech Sołowski To learn today. Reminder elasticity 2. Elastic perfectly plastic theory: concept 3. Specific elastic-perfectly

More information

Pillar strength estimates for foliated and inclined pillars in schistose material

Pillar strength estimates for foliated and inclined pillars in schistose material Pillar strength estimates for foliated and inclined pillars in schistose material L.J. Lorig Itasca Consulting Group, Inc., Minneapolis, MN, USA A. Cabrera Itasca S.A., Santiago, Chile ABSTRACT: Pillar

More information

SMA numerical modeling versus experimental results

SMA numerical modeling versus experimental results , (9) DOI:./esomat/9 Owned by the authors, published by EDP Sciences, 9 SMA erical modeling versus erimental results Ferdinando Auricchio, Simone Morganti, and Alessandro Reali,a Dipartimento di Meccanica

More information

3D MATERIAL MODEL FOR EPS RESPONSE SIMULATION

3D MATERIAL MODEL FOR EPS RESPONSE SIMULATION 3D MATERIAL MODEL FOR EPS RESPONSE SIMULATION A.E. Swart 1, W.T. van Bijsterveld 2, M. Duškov 3 and A. Scarpas 4 ABSTRACT In a country like the Netherlands, construction on weak and quite often wet soils

More information

Lab 5 - Aquifer Elasticity and Specific Storage. Due October 12 14, 2010

Lab 5 - Aquifer Elasticity and Specific Storage. Due October 12 14, 2010 Lab 5 - Aquifer Elasticity and Specific Storage Due October 12 14, 2010 The goal of this experiment is to measure the specific storage S s of a balloon, which simulates aquifer elasticity. The experiment

More information

INTRODUCTION TO THE EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS

INTRODUCTION TO THE EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS INTRODUCTION TO THE EXPLICIT FINITE ELEMENT METHOD FOR NONLINEAR TRANSIENT DYNAMICS SHEN R. WU and LEI GU WILEY A JOHN WILEY & SONS, INC., PUBLICATION ! PREFACE xv PARTI FUNDAMENTALS 1 1 INTRODUCTION 3

More information

FLEXURAL DESIGN OF STRAIN HARDENING CEMENT COMPOSITES

FLEXURAL DESIGN OF STRAIN HARDENING CEMENT COMPOSITES BEFIB01 Fibre reinforced conete Joaquim Barros et al. (Eds) UM, Guimarães, 01 FLEXURAL DESIGN OF STRAIN HARDENING CEMENT COMPOSITES Barzin Mobasher*, Christopher Barsby* * School of Sustainable Engineering

More information

Experimental study of mechanical and thermal damage in crystalline hard rock

Experimental study of mechanical and thermal damage in crystalline hard rock Experimental study of mechanical and thermal damage in crystalline hard rock Mohammad Keshavarz Réunion Technique du CFMR - Thèses en Mécanique des Roches December, 3 nd 2009 1 Overview Introduction Characterization

More information

1. Background. is usually significantly lower than it is in uniaxial tension

1. Background. is usually significantly lower than it is in uniaxial tension NOTES ON QUANTIFYING MODES OF A SECOND- ORDER TENSOR. The mechanical behavior of rocks and rock-like materials (concrete, ceramics, etc.) strongly depends on the loading mode, defined by the values and

More information

Finite Element Solutions for Geotechnical Engineering

Finite Element Solutions for Geotechnical Engineering Release Notes Release Date: July, 2015 Product Ver.: GTSNX 2015 (v2.1) Integrated Solver Optimized for the next generation 64-bit platform Finite Element Solutions for Geotechnical Engineering Enhancements

More information

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL

TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL TIME-DEPENDENT BEHAVIOR OF PILE UNDER LATERAL LOAD USING THE BOUNDING SURFACE MODEL Qassun S. Mohammed Shafiqu and Maarib M. Ahmed Al-Sammaraey Department of Civil Engineering, Nahrain University, Iraq

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

SIMPLIFIED CONCRETE MODELING WITH *MAT_CONCRET_DAMAGE_REL3

SIMPLIFIED CONCRETE MODELING WITH *MAT_CONCRET_DAMAGE_REL3 SIMPLIFIED CONCRETE MODELING WITH *MAT_CONCRET_DAMAGE_REL3 Leonard E Schwer Schwer Engineering & Consulting Services, Windsor CA, USA and L. Javier Malvar Karagozian & Case Structural Engineers, Burbank

More information

Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr.

Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr. Towards Efficient Finite Element Model Review Dr. Richard Witasse, Plaxis bv (based on the original presentation of Dr. Brinkgreve) Journée Technique du CFMS, 16 Mars 2011, Paris 1/32 Topics FEA in geotechnical

More information

Rock Mechanics Laboratory Tests for Petroleum Applications. Rob Marsden Reservoir Geomechanics Advisor Gatwick

Rock Mechanics Laboratory Tests for Petroleum Applications. Rob Marsden Reservoir Geomechanics Advisor Gatwick Rock Mechanics Laboratory Tests for Petroleum Applications Rob Marsden Reservoir Geomechanics Advisor Gatwick Summary A wide range of well established and proven laboratory tests are available for petroleum

More information

A simple elastoplastic model for soils and soft rocks

A simple elastoplastic model for soils and soft rocks A simple elastoplastic model for soils and soft rocks A SIMPLE ELASTO-PLASTIC MODEL FOR SOILS AND SOFT ROCKS by Roberto Nova Milan University of Technology 1. MODEL HISTORY The model is the result of the

More information

Time-Dependent Nonlinearity of Compression Softening in Concrete

Time-Dependent Nonlinearity of Compression Softening in Concrete Journal of Advanced Concrete Technology Vol., No., 33-7, June / Copyright Japan Concrete Institute 33 Time-Dependent Nonlinearity of Compression Softening in Concrete Khaled Farouk El-Kashif and Koichi

More information

Composite models 30 and 131: Ply types 0 and 8 calibration

Composite models 30 and 131: Ply types 0 and 8 calibration Model calibration Composite Bi-Phase models 30 and 3 for elastic, damage and failure PAM-CRASH material model 30 is for solid and 3 for multi-layered shell elements. Within these models different ply types

More information

2 CONSTITUTIVE MODELS: THEORY AND IMPLEMENTATION

2 CONSTITUTIVE MODELS: THEORY AND IMPLEMENTATION CONSTITUTIVE MODELS: THEORY AND IMPLEMENTATION 2-1 2 CONSTITUTIVE MODELS: THEORY AND IMPLEMENTATION 2.1 Introduction There are twelve basic constitutive models provided in, arranged into null, elastic

More information

3D Finite Element analysis of stud anchors with large head and embedment depth

3D Finite Element analysis of stud anchors with large head and embedment depth 3D Finite Element analysis of stud anchors with large head and embedment depth G. Periškić, J. Ožbolt & R. Eligehausen Institute for Construction Materials, University of Stuttgart, Stuttgart, Germany

More information

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3

MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 MECE 3321 MECHANICS OF SOLIDS CHAPTER 3 Samantha Ramirez TENSION AND COMPRESSION TESTS Tension and compression tests are used primarily to determine the relationship between σ avg and ε avg in any material.

More information

1.8 Unconfined Compression Test

1.8 Unconfined Compression Test 1-49 1.8 Unconfined Compression Test - It gives a quick and simple measurement of the undrained strength of cohesive, undisturbed soil specimens. 1) Testing method i) Trimming a sample. Length-diameter

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Standard Solids and Fracture Fluids: Mechanical, Chemical Effects Effective Stress Dilatancy Hardening and Stability Mead, 1925

More information

EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD

EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD Journal of KONES Powertrain and Transport, Vol. 7, No. EXPERIMENTAL IDENTIFICATION OF HYPERELASTIC MATERIAL PARAMETERS FOR CALCULATIONS BY THE FINITE ELEMENT METHOD Robert Czabanowski Wroclaw University

More information

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS

SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS PERIODICA POLYTECHNICA SER. CIV. ENG. VOL. 48, NO. 1 2, PP. 53 63 (2004) SOIL MODELS: SAFETY FACTORS AND SETTLEMENTS Gabriella VARGA and Zoltán CZAP Geotechnical Department Budapest University of Technology

More information

Advanced Numerical Study of the Effects of Road Foundations on Pavement Performance

Advanced Numerical Study of the Effects of Road Foundations on Pavement Performance Advanced Numerical Study of the Effects of Road Foundations on Pavement Performance X. Liu Section of Structural Mechanics, Faculty of Civil Engineering and Geosciences, Delft University of Technology,

More information

LETTERS TO THE EDITOR

LETTERS TO THE EDITOR NTERNATONAL JOURNAL FOR NUMERCAL AND ANALYTCAL METHODS N GEOMECHANCS, VOL. 13, 101-107 (1989) LETTERS TO THE EDTOR A LARGE STRAN THEORY AND TS APPLCATON N THE ANALYSS OF THE CONE PENETRATON MECHANSM (P.

More information

5 ADVANCED FRACTURE MODELS

5 ADVANCED FRACTURE MODELS Essentially, all models are wrong, but some are useful George E.P. Box, (Box and Draper, 1987) 5 ADVANCED FRACTURE MODELS In the previous chapter it was shown that the MOR parameter cannot be relied upon

More information

Theory at a Glance (for IES, GATE, PSU)

Theory at a Glance (for IES, GATE, PSU) 1. Stress and Strain Theory at a Glance (for IES, GATE, PSU) 1.1 Stress () When a material is subjected to an external force, a resisting force is set up within the component. The internal resistance force

More information

MESOSCALE MODELING OF CONCRETE: MICROPLANE-BASED APPROACH

MESOSCALE MODELING OF CONCRETE: MICROPLANE-BASED APPROACH 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures FraMCoS-9 V. Saouma, J. Bolander and E. Landis (Eds) DOI 10.21012/FC9.296 MESOSCALE MODELING OF CONCRETE: MICROPLANE-BASED

More information

After lecture 16 you should be able to

After lecture 16 you should be able to Lecture 16: Design of paper and board packaging Advanced concepts: FEM, Fracture Mechanics After lecture 16 you should be able to describe the finite element method and its use for paper- based industry

More information

arxiv: v1 [cond-mat.mtrl-sci] 24 Apr 2014

arxiv: v1 [cond-mat.mtrl-sci] 24 Apr 2014 A simple and robust elastoplastic constitutive model for concrete arxiv:144.645v1 [cond-mat.mtrl-sci] 24 Apr 214 F. Poltronieri 1, A. Piccolroaz 1, D. Bigoni 1, S. Romero Baivier 2 1 Department of Civil,

More information

Failure behavior modeling of slender reinforced concrete columns subjected to eccentric load

Failure behavior modeling of slender reinforced concrete columns subjected to eccentric load 520 Failure behavior modeling of slender reinforced concrete columns subjected to eccentric load Abstract This work presents a numerical model to simulate the failure behavior of slender reinforced concrete

More information

A Performance Modeling Strategy based on Multifiber Beams to Estimate Crack Openings ESTIMATE in Concrete Structures CRACK

A Performance Modeling Strategy based on Multifiber Beams to Estimate Crack Openings ESTIMATE in Concrete Structures CRACK A Performance Modeling Strategy based on Multifiber Beams to Estimate Crack Openings ESTIMATE in Concrete Structures CRACK A. Medjahed, M. Matallah, S. Ghezali, M. Djafour RiSAM, RisK Assessment and Management,

More information

sottotitolo Department of Civil and Environmental Engineering

sottotitolo Department of Civil and Environmental Engineering A thirty-year Titolo survey presentazione of Microplane Models sottotitolo Milano, Dr. Giovanni XX mese Di Luzio 20XX Department of Civil and Environmental Engineering Origin of microplane models Slip

More information

MATHEMATICAL AND NUMERICAL MODEL OF ROCK/CONCRETE MECHANICAL BEHAVIOR IN A MULTI-PLANE FRAMEWORK

MATHEMATICAL AND NUMERICAL MODEL OF ROCK/CONCRETE MECHANICAL BEHAVIOR IN A MULTI-PLANE FRAMEWORK ROMAI J., 4, 2(2008), 146 168 MATHEMATICAL AND NUMERICAL MODEL OF ROCK/CONCRETE MECHANICAL BEHAVIOR IN A MULTI-PLANE FRAMEWORK Seyed Amirodin Sadrnejad Faculty of Civil Engineering, K.N.Toosi University

More information

Mesoscopic Simulation of Failure of Mortar and Concrete by 3D RBSM

Mesoscopic Simulation of Failure of Mortar and Concrete by 3D RBSM Journal of Advanced Concrete Technology Vol., No., 85-4, October 5 / Copyright 5 Japan Concrete Institute 85 Scientific paper Mesoscopic Simulation of Failure of Mortar and Concrete by D RBSM Kohei Nagai,

More information

TRESS - STRAIN RELATIONS

TRESS - STRAIN RELATIONS TRESS - STRAIN RELATIONS Stress Strain Relations: Hook's law, states that within the elastic limits the stress is proportional to t is impossible to describe the entire stress strain curve with simple

More information

University of Sheffield The development of finite elements for 3D structural analysis in fire

University of Sheffield The development of finite elements for 3D structural analysis in fire The development of finite elements for 3D structural analysis in fire Chaoming Yu, I. W. Burgess, Z. Huang, R. J. Plank Department of Civil and Structural Engineering StiFF 05/09/2006 3D composite structures

More information

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models

Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models Dynamic Analysis of a Reinforced Concrete Structure Using Plasticity and Interface Damage Models I. Rhee, K.J. Willam, B.P. Shing, University of Colorado at Boulder ABSTRACT: This paper examines the global

More information

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling

Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling Limit analysis of brick masonry shear walls with openings under later loads by rigid block modeling F. Portioli, L. Cascini, R. Landolfo University of Naples Federico II, Italy P. Foraboschi IUAV University,

More information

CONTENTS. Lecture 1 Introduction. Lecture 2 Physical Testing. Lecture 3 Constitutive Models

CONTENTS. Lecture 1 Introduction. Lecture 2 Physical Testing. Lecture 3 Constitutive Models CONTENTS Lecture 1 Introduction Introduction.......................................... L1.2 Classical and Modern Design Approaches................... L1.3 Some Cases for Numerical (Finite Element) Analysis..........

More information

Discrete element modeling of self-healing processes in damaged particulate materials

Discrete element modeling of self-healing processes in damaged particulate materials Discrete element modeling of self-healing processes in damaged particulate materials S. Luding 1, A.S.J. Suiker 2, and I. Kadashevich 1 1) Particle Technology, Nanostructured Materials, DelftChemTech,

More information

Modelling the behaviour of plastics for design under impact

Modelling the behaviour of plastics for design under impact Modelling the behaviour of plastics for design under impact G. Dean and L. Crocker MPP IAG Meeting 6 October 24 Land Rover door trim Loading stages and selected regions Project MPP7.9 Main tasks Tests

More information

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses.

8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.1. What is meant by the shear strength of soils? Solution 8.1 Shear strength of a soil is its internal resistance to shearing stresses. 8.2. Some soils show a peak shear strength. Why and what type(s)

More information

Stress Rotations Due to Moving Wheel Loads and Their Effects on Pavement Materials Characterization

Stress Rotations Due to Moving Wheel Loads and Their Effects on Pavement Materials Characterization Stress Rotations Due to Moving Wheel Loads and Their Effects on Pavement Materials Characterization Erol Tutumluer June 9, 2005 OMP Brown Bag Seminar Presentation FAA Center of Excellence for Airport Technology

More information

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Isotropic Elastic Models: Invariant vs Principal Formulations

MODELING OF CONCRETE MATERIALS AND STRUCTURES. Kaspar Willam. Isotropic Elastic Models: Invariant vs Principal Formulations MODELING OF CONCRETE MATERIALS AND STRUCTURES Kaspar Willam University of Colorado at Boulder Class Meeting #2: Nonlinear Elastic Models Isotropic Elastic Models: Invariant vs Principal Formulations Elastic

More information

Nonlinear FE Analysis of Reinforced Concrete Structures Using a Tresca-Type Yield Surface

Nonlinear FE Analysis of Reinforced Concrete Structures Using a Tresca-Type Yield Surface Transaction A: Civil Engineering Vol. 16, No. 6, pp. 512{519 c Sharif University of Technology, December 2009 Research Note Nonlinear FE Analysis of Reinforced Concrete Structures Using a Tresca-Type Yield

More information

Importance of concrete material characterization and modelling to predicting the response of structures to shock and impact loading

Importance of concrete material characterization and modelling to predicting the response of structures to shock and impact loading Structures Under Shock and Impact X 24 Importance of concrete material characterization and modelling to predicting the response of structures to shock and impact loading J. M. Magallanes Karagozian &

More information

The Influence of Contact Friction on the Breakage Behavior of Brittle Granular Materials using DEM

The Influence of Contact Friction on the Breakage Behavior of Brittle Granular Materials using DEM The Influence of Contact Friction on the Breakage Behavior of Brittle Granular Materials using DEM *Yi-Ming Liu 1) and Hua-Bei Liu 2) 1), 2) School of Civil Engineering and Mechanics, Huazhong University

More information

Investigation on the Anisotropic Mechanical Behaviour of the Callovo- Oxfordian Clay Rock

Investigation on the Anisotropic Mechanical Behaviour of the Callovo- Oxfordian Clay Rock Investigation on the Anisotropic Mechanical Behaviour of the Callovo- Oxfordian Clay Rock Final Report within the framework of ANDRA/GRS cooperation programme GRS - 36 Gesellschaft für Anlagenund Reaktorsicherheit

More information

Damage-Based Stress-Strain Model for Fiber-Reinforced Polymer-Confined Concrete

Damage-Based Stress-Strain Model for Fiber-Reinforced Polymer-Confined Concrete ACI STRUCTURAL JOURNAL Title no. 02-S06 TECHNICAL PAPER Damage-Based Stress-Strain Model for Fiber-Reinforced Polymer-Confined Concrete by Domingo A. Moran and Chris P. Pantelides A damage-based stress-strain

More information

Liquefaction - principles

Liquefaction - principles Liquefaction - principles Consider a box of dry sand, subjected to cycles of shear strain. On initial loading, sand usually compacts and then dilates. On unloading, the sand follows a similar path to loading,

More information

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises

Non-linear and time-dependent material models in Mentat & MARC. Tutorial with Background and Exercises Non-linear and time-dependent material models in Mentat & MARC Tutorial with Background and Exercises Eindhoven University of Technology Department of Mechanical Engineering Piet Schreurs July 7, 2009

More information

Wellbore stability analysis in porous carbonate rocks using cap models

Wellbore stability analysis in porous carbonate rocks using cap models Wellbore stability analysis in porous carbonate rocks using cap models L. C. Coelho 1, A. C. Soares 2, N. F. F. Ebecken 1, J. L. D. Alves 1 & L. Landau 1 1 COPPE/Federal University of Rio de Janeiro, Brazil

More information

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress?

When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? When you are standing on a flat surface, what is the normal stress you exert on the ground? What is the shear stress? How could you exert a non-zero shear stress on the ground? Hydrostatic Pressure (fluids)

More information

Heterogeneous structures studied by interphase elasto-damaging model.

Heterogeneous structures studied by interphase elasto-damaging model. Heterogeneous structures studied by interphase elasto-damaging model. Giuseppe Fileccia Scimemi 1, Giuseppe Giambanco 1, Antonino Spada 1 1 Department of Civil, Environmental and Aerospace Engineering,

More information