Strauss PDEs 2e: Section Exercise 2 Page 1 of 8. In order to do so, we ll solve for the Green s function G(x, t) in the corresponding PDE,

Size: px
Start display at page:

Download "Strauss PDEs 2e: Section Exercise 2 Page 1 of 8. In order to do so, we ll solve for the Green s function G(x, t) in the corresponding PDE,"

Transcription

1 Strauss PDEs 2e: Section Eercise 2 Page of 8 Eercise 2 Do the same for φ() = for > and φ() = 3 for <. Solution Solution by the Similarity Method We have to solve the initial value problem, u t = ku, u(, ) = φ(). () In order to do so, we ll solve for the Green s function G(, t) in the corresponding PDE, where δ(), the Dirac delta function, is defined as { = δ() =. G t = kg, G(, ) = δ(), (2) The reason we re solving the equation with the delta function is that it has the etremely useful sifting property, f(s)δ( s) ds = f(), so the solution to the initial value problem () in terms of the Green s function is u(, t) = G( s, t)φ(s) ds. This can be verified by substituting this form for u into (). Now we will go about solving (2) for G(, t) by using the similarity method (also known as the combination of variables method). Because u is a dimensionless quantity (that is, it yields a pure number with no units) the variables, t, and k have to appear in the solution in a dimensionless combination. has units of meters, t has units of seconds, and k has units of meters 2 /second, so the combination of variables has to be 2 or any convenient multiple or power thereof. Therefore, u = u(η), where we choose η =. We choose this particular form for η so the process of getting the final answer is smoother. We re trying to solve (2) for G, though, and G is not dimensionless; as can be seen from the initial condition, it has the same dimensions as δ(). δ() has the inverse dimension of its argument, so G has dimensions of meters. Thus, G has to be of the form, G(, t) = g ( ),

2 Strauss PDEs 2e: Section Eercise 2 Page 2 of 8 where g is an arbitrary function. In order to determine g, we have to plug this form into (2) and solve the resulting ODE. To start, write the epressions for G t and G. G t = 2 g + ( ) 3 2 g 3 G = g = g Substituting these epressions into (2) gives 2 G 2 = g = k 3 t 3 g 2 g 3 2 g = 3 3 g. Cancel common terms and move everything to one side. g + g g = Use the combination variable η. g + η 2 g + 2 g = The last two terms on the left side can be written as one using the product rule. Integrate both sides of the equation. g + ( η 2 g ) = g + η 2 g = C This is an inhomogeneous first-order linear differential equation that can be solved with an integrating factor. The integrating factor is Multiply both sides by I. η I = e 2 dη = e η2 4. e η2 4 g + η 2 e η2 4 g = C e η2 4 The two terms on the left side can be written as one using the product rule. ( e η2 4 g ) = C e η2 4 Integrate both sides of the equation a second time. e η2 4 g = η C e s2 4 ds + C2 Hence, the arbitrary function g is g(η) = e η2 4 [C η e s2 4 ds + C2,

3 Strauss PDEs 2e: Section Eercise 2 Page 3 of 8 and consequently, the Green s function is G = η 2 [ g(η) = e 4 η C e s2 4 ds + C2. (3) The net order of business is to determine the constants of integration, C and C 2. We need to return to the diffusion equation and the initial condition in (2) to figure these out. G t = kg Integrate both sides of the equation with respect to over the whole line. G t d = kg d Take out the time derivative from the left side and evaluate the right side. d dt G d = kg We assume that G and G tend to as ±, so we have This implies that the quantity, d dt G d =. G d, remains constant for all time. Initially G(, ) = δ(), so G(, t) d = G(, ) d = δ() d =. (4) In order for this integral to converge, C has to be. In terms of and t, (3) becomes G(, t) = C 2 e 2. C 2 can be thought of as a normalization constant that we determine by plugging into (4). G(, t) d = Make the following substitution to solve the integral. v = dv = C 2 e 2 d = d 2 dv = d The integral becomes 2C 2 e v2 dv =,

4 Strauss PDEs 2e: Section Eercise 2 Page 4 of 8 and it evaluates to π. Solving for C 2 yields 2C 2 π = C 2 = 4π. Therefore, the Green s function is G(, t) = and the solution to the initial value problem in () is u(, t) = 4π e 2, 4π e ( s)2 φ(s) ds. (5) u(, t) can be interpreted as the convolution of the initial condition with a Gaussian filter. At every point, u(, t) is an averaged, or smoothed, version of the initial condition over an interval of width. As t increases, the range of the filter grows and u(, t) becomes increasingly smooth over. Any discontinuities or kinks that are present in the initial condition are smoothed out. In this eercise, the initial condition is { > φ() = 3 <. If we substitute this into the formula in (5), then we get u(, t) = Make the following substitutions to solve the integrals. e ( s)2 3 ds + e ( s)2 ds. 4π 4π v = s q = s dv = ds dv = ds dq = ds The integrals become u(, t) = 3 e v2 dv + π π e q2 dq. Bring the constants out in front and switch the limits of integration to eliminate the minus sign. u(, t) = [3 e v2 dv + e q2 dq π Split up the integrals now to get the appropriate limits. u(, t) = π [3 e v2 dv 3 e v2 dv + e q2 dq + e q2 dq

5 Strauss PDEs 2e: Section Eercise 2 Page 5 of 8 Make the substitution p = q and dp = dq in the third integral and combine the first and last integrals. We can do this because v and q are just dummy variables. u(, t) = [4 e v2 dv 3 e v2 dv + e p2 dp π Combine the last integrals. p and v are just dummy variables as well. u(, t) = π [4 The integral on the left evaluates to π/2. The error function, erf z, is defined as e v2 dv 2 u(, t) = π [4 π 2 2 e v2 dv e v2 dv so erf z = 2 π z u(, t) = 2 erf e v2 dv, ( ). Figure : Plot of the solution u(, t) with k = m 2 /s for si different times: t = s (red), t = s (orange), t = 2 s (yellow), t = 5 s (green), t = s (blue), and t = 2 s (purple).

6 Strauss PDEs 2e: Section Eercise 2 Page 6 of 8 Solution by Eploitation of the Invariance Properties The initial condition, φ() = { 3 < >, can be written in terms of the signum function, which is defined as { > sgn = <, as φ() = 2 sgn. Since any linear combination of solutions is a solution to the diffusion equation, we can solve () if we can find the solutions with 2 and sgn as initial conditions separately. The equations we have to solve are v t = kv, v(, ) = 2 (6) w t = kw, w(, ) = sgn. (7) Once we have v and w, the solution will be u(, t) = v(, t) w(, t). Right away we can solve (6) since 2 is a constant: v(, t) = 2. To solve (7) we will use the similarity method. Since the signum function is dimensionless, w is dimensionless as well. Hence, the variables (meters), t (seconds), and k (meters 2 /second) have to appear in the solution as a dimensionless combination. The combination variable η is thus 2 or any convenient multiple or power thereof. Choose η = to make the process of obtaining the final answer smoother. Hence, w = w(η), Write epressions for w t and w in terms of this new variable using the chain rule. w t = dw η dη t = dw ( ) dη 4 3 w = dw η dη = dw ( ) dη 2 w 2 = ( ) w = η ( ) ( ) w = d2 w η dη 2 Substituting these epressions into (7) gives dw dη ( ) 4 3 = k d2 w dη 2 ( ).

7 Strauss PDEs 2e: Section Eercise 2 Page 7 of 8 Cancel common terms and bring all terms to one side. w + w = Use the combination variable η. Make the substitution r = w = dw/dη. w + 2ηw = dr dη + 2ηr = This is a first-order differential equation that we can solve by separation of variables. Integrate both sides. Eponentiate both sides. dr r = 2η dη ln r = η 2 + D r = e η2 +D r = ±e D e η2 r = D e η2 Now that we have r, we can get w by integrating the result. w(η) = η r ds + D 2 = η D e s2 ds + D 2 The lower limit,, is arbitrary; choosing a different value leads to a different value for D 2. To evaluate the constants of integration, we look to the initial condition, w(, ) = sgn. For >, as t, η +. Conversely, for <, as t, η. Thus, For > : For < : The system of equations to solve is Solving it yields = D e s2 ds + D 2 = D e s2 ds + D 2 π = D 2 + D 2 π = D 2 + D 2. D = 2 π and D 2 =. The solution is thus w(η) = 2 π η e s2 ds = erf(η).

8 Strauss PDEs 2e: Section Eercise 2 Page 8 of 8 In terms of the original variables it is w(, t) = erf ( ). Therefore, u(, t) = 2 erf ( ), which is the same result as before.

Strauss PDEs 2e: Section Exercise 2 Page 1 of 6. Solve the completely inhomogeneous diffusion problem on the half-line

Strauss PDEs 2e: Section Exercise 2 Page 1 of 6. Solve the completely inhomogeneous diffusion problem on the half-line Strauss PDEs 2e: Section 3.3 - Exercise 2 Page of 6 Exercise 2 Solve the completely inhomogeneous diffusion problem on the half-line v t kv xx = f(x, t) for < x

More information

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6 Strauss PDEs 2e: Section 5.3 - Exercise 4 Page of 6 Exercise 4 Consider the problem u t = ku xx for < x < l, with the boundary conditions u(, t) = U, u x (l, t) =, and the initial condition u(x, ) =, where

More information

Exercise Set 4. D s n ds + + V. s dv = V. After using Stokes theorem, the surface integral becomes

Exercise Set 4. D s n ds + + V. s dv = V. After using Stokes theorem, the surface integral becomes Exercise Set Exercise - (a) Let s consider a test volum in the pellet. The substract enters the pellet by diffusion and some is created and disappears due to the chemical reaction. The two contribute to

More information

Strauss PDEs 2e: Section Exercise 3 Page 1 of 13. u tt c 2 u xx = cos x. ( 2 t c 2 2 x)u = cos x. v = ( t c x )u

Strauss PDEs 2e: Section Exercise 3 Page 1 of 13. u tt c 2 u xx = cos x. ( 2 t c 2 2 x)u = cos x. v = ( t c x )u Strauss PDEs e: Setion 3.4 - Exerise 3 Page 1 of 13 Exerise 3 Solve u tt = u xx + os x, u(x, ) = sin x, u t (x, ) = 1 + x. Solution Solution by Operator Fatorization Bring u xx to the other side. Write

More information

Strauss PDEs 2e: Section Exercise 1 Page 1 of 6

Strauss PDEs 2e: Section Exercise 1 Page 1 of 6 Strauss PDEs e: Setion.1 - Exerise 1 Page 1 of 6 Exerise 1 Solve u tt = u xx, u(x, 0) = e x, u t (x, 0) = sin x. Solution Solution by Operator Fatorization By fatoring the wave equation and making a substitution,

More information

e (x y)2 /4kt φ(y) dy, for t > 0. (4)

e (x y)2 /4kt φ(y) dy, for t > 0. (4) Math 24A October 26, 2 Viktor Grigoryan Heat equation: interpretation of the solution Last time we considered the IVP for the heat equation on the whole line { ut ku xx = ( < x

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 15 Heat with a source So far we considered homogeneous wave and heat equations and the associated initial value problems on the whole line, as

More information

Diffusion equation in one spatial variable Cauchy problem. u(x, 0) = φ(x)

Diffusion equation in one spatial variable Cauchy problem. u(x, 0) = φ(x) Diffusion equation in one spatial variable Cauchy problem. u t (x, t) k u xx (x, t) = f(x, t), x R, t > u(x, ) = φ(x) 1 Some more mathematics { if x < Θ(x) = 1 if x > is the Heaviside step function. It

More information

Fundamental Solutions and Green s functions. Simulation Methods in Acoustics

Fundamental Solutions and Green s functions. Simulation Methods in Acoustics Fundamental Solutions and Green s functions Simulation Methods in Acoustics Definitions Fundamental solution The solution F (x, x 0 ) of the linear PDE L {F (x, x 0 )} = δ(x x 0 ) x R d Is called the fundamental

More information

Partial Differential Equations, Winter 2015

Partial Differential Equations, Winter 2015 Partial Differential Equations, Winter 215 Homework #2 Due: Thursday, February 12th, 215 1. (Chapter 2.1) Solve u xx + u xt 2u tt =, u(x, ) = φ(x), u t (x, ) = ψ(x). Hint: Factor the operator as we did

More information

Solutions. 1. Use the table of integral formulas in Appendix B in the textbook to help compute the integrals below. u du 9 + 4u + C 48

Solutions. 1. Use the table of integral formulas in Appendix B in the textbook to help compute the integrals below. u du 9 + 4u + C 48 ams 11b Study Guide 3 econ 11b Solutions 1. Use the table of integral formulas in Appendi B in the tetbook to help compute the integrals below. 4 d a. 5 + 9 = 4 5 1 3 ln + 9 3 + C = 4 15 ln + 9 3 + C Formula

More information

u( x)= Pr X() t hits C before 0 X( 0)= x ( ) 2 AMS 216 Stochastic Differential Equations Lecture #2

u( x)= Pr X() t hits C before 0 X( 0)= x ( ) 2 AMS 216 Stochastic Differential Equations Lecture #2 AMS 6 Stochastic Differential Equations Lecture # Gambler s Ruin (continued) Question #: How long can you play? Question #: What is the chance that you break the bank? Note that unlike in the case of deterministic

More information

Practice Problems: Integration by Parts

Practice Problems: Integration by Parts Practice Problems: Integration by Parts Answers. (a) Neither term will get simpler through differentiation, so let s try some choice for u and dv, and see how it works out (we can always go back and try

More information

CHAPTER 2 DIFFERENTIATION 2.1 FIRST ORDER DIFFERENTIATION. What is Differentiation?

CHAPTER 2 DIFFERENTIATION 2.1 FIRST ORDER DIFFERENTIATION. What is Differentiation? BA01 ENGINEERING MATHEMATICS 01 CHAPTER DIFFERENTIATION.1 FIRST ORDER DIFFERENTIATION What is Differentiation? Differentiation is all about finding rates of change of one quantity compared to another.

More information

2 Feynman rules, decay widths and cross sections

2 Feynman rules, decay widths and cross sections 2 Feynman rules, decay widths and cross sections 2.1 Feynman rules Normalization In non-relativistic quantum mechanics, wave functions of free particles are normalized so that there is one particle in

More information

Green s Functions and Distributions

Green s Functions and Distributions CHAPTER 9 Green s Functions and Distributions 9.1. Boundary Value Problems We would like to study, and solve if possible, boundary value problems such as the following: (1.1) u = f in U u = g on U, where

More information

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow

Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Section 2: Lecture 1 Integral Form of the Conservation Equations for Compressible Flow Anderson: Chapter 2 pp. 41-54 1 Equation of State: Section 1 Review p = R g T " > R g = R u M w - R u = 8314.4126

More information

Chapter 3: Transient Heat Conduction

Chapter 3: Transient Heat Conduction 3-1 Lumped System Analysis 3- Nondimensional Heat Conduction Equation 3-3 Transient Heat Conduction in Semi-Infinite Solids 3-4 Periodic Heating Y.C. Shih Spring 009 3-1 Lumped System Analysis (1) In heat

More information

2 Equations of Motion

2 Equations of Motion 2 Equations of Motion system. In this section, we will derive the six full equations of motion in a non-rotating, Cartesian coordinate 2.1 Six equations of motion (non-rotating, Cartesian coordinates)

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

Leaving Cert Differentiation

Leaving Cert Differentiation Leaving Cert Differentiation Types of Differentiation 1. From First Principles 2. Using the Rules From First Principles You will be told when to use this, the question will say differentiate with respect

More information

4.2 Reducing Rational Functions

4.2 Reducing Rational Functions Section. Reducing Rational Functions 1. Reducing Rational Functions The goal of this section is to review how to reduce a rational epression to lowest terms. Let s begin with a most important piece of

More information

Math 124A October 11, 2011

Math 124A October 11, 2011 Math 14A October 11, 11 Viktor Grigoryan 6 Wave equation: solution In this lecture we will solve the wave equation on the entire real line x R. This corresponds to a string of infinite length. Although

More information

2 nd ORDER O.D.E.s SUBSTITUTIONS

2 nd ORDER O.D.E.s SUBSTITUTIONS nd ORDER O.D.E.s SUBSTITUTIONS Question 1 (***+) d y y 8y + 16y = d d d, y 0, Find the general solution of the above differential equation by using the transformation equation t = y. Give the answer in

More information

Representation of Signals and Systems. Lecturer: David Shiung

Representation of Signals and Systems. Lecturer: David Shiung Representation of Signals and Systems Lecturer: David Shiung 1 Abstract (1/2) Fourier analysis Properties of the Fourier transform Dirac delta function Fourier transform of periodic signals Fourier-transform

More information

2.13 Linearization and Differentials

2.13 Linearization and Differentials Linearization and Differentials Section Notes Page Sometimes we can approimate more complicated functions with simpler ones These would give us enough accuracy for certain situations and are easier to

More information

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases

Appendix 4. Appendix 4A Heat Capacity of Ideal Gases Appendix 4 W-143 Appendix 4A Heat Capacity of Ideal Gases We can determine the heat capacity from the energy content of materials as a function of temperature. The simplest material to model is an ideal

More information

x 2. By rewriting f as f (x) = 4x 1 and using the Product Rule, x 2 = 4 f = 2e x csc x csc x csc x = 2e x ( csc x cot x) + 2e x csc x + cot x) sin 1 x

x 2. By rewriting f as f (x) = 4x 1 and using the Product Rule, x 2 = 4 f = 2e x csc x csc x csc x = 2e x ( csc x cot x) + 2e x csc x + cot x) sin 1 x MTH 07 Final Eam Study Questions: Derivatives, KEY 1. Find the derivative of f = 4 using the Quotient Rule. Fin using the Proct Rule. Fin without using either rule. Solution: Using the Quotient rule, f

More information

Lecture 12 Reactions as Rare Events 3/02/2009 Notes by MIT Student (and MZB)

Lecture 12 Reactions as Rare Events 3/02/2009 Notes by MIT Student (and MZB) Lecture 1 Reactions as Rare Events 3/0/009 Notes by MIT Student (and MZB) 1. Introduction In this lecture, we ll tackle the general problem of reaction rates involving particles jumping over barriers in

More information

Strauss PDEs 2e: Section Exercise 4 Page 1 of 5

Strauss PDEs 2e: Section Exercise 4 Page 1 of 5 Strauss PDEs 2e: Section 9.1 - Exercise 4 Page 1 of 5 Exercise 4 Lorentz invariance of the wave equation) Thinking of the coordinates of space-time as 4-vectors x, y, z, t), let Γ be the diagonal matrix

More information

Polynomial Division. You may also see this kind of problem written like this: Perform the division x2 +2x 3

Polynomial Division. You may also see this kind of problem written like this: Perform the division x2 +2x 3 Polynomial Division 5015 You do polynomial division the way you do long division of numbers It s difficult to describe the general procedure in words, so I ll work through some eamples stepbystep Eample

More information

First Order Equations

First Order Equations 10 1 Linear and Semilinear Equations Chapter First Order Equations Contents 1 Linear and Semilinear Equations 9 Quasilinear Equations 19 3 Wave Equation 6 4 Sstems of Equations 31 1 Linear and Semilinear

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, it is my epectation that you will have this packet completed. You will be way behind at the beginning of the year if you haven t attempted

More information

Practice Midterm Solutions

Practice Midterm Solutions Practice Midterm Solutions Math 4B: Ordinary Differential Equations Winter 20 University of California, Santa Barbara TA: Victoria Kala DO NOT LOOK AT THESE SOLUTIONS UNTIL YOU HAVE ATTEMPTED EVERY PROBLEM

More information

Solution of Partial Differential Equations

Solution of Partial Differential Equations Solution of Partial Differential Equations Introduction and Problem Statement Combination of Variables R. Shankar Subramanian We encounter partial differential equations routinely in transport phenomena.

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

1. SINGULARITY FUNCTIONS

1. SINGULARITY FUNCTIONS 1. SINGULARITY FUNCTIONS 1.0 INTRODUCTION Singularity functions are discontinuous functions or their derivatives are discontinuous. A singularity is a point at which a function does not possess a derivative.

More information

Calculus Integration

Calculus Integration Calculus Integration By Norhafizah Md Sarif & Norazaliza Mohd Jamil Faculty of Instrial Science & Technology norhafizah@ump.e.my, norazaliza@ump.e.my Description Aims This chapter is aimed to : 1. introce

More information

Convolution and Linear Systems

Convolution and Linear Systems CS 450: Introduction to Digital Signal and Image Processing Bryan Morse BYU Computer Science Introduction Analyzing Systems Goal: analyze a device that turns one signal into another. Notation: f (t) g(t)

More information

Chapter 7 Direct-Current Circuits

Chapter 7 Direct-Current Circuits Chapter 7 Direct-Current Circuits 7. Introduction... 7. Electromotive Force... 7.3 Resistors in Series and in Parallel... 4 7.4 Kirchhoff s Circuit Rules... 6 7.5 Voltage-Current Measurements... 8 7.6

More information

3 Generation and diffusion of vorticity

3 Generation and diffusion of vorticity Version date: March 22, 21 1 3 Generation and diffusion of vorticity 3.1 The vorticity equation We start from Navier Stokes: u t + u u = 1 ρ p + ν 2 u 1) where we have not included a term describing a

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB Summer Assignment Name: When you come back to school, you will be epected to have attempted every problem. These skills are all different tools that you will pull out of your toolbo this

More information

Diffusion on the half-line. The Dirichlet problem

Diffusion on the half-line. The Dirichlet problem Diffusion on the half-line The Dirichlet problem Consider the initial boundary value problem (IBVP) on the half line (, ): v t kv xx = v(x, ) = φ(x) v(, t) =. The solution will be obtained by the reflection

More information

(x 3)(x + 5) = (x 3)(x 1) = x + 5

(x 3)(x + 5) = (x 3)(x 1) = x + 5 RMT 3 Calculus Test olutions February, 3. Answer: olution: Note that + 5 + 3. Answer: 3 3) + 5) = 3) ) = + 5. + 5 3 = 3 + 5 3 =. olution: We have that f) = b and f ) = ) + b = b + 8. etting these equal

More information

Calculus 2 - Examination

Calculus 2 - Examination Calculus - Eamination Concepts that you need to know: Two methods for showing that a function is : a) Showing the function is monotonic. b) Assuming that f( ) = f( ) and showing =. Horizontal Line Test:

More information

Solve Wave Equation from Scratch [2013 HSSP]

Solve Wave Equation from Scratch [2013 HSSP] 1 Solve Wave Equation from Scratch [2013 HSSP] Yuqi Zhu MIT Department of Physics, 77 Massachusetts Ave., Cambridge, MA 02139 (Dated: August 18, 2013) I. COURSE INFO Topics Date 07/07 Comple number, Cauchy-Riemann

More information

C6-2 Differentiation 3

C6-2 Differentiation 3 chain, product and quotient rules C6- Differentiation Pre-requisites: C6- Estimate Time: 8 hours Summary Learn Solve Revise Answers Summary The chain rule is used to differentiate a function of a function.

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

2.5 Absolute Value Equations and Inequalities

2.5 Absolute Value Equations and Inequalities 5 Absolute Value Equations Inequalities We begin this section by recalling the following definition Definition: Absolute Value The absolute value of a number is the distance that the number is from zero

More information

Taylor Series and Series Convergence (Online)

Taylor Series and Series Convergence (Online) 7in 0in Felder c02_online.te V3 - February 9, 205 9:5 A.M. Page CHAPTER 2 Taylor Series and Series Convergence (Online) 2.8 Asymptotic Epansions In introductory calculus classes the statement this series

More information

Chapter 6: Polynomials

Chapter 6: Polynomials Chapter : Polynomials Chapter : Polynomials POLYNOMIALS Definition: A polynomial is an algebraic epression that is a sum of terms, where each term contains only variables with whole number eponents and

More information

First-Order Ordinary Differntial Equations: Classification and Linear Equations. David Levermore Department of Mathematics University of Maryland

First-Order Ordinary Differntial Equations: Classification and Linear Equations. David Levermore Department of Mathematics University of Maryland First-Order Ordinary Differntial Equations: Classification and Linear Equations David Levermore Department of Mathematics University of Maryland 1 February 2009 These notes cover some of the material that

More information

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find: Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly..

More information

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is

1. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. The augmented matrix of this linear system is Solutions to Homework Additional Problems. Solve each linear system using Gaussian elimination or Gauss-Jordan reduction. (a) x + y = 8 3x + 4y = 7 x + y = 3 The augmented matrix of this linear system

More information

Detailed Derivation of Fanno Flow Relationships

Detailed Derivation of Fanno Flow Relationships Detailed Derivation of Fanno Flow Relationships Matthew MacLean, Ph.D. Version. October 03 v. fixed a sign error on Eq. 5 ! My motivation for writing this note results from preparing course notes for the

More information

SNAP Centre Workshop. Solving Systems of Equations

SNAP Centre Workshop. Solving Systems of Equations SNAP Centre Workshop Solving Systems of Equations 35 Introduction When presented with an equation containing one variable, finding a solution is usually done using basic algebraic manipulation. Example

More information

Medical Image Analysis

Medical Image Analysis Medical Image Analysis CS 593 / 791 Computer Science and Electrical Engineering Dept. West Virginia University 20th January 2006 Outline 1 Discretizing the heat equation 2 Outline 1 Discretizing the heat

More information

CONTINUITY AND DIFFERENTIABILITY

CONTINUITY AND DIFFERENTIABILITY 5. Introduction The whole of science is nothing more than a refinement of everyday thinking. ALBERT EINSTEIN This chapter is essentially a continuation of our stu of differentiation of functions in Class

More information

Pion Lifetime. A. George January 18, 2012

Pion Lifetime. A. George January 18, 2012 Pion Lifetime A. George January 18, 01 Abstract We derive the expected lifetime of the pion, assuming only the Feynman Rules, Fermi s Golden Rule, the Dirac Equation and its corollary, the completeness

More information

Stochastic Modelling in Climate Science

Stochastic Modelling in Climate Science Stochastic Modelling in Climate Science David Kelly Mathematics Department UNC Chapel Hill dtbkelly@gmail.com November 16, 2013 David Kelly (UNC) Stochastic Climate November 16, 2013 1 / 36 Why use stochastic

More information

We all learn new things in different ways. In. Properties of Logarithms. Group Exercise. Critical Thinking Exercises

We all learn new things in different ways. In. Properties of Logarithms. Group Exercise. Critical Thinking Exercises Section 4.3 Properties of Logarithms 437 34. Graph each of the following functions in the same viewing rectangle and then place the functions in order from the one that increases most slowly to the one

More information

Lecture 9 Nonlinear Control Design. Course Outline. Exact linearization: example [one-link robot] Exact Feedback Linearization

Lecture 9 Nonlinear Control Design. Course Outline. Exact linearization: example [one-link robot] Exact Feedback Linearization Lecture 9 Nonlinear Control Design Course Outline Eact-linearization Lyapunov-based design Lab Adaptive control Sliding modes control Literature: [Khalil, ch.s 13, 14.1,14.] and [Glad-Ljung,ch.17] Lecture

More information

ACCUPLACER MATH 0310

ACCUPLACER MATH 0310 The University of Teas at El Paso Tutoring and Learning Center ACCUPLACER MATH 00 http://www.academics.utep.edu/tlc MATH 00 Page Linear Equations Linear Equations Eercises 5 Linear Equations Answer to

More information

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve.

Differentiation. The main problem of differential calculus deals with finding the slope of the tangent line at a point on a curve. Dierentiation The main problem o dierential calculus deals with inding the slope o the tangent line at a point on a curve. deinition() : The slope o a curve at a point p is the slope, i it eists, o the

More information

M445: Heat equation with sources

M445: Heat equation with sources M5: Heat equation with sources David Gurarie I. On Fourier and Newton s cooling laws The Newton s law claims the temperature rate to be proportional to the di erence: d dt T = (T T ) () The Fourier law

More information

Differential calculus. Background mathematics review

Differential calculus. Background mathematics review Differential calculus Background mathematics review David Miller Differential calculus First derivative Background mathematics review David Miller First derivative For some function y The (first) derivative

More information

Travelling waves. Chapter 8. 1 Introduction

Travelling waves. Chapter 8. 1 Introduction Chapter 8 Travelling waves 1 Introduction One of the cornerstones in the study of both linear and nonlinear PDEs is the wave propagation. A wave is a recognizable signal which is transferred from one part

More information

Analysis III for D-BAUG, Fall 2017 Lecture 11

Analysis III for D-BAUG, Fall 2017 Lecture 11 Analysis III for D-BAUG, Fall 2017 Lecture 11 Lecturer: Alex Sisto (sisto@math.ethz.ch) 1 Beams (Balken) Beams are basic mechanical systems that appear over and over in civil engineering. We consider a

More information

Example 1: What do you know about the graph of the function

Example 1: What do you know about the graph of the function Section 1.5 Analyzing of Functions In this section, we ll look briefly at four types of functions: polynomial functions, rational functions, eponential functions and logarithmic functions. Eample 1: What

More information

Y m = y n e 2πi(m 1)(n 1)/N (1) Y m e 2πi(m 1)(n 1)/N (2) m=1

Y m = y n e 2πi(m 1)(n 1)/N (1) Y m e 2πi(m 1)(n 1)/N (2) m=1 The Discrete Fourier Transform (Bretherton notes): 1 Definition Let y n, n = 1,..., N be a sequence of N possibly comple values. The discrete Fourier transform () of this sequence is the sequence Y m,

More information

Chapter 5: Systems of Equations and Inequalities. Section 5.4. Check Point Exercises

Chapter 5: Systems of Equations and Inequalities. Section 5.4. Check Point Exercises Chapter : Systems of Equations and Inequalities Section. Check Point Eercises. = y y = Solve the first equation for y. y = + Substitute the epression + for y in the second equation and solve for. ( + )

More information

x ct x + t , and the characteristics for the associated transport equation would be given by the solution of the ode dx dt = 1 4. ξ = x + t 4.

x ct x + t , and the characteristics for the associated transport equation would be given by the solution of the ode dx dt = 1 4. ξ = x + t 4. . The solution is ( 2 e x+ct + e x ct) + 2c x+ct x ct sin(s)dx ( e x+ct + e x ct) + ( cos(x + ct) + cos(x ct)) 2 2c 2. To solve the PDE u xx 3u xt 4u tt =, you can first fact the differential operat to

More information

F = m a. t 2. stress = k(x) strain

F = m a. t 2. stress = k(x) strain The Wave Equation Consider a bar made of an elastic material. The bar hangs down vertically from an attachment point = and can vibrate vertically but not horizontally. Since chapter 5 is the chapter on

More information

Higher-order ordinary differential equations

Higher-order ordinary differential equations Higher-order ordinary differential equations 1 A linear ODE of general order n has the form a n (x) dn y dx n +a n 1(x) dn 1 y dx n 1 + +a 1(x) dy dx +a 0(x)y = f(x). If f(x) = 0 then the equation is called

More information

INTRODUCTION TO RATIONAL FUNCTIONS COMMON CORE ALGEBRA II

INTRODUCTION TO RATIONAL FUNCTIONS COMMON CORE ALGEBRA II Name: Date: INTRODUCTION TO RATIONAL FUNCTIONS COMMON CORE ALGEBRA II Rational functions are simply the ratio of polynomial functions. They take on more interesting properties and have more interesting

More information

ENGI 3424 First Order ODEs Page 1-01

ENGI 3424 First Order ODEs Page 1-01 ENGI 344 First Order ODEs Page 1-01 1. Ordinary Differential Equations Equations involving only one independent variable and one or more dependent variables, together with their derivatives with respect

More information

We are working with degree two or

We are working with degree two or page 4 4 We are working with degree two or quadratic epressions (a + b + c) and equations (a + b + c = 0). We see techniques such as multiplying and factoring epressions and solving equations using factoring

More information

Fourier Transform for Continuous Functions

Fourier Transform for Continuous Functions Fourier Transform for Continuous Functions Central goal: representing a signal by a set of orthogonal bases that are corresponding to frequencies or spectrum. Fourier series allows to find the spectrum

More information

Lecture 8: Differential Equations. Philip Moriarty,

Lecture 8: Differential Equations. Philip Moriarty, Lecture 8: Differential Equations Philip Moriarty, philip.moriarty@nottingham.ac.uk NB Notes based heavily on lecture slides prepared by DE Rourke for the F32SMS module, 2006 8.1 Overview In this final

More information

The Product and Quotient Rules

The Product and Quotient Rules The Product and Quotient Rules In this section, you will learn how to find the derivative of a product of functions and the derivative of a quotient of functions. A function that is the product of functions

More information

HOMEWORK 4 1. P45. # 1.

HOMEWORK 4 1. P45. # 1. HOMEWORK 4 SHUANGLIN SHAO P45 # Proof By the maximum principle, u(x, t x kt attains the maximum at the bottom or on the two sides When t, x kt x attains the maximum at x, ie, x When x, x kt kt attains

More information

Jim Lambers ENERGY 281 Spring Quarter Lecture 3 Notes

Jim Lambers ENERGY 281 Spring Quarter Lecture 3 Notes Jim Lambers ENERGY 8 Spring Quarter 7-8 Lecture 3 Notes These notes are based on Rosalind Archer s PE8 lecture notes, with some revisions by Jim Lambers. Introduction The Fourier transform is an integral

More information

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li

MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li MATH 1010E University Mathematics Lecture Notes (week 8) Martin Li 1 L Hospital s Rule Another useful application of mean value theorems is L Hospital s Rule. It helps us to evaluate its of indeterminate

More information

Math 5440 Problem Set 2 Solutions

Math 5440 Problem Set 2 Solutions Math Math Problem Set Solutions Aaron Fogelson Fall, 1: (Logan, 1. # 1) How would the derivation of the basic conservation law u t + φ = f change if the tube had variable cross-sectional area A = A() rather

More information

NOTATION: We have a special symbol to use when we wish to find the anti-derivative of a function, called an Integral Symbol,

NOTATION: We have a special symbol to use when we wish to find the anti-derivative of a function, called an Integral Symbol, SECTION 5.: ANTI-DERIVATIVES We eplored taking the Derivative of functions in the previous chapters, but now want to look at the reverse process, which the student should understand is sometimes more complicated.

More information

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that

Inverse Functions. Review from Last Time: The Derivative of y = ln x. [ln. Last time we saw that Inverse Functions Review from Last Time: The Derivative of y = ln Last time we saw that THEOREM 22.0.. The natural log function is ifferentiable an More generally, the chain rule version is ln ) =. ln

More information

Diffusion of a density in a static fluid

Diffusion of a density in a static fluid Diffusion of a density in a static fluid u(x, y, z, t), density (M/L 3 ) of a substance (dye). Diffusion: motion of particles from places where the density is higher to places where it is lower, due to

More information

Question 1. (8 points) The following diagram shows the graphs of eight equations.

Question 1. (8 points) The following diagram shows the graphs of eight equations. MAC 2233/-6 Business Calculus, Spring 2 Final Eam Name: Date: 5/3/2 Time: :am-2:nn Section: Show ALL steps. One hundred points equal % Question. (8 points) The following diagram shows the graphs of eight

More information

No Solution Equations Let s look at the following equation: 2 +3=2 +7

No Solution Equations Let s look at the following equation: 2 +3=2 +7 5.4 Solving Equations with Infinite or No Solutions So far we have looked at equations where there is exactly one solution. It is possible to have more than solution in other types of equations that are

More information

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Alexander Chesnokov Lavrentyev Institute of Hydrodynamics Novosibirsk, Russia chesnokov@hydro.nsc.ru July 14,

More information

Math Calculus f. Business and Management - Worksheet 12. Solutions for Worksheet 12 - Limits as x approaches infinity

Math Calculus f. Business and Management - Worksheet 12. Solutions for Worksheet 12 - Limits as x approaches infinity Math 0 - Calculus f. Business and Management - Worksheet 1 Solutions for Worksheet 1 - Limits as approaches infinity Simple Limits Eercise 1: Compute the following its: 1a : + 4 1b : 5 + 8 1c : 5 + 8 Solution

More information

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides.

kg meter ii) Note the dimensions of ρ τ are kg 2 velocity 2 meter = 1 sec 2 We will interpret this velocity in upcoming slides. II. Generalizing the 1-dimensional wave equation First generalize the notation. i) "q" has meant transverse deflection of the string. Replace q Ψ, where Ψ may indicate other properties of the medium that

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble The object of this endeavor is to impose a simple probability

More information

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems

MATH 250 TOPIC 11 LIMITS. A. Basic Idea of a Limit and Limit Laws. Answers to Exercises and Problems Math 5 T-Limits Page MATH 5 TOPIC LIMITS A. Basic Idea of a Limit and Limit Laws B. Limits of the form,, C. Limits as or as D. Summary for Evaluating Limits Answers to Eercises and Problems Math 5 T-Limits

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 8 Introduction to Vapour Power Cycle Today, we will continue

More information

Chapter 3 - First Law of Thermodynamics

Chapter 3 - First Law of Thermodynamics Chapter 3 - dynamics The ideal gas law is a combination of three intuitive relationships between pressure, volume, temp and moles. David J. Starling Penn State Hazleton Fall 2013 When a gas expands, it

More information

MIT (Spring 2014)

MIT (Spring 2014) 18.311 MIT (Spring 014) Rodolfo R. Rosales February 13, 014. Problem Set # 01. Due: Mon. February 4. IMPORTANT: Turn in the regular and the special problems stapled in two SEPARATE packages. Print your

More information

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian:

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: let s look at one piece first: P and Q obey: Probability

More information

MATH 425, HOMEWORK 5, SOLUTIONS

MATH 425, HOMEWORK 5, SOLUTIONS MATH 425, HOMEWORK 5, SOLUTIONS Exercise (Uniqueness for the heat equation on R) Suppose that the functions u, u 2 : R x R t R solve: t u k 2 xu = 0, x R, t > 0 u (x, 0) = φ(x), x R and t u 2 k 2 xu 2

More information

EXAM. Exam #1. Math 3350 Summer II, July 21, 2000 ANSWERS

EXAM. Exam #1. Math 3350 Summer II, July 21, 2000 ANSWERS EXAM Exam #1 Math 3350 Summer II, 2000 July 21, 2000 ANSWERS i 100 pts. Problem 1. 1. In each part, find the general solution of the differential equation. dx = x2 e y We use the following sequence of

More information