Jim Lambers ENERGY 281 Spring Quarter Lecture 3 Notes

Size: px
Start display at page:

Download "Jim Lambers ENERGY 281 Spring Quarter Lecture 3 Notes"

Transcription

1 Jim Lambers ENERGY 8 Spring Quarter 7-8 Lecture 3 Notes These notes are based on Rosalind Archer s PE8 lecture notes, with some revisions by Jim Lambers. Introduction The Fourier transform is an integral transform. When viewed in the context of signal processing the application of the Fourier transform takes a function from real-space to frequency-space (see later examples). The Fourier transform is defined by: F(s) The inverse transform is defined in a similar manner: f(x) f(x)e ixs dx () F(s)e ixs ds () We will also use the notation ˆf(s) for F(s). The Fourier transform exists if f(x) and f (x) are at least piecewise continuous and the following integral exists: f(x) dx (3) There are also some alternative definitions: and F(s) f(x)e ixs dx (4) f(x) F(s)e ixs ds (5) F(s) f(x) f(x)e ixs dx (6) F(s)e ixs ds (7)

2 Example Let Then F(s) e s /4 e s /4 e s /4 e s /4 f(x) e x. (8) e x e isx dx (9) e (x +ixs) dx () e (x +ixs s /4+s /4) dx () e (x+is/) s /4 dx () +is/ +is/ ( ( e s /4 e s /4 e s /4 e s /4 e s /4 π e (x+is/) dx (3) e ξ dξ (4) e x dx (5) e x dx e x dx ) ( ) ( ) e x dx ) e y dy (6) (7) e (x +y ) dxdy (8) e r r dr dθ (9) e u dudθ () e u du () e s /4 πe u () e s /4 π (3) e s /4, (4)

3 where, in equation (4), ξ x + is/. In (5), we applied the Cauchy integral theorem, applied to a rectangle in the complex plane with vertices (x,), ( x,), (x,is/), and ( x,is/), as x. In (9), we converted to polar coordinates to obtain an integral that could be evaluated. The Fourier transform relates a function in real space (either time or distance) to a function in frequency space. This can be seen by recalling: Now consider the inverse transform: f(x) e ixs cos(xs) + isin(xs) (5) F(s)e ixs ds (6) This integral shows that the Fourier transform breaks a function f(x) into a sum of sines and cosines with frequency s. (Recall the frequency of f(kx) is k ). The amplitude associated with any given frequency is given by F(s). Example Consider f cos x. The Fourier transform of f is F(s) δ( + s) + δ( + s), (7) where δ(s) is the Dirac delta function, which has the property f(s)δ(s c)ds f(c). (8) To verify that F(s) really is the Fourier transform of f(x), we compute its inverse transform: f(x) e isx F(s)ds [ ] e isx δ( + s) + δ( + s) ds e isx e isx δ( + s)ds + (eix + e ix ) δ( + s)ds + (cos x + isin x + cos( x) + isin( x)) e isx δ( + s)ds e isx δ( + s)ds (cos x + cos x) cos x. (9) 3

4 The original function f(x) and its Fourier transform F(s) are shown in Figures and, respectively cos(x) x Figure : f(x) cos x Fourier Transform Theorems In stating and using the following theorems, which greatly simplify the process of computing transforms and inverse transforms of functions, we will use the following notation: given a function f(x), F(f(x)) refers to its Fourier transform, commonly denoted by F(s). That is, F is a function whose input is a function of x, and whose output is its transform, a function of s.. Theorem - Linearity and F(f(x) + g(x)) F(f(x)) + F(g(x)) (3) F(cf(x)) cf(f(x)) (3) 4

5 .5.5 Amplitude Frequency Figure : Frequency spectrum of f(x) cos x. Theorem - Shift Theorem If then Proof: F(f(x a)) F(f(x)) F(s) (3) F(f(x a)) e isa F(s). (33) e isa f(x a)e isx dx f(x a)e is(x a) isa dx f(x a)e is(x a) dx e isa F(s) (34) 5

6 .3 Theorem 3 - Similarity Theorem If then F(f(x)) F(s) (35) F(f(ax)) ( ) s a F a (36).4 Theorem 4 - Convolution Theorem If F(f(x)) F(s) (37) and F(g(x)) G(s) (38) then F(f(x) g(x)) F(s)G(s) (39) where (f(x) g(x))(x) is the convolution of f and g..5 Theorem 5 - Parseval s theorem f(x t)g(t)dt (4) If then F(f(x)) F(s) (4) f(x) dx F(s) ds. (4).6 Theorem 6 - Derivatives If F(f(x)) F(s) (43) then F(f (n) (x)) (is) n F(s) (44) where f (n) (x) dn dxnf(x). (45) Note that this assumes the values of the derivatives vanish at ±. 6

7 3 Fourier Sine and Cosine Transforms The Fourier transform is defined as: F(f(x)) f(x)e isx dx f(x)[cos( sx) + isin( sx)]dx. (46) Now consider a case where f(x) is the sum of an even and an odd function, f e (x) and f o (x). Recall that if f(x) is an odd function, f( x) f(x). (47) sin x is an example of an odd function. On the other hand, if f(x) is an even function, f( x) f(x). (48) cos x is an example of an even function. Any function f(x) can be written as the sum of an even and odd function. Specifically, where f e (x) f(x) f e (x) + f o (x), (49) f(x) + f( x), f o (x) f(x) f( x). (5) With f(x) defined as the sum of an even and odd function, the Fourier transform of f(x) becomes F(f(x)) (f e (x) + f o (x))cos sxdx i (f e (x) + f o (x))sin sxdx. (5) Now take into account the way products of even and odd functions behave: The product of two even functions, or two odd functions, is an even function. The product of an even function and an odd function is an odd function. 7

8 Also note the following integral: Now substitute these relationships into (5): F(f(x)) f o (x)dx (5) f e (x)cos sxdx i f o (x)sin sxdx (53) f e (x)cos sxdx i f o (x)sin sxdx. (54) The fact that the Fourier transform splits into two terms (sine and cosine) motivates the definition of the sine and cosine transforms F s and F c : F c (f(x)) f(x)cos xs dx F c (s) (55) π F s (f(x)) f(x)sin xs dx F s (s) (56) π The inverse transforms are defined as follows: Fc (F c (s)) F c (s)cos xs ds f(x) (57) π Fs (F s (s)) F s (s)sin xs ds f(x) (58) π The following rules for transforming second derivatives are especially useful: F c (f ) π f () s F c (f), (59) F s (f ) s π f() s F s (f). (6) The use of sine and cosine transforms simplifies the transform procedure when transforming even and odd functions, because the Fourier sine transform of an even function is zero, as is the Fourier cosine transform of an odd function. It follows that the sine and cosine transforms can be used in place of the full Fourier transform for problems with semi-infinite domains, differential equations that have only even orders of derivatives, either f or f specified at the boundary. 8

9 4 Example : D Pressure Diffusion Consider a one-dimensional problem governed by the pressure equation in dimensionless form, p D x p D (6) D t D The boundary conditions are p D (,t D ), lim p D(x D,t D ), (6) x D and the initial condition is p D (x D,). (63) Since the pressure and not the pressure derivative is set on the boundary, we should use the sine transform. The choice of transform is made according to equations (59) and (6), which relate the transform of the second derivative to the boundary conditions. First, we apply the Fourier sine transform to the spatial variable in order to convert the partial differential equation to an ordinary differential equation: s π p D(x D,t D ) s ˆp D ˆp D (64) t D ˆp D t D + s ˆp D s. (65) π This equation can be solved using an integrating factor. Recall that for a general linear first-order ODE of the form dy + P(t)y Q(t) (66) dt [ ] we can multiply through by the integrating factor exp t P(s)ds to obtain t e P(s) ds du dt + P(t)e t t P(s) ds y e P(s) ds Q(t) (67) d ( t ) t e P(s) ds y e P(s) ds Q(t) (68) dt t t τ y(t)e P(s) ds Q(τ)e P(s) ds dτ + C. (69) 9

10 Applying this technique to the transformed equation (65) with y(t) ˆp D (s,t D ), P(t) s and Q(t) /πs yields ˆp D (s,t D )e s t D td π sesτ dτ (7) ˆp D (s,t D ) Now invert the Fourier sine transform to find p D : td (t D τ) π se s dτ π s ( t D e s ). (7) p D (x D,t D ) Fs (ˆp D (s,t D )) ˆp D (s,t D )sin(sx D )ds π π s ( t D e s )sin(sx D )ds ( ) ( ) xd xd Erf Erfc 4tD 4tD (7) where Erf(z) and Erfc(z) are the error function and the complimentary error function, respectively, defined by Erf(z) π z e t dt (73) Erfc(z) Erf(z) (74)

f(x)e ikx dx. (1) f(k)e ikx dk. (2) e ikx dx = 2sinak. k f g(x) = g f(x) = f(s)e iks ds

f(x)e ikx dx. (1) f(k)e ikx dk. (2) e ikx dx = 2sinak. k f g(x) = g f(x) = f(s)e iks ds Mathematical Methods: Page 15 2 Fourier transforms 2.1 Integral transforms The Fourier transform is studied in this chapter and the Laplace transform in the next. They are both integral transforms that

More information

MATH 124B: HOMEWORK 2

MATH 124B: HOMEWORK 2 MATH 24B: HOMEWORK 2 Suggested due date: August 5th, 26 () Consider the geometric series ( ) n x 2n. (a) Does it converge pointwise in the interval < x

More information

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case.

Examples of the Fourier Theorem (Sect. 10.3). The Fourier Theorem: Continuous case. s of the Fourier Theorem (Sect. 1.3. The Fourier Theorem: Continuous case. : Using the Fourier Theorem. The Fourier Theorem: Piecewise continuous case. : Using the Fourier Theorem. The Fourier Theorem:

More information

1 Constant Pressure Inner Boundary Condition

1 Constant Pressure Inner Boundary Condition Jim Lambers ENERGY 281 Spring Quarter 2007-08 Lecture 8 Notes These notes are based on Rosalind Archer s PE281 lecture notes, with some revisions by Jim Lambers. 1 Constant Pressure Inner Boundary Condition

More information

Jim Lambers ENERGY 281 Spring Quarter Lecture 5 Notes

Jim Lambers ENERGY 281 Spring Quarter Lecture 5 Notes Jim ambers ENERGY 28 Spring Quarter 27-8 ecture 5 Notes These notes are based on Rosalind Archer s PE28 lecture notes, with some revisions by Jim ambers. Fourier Series Recall that in ecture 2, when we

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

0 3 x < x < 5. By continuing in this fashion, and drawing a graph, it can be seen that T = 2.

0 3 x < x < 5. By continuing in this fashion, and drawing a graph, it can be seen that T = 2. 04 Section 10. y (π) = c = 0, and thus λ = 0 is an eigenvalue, with y 0 (x) = 1 as the eigenfunction. For λ > 0 we again have y(x) = c 1 sin λ x + c cos λ x, so y (0) = λ c 1 = 0 and y () = -c λ sin λ

More information

Jim Lambers ENERGY 281 Spring Quarter Homework Assignment 3 Solution. 2 Ei r2 D., 4t D and the late time approximation to this solution,

Jim Lambers ENERGY 281 Spring Quarter Homework Assignment 3 Solution. 2 Ei r2 D., 4t D and the late time approximation to this solution, Jim Lambers ENERGY 8 Spring Quarter 7-8 Homework Assignment 3 Solution Plot the exponential integral solution p D (r D,t D ) = ) ( Ei r D, 4t D and the late time approximation to this solution, p D (r

More information

APPLIED MATHEMATICS Part 4: Fourier Analysis

APPLIED MATHEMATICS Part 4: Fourier Analysis APPLIED MATHEMATICS Part 4: Fourier Analysis Contents 1 Fourier Series, Integrals and Transforms 2 1.1 Periodic Functions. Trigonometric Series........... 3 1.2 Fourier Series..........................

More information

1 Separation of Variables

1 Separation of Variables Jim ambers ENERGY 281 Spring Quarter 27-8 ecture 2 Notes 1 Separation of Variables In the previous lecture, we learned how to derive a PDE that describes fluid flow. Now, we will learn a number of analytical

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.)

MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.) MA 201, Mathematics III, July-November 2018, Laplace Transform (Contd.) Lecture 19 Lecture 19 MA 201, PDE (2018) 1 / 24 Application of Laplace transform in solving ODEs ODEs with constant coefficients

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

e st f (t) dt = e st tf(t) dt = L {t f(t)} s Additional operational properties How to find the Laplace transform of a function f (t) that is multiplied by a monomial t n, the transform of a special type of integral, and the transform of a periodic

More information

Math 5440 Problem Set 6 Solutions

Math 5440 Problem Set 6 Solutions Math 544 Math 544 Problem Set 6 Solutions Aaron Fogelson Fall, 5 : (Logan,.6 # ) Solve the following problem using Laplace transforms. u tt c u xx g, x >, t >, u(, t), t >, u(x, ), u t (x, ), x >. The

More information

Fourier Series and Integrals

Fourier Series and Integrals Fourier Series and Integrals Fourier Series et f(x) beapiece-wiselinearfunctionon[, ] (Thismeansthatf(x) maypossessa finite number of finite discontinuities on the interval). Then f(x) canbeexpandedina

More information

λ n = L φ n = π L eınπx/l, for n Z

λ n = L φ n = π L eınπx/l, for n Z Chapter 32 The Fourier Transform 32. Derivation from a Fourier Series Consider the eigenvalue problem y + λy =, y( L = y(l, y ( L = y (L. The eigenvalues and eigenfunctions are ( nπ λ n = L 2 for n Z +

More information

f(x)e ikx dx. (19.1) ˆf(k)e ikx dk. (19.2)

f(x)e ikx dx. (19.1) ˆf(k)e ikx dk. (19.2) 9 Fourier transform 9 A first look at the Fourier transform In Math 66 you all studied the Laplace transform, which was used to turn an ordinary differential equation into an algebraic one There are a

More information

Ma 221 Eigenvalues and Fourier Series

Ma 221 Eigenvalues and Fourier Series Ma Eigenvalues and Fourier Series Eigenvalue and Eigenfunction Examples Example Find the eigenvalues and eigenfunctions for y y 47 y y y5 Solution: The characteristic equation is r r 47 so r 44 447 6 Thus

More information

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π

Fourier transforms. c n e inπx. f (x) = Write same thing in an equivalent form, using n = 1, f (x) = l π Fourier transforms We can imagine our periodic function having periodicity taken to the limits ± In this case, the function f (x) is not necessarily periodic, but we can still use Fourier transforms (related

More information

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have.

Mathematical Methods and its Applications (Solution of assignment-12) Solution 1 From the definition of Fourier transforms, we have. For 2 weeks course only Mathematical Methods and its Applications (Solution of assignment-2 Solution From the definition of Fourier transforms, we have F e at2 e at2 e it dt e at2 +(it/a dt ( setting (

More information

Ordinary Differential Equation Theory

Ordinary Differential Equation Theory Part I Ordinary Differential Equation Theory 1 Introductory Theory An n th order ODE for y = y(t) has the form Usually it can be written F (t, y, y,.., y (n) ) = y (n) = f(t, y, y,.., y (n 1) ) (Implicit

More information

22. Periodic Functions and Fourier Series

22. Periodic Functions and Fourier Series November 29, 2010 22-1 22. Periodic Functions and Fourier Series 1 Periodic Functions A real-valued function f(x) of a real variable is called periodic of period T > 0 if f(x + T ) = f(x) for all x R.

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

FOURIER AND LAPLACE TRANSFORMS

FOURIER AND LAPLACE TRANSFORMS FOURIER AND LAPLACE TRANSFORMS BO BERNDTSSON. FOURIER SERIES The basic idea of Fourier analysis is to write general functions as sums (or superpositions) of trigonometric functions, sometimes called harmonic

More information

Fourier Sin and Cos Series and Least Squares Convergence

Fourier Sin and Cos Series and Least Squares Convergence Fourier and east Squares Convergence James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University May 7, 28 Outline et s look at the original Fourier sin

More information

Computer Problems for Fourier Series and Transforms

Computer Problems for Fourier Series and Transforms Computer Problems for Fourier Series and Transforms 1. Square waves are frequently used in electronics and signal processing. An example is shown below. 1 π < x < 0 1 0 < x < π y(x) = 1 π < x < 2π... and

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12

Grade: The remainder of this page has been left blank for your workings. VERSION D. Midterm D: Page 1 of 12 First Name: Student-No: Last Name: Section: Grade: The remainder of this page has been left blank for your workings. Midterm D: Page of 2 Indefinite Integrals. 9 marks Each part is worth marks. Please

More information

Online Multiple Choice Questions of EM-II of Unit-III

Online Multiple Choice Questions of EM-II of Unit-III Online Multiple Choice Questions of EM-II of Unit-III. The primitive period of a constant function is does not exist ANS: d. The constant function is an odd function an even function neither even nor odd

More information

Name: Solutions Exam 4

Name: Solutions Exam 4 Instructions. Answer each of the questions on your own paper. Put your name on each page of your paper. Be sure to show your work so that partial credit can be adequately assessed. Credit will not be given

More information

Fourier and Partial Differential Equations

Fourier and Partial Differential Equations Chapter 5 Fourier and Partial Differential Equations 5.1 Fourier MATH 294 SPRING 1982 FINAL # 5 5.1.1 Consider the function 2x, 0 x 1. a) Sketch the odd extension of this function on 1 x 1. b) Expand the

More information

Introduction to Fourier Analysis. CS 510 Lecture #5 February 2 nd 2015

Introduction to Fourier Analysis. CS 510 Lecture #5 February 2 nd 2015 Introduction to Fourier Analysis CS 510 Lecture 5 February 2 nd 2015 Why? Get used to changing representa6ons! (and this par6cular transforma6on is ubiquitous and important) 2/9/15 CSU CS 510, Ross Beveridge

More information

Ordinary Differential Equations

Ordinary Differential Equations Ordinary Differential Equations for Engineers and Scientists Gregg Waterman Oregon Institute of Technology c 2017 Gregg Waterman This work is licensed under the Creative Commons Attribution 4.0 International

More information

Notes on Fourier Series and Integrals Fourier Series

Notes on Fourier Series and Integrals Fourier Series Notes on Fourier Series and Integrals Fourier Series et f(x) be a piecewise linear function on [, ] (This means that f(x) may possess a finite number of finite discontinuities on the interval). Then f(x)

More information

Math 3313: Differential Equations Laplace transforms

Math 3313: Differential Equations Laplace transforms Math 3313: Differential Equations Laplace transforms Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Introduction Inverse Laplace transform Solving ODEs with Laplace

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 15 Heat with a source So far we considered homogeneous wave and heat equations and the associated initial value problems on the whole line, as

More information

Lecture 4: Fourier Transforms.

Lecture 4: Fourier Transforms. 1 Definition. Lecture 4: Fourier Transforms. We now come to Fourier transforms, which we give in the form of a definition. First we define the spaces L 1 () and L 2 (). Definition 1.1 The space L 1 ()

More information

12.7 Heat Equation: Modeling Very Long Bars.

12.7 Heat Equation: Modeling Very Long Bars. 568 CHAP. Partial Differential Equations (PDEs).7 Heat Equation: Modeling Very Long Bars. Solution by Fourier Integrals and Transforms Our discussion of the heat equation () u t c u x in the last section

More information

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT

Mathematics for Chemists 2 Lecture 14: Fourier analysis. Fourier series, Fourier transform, DFT/FFT Mathematics for Chemists 2 Lecture 14: Fourier analysis Fourier series, Fourier transform, DFT/FFT Johannes Kepler University Summer semester 2012 Lecturer: David Sevilla Fourier analysis 1/25 Remembering

More information

The Laplace Transform. Background: Improper Integrals

The Laplace Transform. Background: Improper Integrals The Laplace Transform Background: Improper Integrals Recall: Definite Integral: a, b real numbers, a b; f continuous on [a, b] b a f(x) dx 1 Improper integrals: Type I Infinite interval of integration

More information

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m.

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m. THE UNIVERSITY OF WESTERN ONTARIO London Ontario Applied Mathematics 375a Instructor: Matt Davison Final Examination December 4, 22 9: 2: a.m. 3 HOURS Name: Stu. #: Notes: ) There are 8 question worth

More information

Math 489AB A Very Brief Intro to Fourier Series Fall 2008

Math 489AB A Very Brief Intro to Fourier Series Fall 2008 Math 489AB A Very Brief Intro to Fourier Series Fall 8 Contents Fourier Series. The coefficients........................................ Convergence......................................... 4.3 Convergence

More information

Nonhomogeneous Equations and Variation of Parameters

Nonhomogeneous Equations and Variation of Parameters Nonhomogeneous Equations Variation of Parameters June 17, 2016 1 Nonhomogeneous Equations 1.1 Review of First Order Equations If we look at a first order homogeneous constant coefficient ordinary differential

More information

MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series Lecture - 10

MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series Lecture - 10 MA 201: Differentiation and Integration of Fourier Series Applications of Fourier Series ecture - 10 Fourier Series: Orthogonal Sets We begin our treatment with some observations: For m,n = 1,2,3,... cos

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 7: 2.4 Differences Between Linear and Nonlinear Equations

Lecture Notes for Math 251: ODE and PDE. Lecture 7: 2.4 Differences Between Linear and Nonlinear Equations Lecture Notes for Math 51: ODE and PDE. Lecture 7:.4 Differences Between Linear and Nonlinear Equations Shawn D. Ryan Spring 01 1 Existence and Uniqueness Last Time: We developed 1st Order ODE models for

More information

FOURIER TRANSFORMS. 1. Fourier series 1.1. The trigonometric system. The sequence of functions

FOURIER TRANSFORMS. 1. Fourier series 1.1. The trigonometric system. The sequence of functions FOURIER TRANSFORMS. Fourier series.. The trigonometric system. The sequence of functions, cos x, sin x,..., cos nx, sin nx,... is called the trigonometric system. These functions have period π. The trigonometric

More information

21-256: Partial differentiation

21-256: Partial differentiation 21-256: Partial differentiation Clive Newstead, Thursday 5th June 2014 This is a summary of the important results about partial derivatives and the chain rule that you should know. Partial derivatives

More information

Study # 1 11, 15, 19

Study # 1 11, 15, 19 Goals: 1. Recognize Taylor Series. 2. Recognize the Maclaurin Series. 3. Derive Taylor series and Maclaurin series representations for known functions. Study 11.10 # 1 11, 15, 19 f (n) (c)(x c) n f(c)+

More information

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial

Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Matemáticas II: Segundo del Grado en Ingeniería Aeroespacial Sergio Blanes, Dolors Roselló Ecuaciones diferenciales y transformadas de Laplace con aplicaciones L.M. Sánchez, M.P. Legua Ref.: 211-798 Capítulo

More information

1 Fourier Integrals on L 2 (R) and L 1 (R).

1 Fourier Integrals on L 2 (R) and L 1 (R). 18.103 Fall 2013 1 Fourier Integrals on L 2 () and L 1 (). The first part of these notes cover 3.5 of AG, without proofs. When we get to things not covered in the book, we will start giving proofs. The

More information

The Laplace Transform. Background: Improper Integrals

The Laplace Transform. Background: Improper Integrals The Laplace Transform Background: Improper Integrals Recall: Definite Integral: a, b real numbers, a b; f continuous on [a, b] b a f(x) dx 1 Improper integrals: Type I Infinite interval of integration

More information

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform

f (t) K(t, u) d t. f (t) K 1 (t, u) d u. Integral Transform Inverse Fourier Transform Integral Transforms Massoud Malek An integral transform maps an equation from its original domain into another domain, where it might be manipulated and solved much more easily than in the original domain.

More information

Fourier Matching. CS 510 Lecture #7 February 8 th, 2013

Fourier Matching. CS 510 Lecture #7 February 8 th, 2013 Fourier Matching CS 510 Lecture #7 February 8 th, 2013 Details are on the assignments page you have un4l Monday Programming Assignment #1 Source (Target) Images Templates Le4 Eye Right Eye Le4 Ear Nose

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

2.2 The derivative as a Function

2.2 The derivative as a Function 2.2 The derivative as a Function Recall: The derivative of a function f at a fixed number a: f a f a+h f(a) = lim h 0 h Definition (Derivative of f) For any number x, the derivative of f is f x f x+h f(x)

More information

multiply both sides of eq. by a and projection overlap

multiply both sides of eq. by a and projection overlap Fourier Series n x n x f xa ancos bncos n n periodic with period x consider n, sin x x x March. 3, 7 Any function with period can be represented with a Fourier series Examples (sawtooth) (square wave)

More information

Math 115 ( ) Yum-Tong Siu 1. Derivation of the Poisson Kernel by Fourier Series and Convolution

Math 115 ( ) Yum-Tong Siu 1. Derivation of the Poisson Kernel by Fourier Series and Convolution Math 5 (006-007 Yum-Tong Siu. Derivation of the Poisson Kernel by Fourier Series and Convolution We are going to give a second derivation of the Poisson kernel by using Fourier series and convolution.

More information

FOURIER SERIES, HAAR WAVELETS AND FAST FOURIER TRANSFORM

FOURIER SERIES, HAAR WAVELETS AND FAST FOURIER TRANSFORM FOURIER SERIES, HAAR WAVELETS AD FAST FOURIER TRASFORM VESA KAARIOJA, JESSE RAILO AD SAMULI SILTAE Abstract. This handout is for the course Applications of matrix computations at the University of Helsinki

More information

A: Brief Review of Ordinary Differential Equations

A: Brief Review of Ordinary Differential Equations A: Brief Review of Ordinary Differential Equations Because of Principle # 1 mentioned in the Opening Remarks section, you should review your notes from your ordinary differential equations (odes) course

More information

Jim Lambers MAT 285 Spring Semester Practice Exam 2 Solution. y(t) = 5 2 e t 1 2 e 3t.

Jim Lambers MAT 285 Spring Semester Practice Exam 2 Solution. y(t) = 5 2 e t 1 2 e 3t. . Solve the initial value problem which factors into Jim Lambers MAT 85 Spring Semester 06-7 Practice Exam Solution y + 4y + 3y = 0, y(0) =, y (0) =. λ + 4λ + 3 = 0, (λ + )(λ + 3) = 0. Therefore, the roots

More information

Introduction and preliminaries

Introduction and preliminaries Chapter Introduction and preliminaries Partial differential equations What is a partial differential equation? ODEs Ordinary Differential Equations) have one variable x). PDEs Partial Differential Equations)

More information

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10

Calculus II Practice Test 1 Problems: , 6.5, Page 1 of 10 Calculus II Practice Test Problems: 6.-6.3, 6.5, 7.-7.3 Page of This is in no way an inclusive set of problems there can be other types of problems on the actual test. To prepare for the test: review homework,

More information

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TWO MARKS Q & A APPLICATIONS OF PARTIAL DIFFERENTIAL Z-TRANSFORMS AND DIFFERENCE EQUATIONS

TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TWO MARKS Q & A APPLICATIONS OF PARTIAL DIFFERENTIAL Z-TRANSFORMS AND DIFFERENCE EQUATIONS TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS TWO MARKS Q & A UNIT-I UNIT-II UNIT-III UNIT-IV FOURIER SERIES FOURIER TRANSFORM PARTIAL DIFFERENTIAL EQUATIONS APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

More information

Fourier Series. Fourier Transform

Fourier Series. Fourier Transform Math Methods I Lia Vas Fourier Series. Fourier ransform Fourier Series. Recall that a function differentiable any number of times at x = a can be represented as a power series n= a n (x a) n where the

More information

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K.

f(t)e st dt. (4.1) Note that the integral defining the Laplace transform converges for s s 0 provided f(t) Ke s 0t for some constant K. 4 Laplace transforms 4. Definition and basic properties The Laplace transform is a useful tool for solving differential equations, in particular initial value problems. It also provides an example of integral

More information

Special Mathematics Laplace Transform

Special Mathematics Laplace Transform Special Mathematics Laplace Transform March 28 ii Nature laughs at the difficulties of integration. Pierre-Simon Laplace 4 Laplace Transform Motivation Properties of the Laplace transform the Laplace transform

More information

The Laplace Transform

The Laplace Transform C H A P T E R 6 The Laplace Transform Many practical engineering problems involve mechanical or electrical systems acted on by discontinuous or impulsive forcing terms. For such problems the methods described

More information

PHYS 502 Lecture 3: Fourier Series

PHYS 502 Lecture 3: Fourier Series PHYS 52 Lecture 3: Fourier Series Fourier Series Introduction In mathematics, a Fourier series decomposes periodic functions or periodic signals into the sum of a (possibly infinite) set of simple oscillating

More information

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009

Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis. 26 October - 20 November, 2009 2065-33 Advanced Training Course on FPGA Design and VHDL for Hardware Simulation and Synthesis 26 October - 20 November, 2009 Introduction to two-dimensional digital signal processing Fabio Mammano University

More information

17 The functional equation

17 The functional equation 18.785 Number theory I Fall 16 Lecture #17 11/8/16 17 The functional equation In the previous lecture we proved that the iemann zeta function ζ(s) has an Euler product and an analytic continuation to the

More information

Calculus & Analytic Geometry I

Calculus & Analytic Geometry I TQS 124 Autumn 2008 Quinn Calculus & Analytic Geometry I The Derivative: Analytic Viewpoint Derivative of a Constant Function. For c a constant, the derivative of f(x) = c equals f (x) = Derivative of

More information

Math 121A: Homework 6 solutions

Math 121A: Homework 6 solutions Math A: Homework 6 solutions. (a) The coefficients of the Fourier sine series are given by b n = π f (x) sin nx dx = x(π x) sin nx dx π = (π x) cos nx dx nπ nπ [x(π x) cos nx]π = n ( )(sin nx) dx + π n

More information

LES of Turbulent Flows: Lecture 4 (ME EN )

LES of Turbulent Flows: Lecture 4 (ME EN ) 1 LES of Turbulent Flows: Lecture 4 (ME EN 796 8) Prof. Rob Stoll Department of Mechanical Engineering University of Utah Spring 11 Fourier Transforms Fourier Transforms are a common tool in fluid dynamics

More information

On linear and non-linear equations.(sect. 2.4).

On linear and non-linear equations.(sect. 2.4). On linear and non-linear equations.sect. 2.4). Review: Linear differential equations. Non-linear differential equations. Properties of solutions to non-linear ODE. The Bernoulli equation. Review: Linear

More information

Unsteady State Heat Conduction in a Bounded Solid

Unsteady State Heat Conduction in a Bounded Solid Unsteady State Heat Conduction in a Bounded Solid Consider a sphere of radius R. Initially the sphere is at a uniform temperature T. It is cooled by convection to an air stream at temperature T a. What

More information

ODE Homework Solutions of Linear Homogeneous Equations; the Wronskian

ODE Homework Solutions of Linear Homogeneous Equations; the Wronskian ODE Homework 3 3.. Solutions of Linear Homogeneous Equations; the Wronskian 1. Verify that the functions y 1 (t = e t and y (t = te t are solutions of the differential equation y y + y = 0 Do they constitute

More information

1D Wave PDE. Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) Richard Sear.

1D Wave PDE. Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) Richard Sear. Introduction to Partial Differential Equations part of EM, Scalar and Vector Fields module (PHY2064) November 12, 2018 Wave equation in one dimension This lecture Wave PDE in 1D Method of Separation of

More information

The Fourier Transform Method

The Fourier Transform Method The Fourier Transform Method R. C. Trinity University Partial Differential Equations April 22, 2014 Recall The Fourier transform The Fourier transform of a piecewise smooth f L 1 (R) is ˆf(ω) = F(f)(ω)

More information

First and Second Order Differential Equations Lecture 4

First and Second Order Differential Equations Lecture 4 First and Second Order Differential Equations Lecture 4 Dibyajyoti Deb 4.1. Outline of Lecture The Existence and the Uniqueness Theorem Homogeneous Equations with Constant Coefficients 4.2. The Existence

More information

SOLUTIONS TO SELECTED EXERCISES. Applied Partial Differential Equations, 3rd Ed. Springer-Verlag, NY (2015)

SOLUTIONS TO SELECTED EXERCISES. Applied Partial Differential Equations, 3rd Ed. Springer-Verlag, NY (2015) SOLUTIONS TO SELECTED EXECISES Applied Partial Differential Equations, 3rd Ed. Springer-Verlag, NY (25) J. David Logan University of Nebraska Lincoln CHAPTE 2 Partial Differential Equations on Unbounded

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables.

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables. Chapter 2 First order PDE 2.1 How and Why First order PDE appear? 2.1.1 Physical origins Conservation laws form one of the two fundamental parts of any mathematical model of Continuum Mechanics. These

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 5 FFT and Divide and Conquer Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 56 Outline DFT: evaluate a polynomial

More information

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder.

Conformal maps. Lent 2019 COMPLEX METHODS G. Taylor. A star means optional and not necessarily harder. Lent 29 COMPLEX METHODS G. Taylor A star means optional and not necessarily harder. Conformal maps. (i) Let f(z) = az + b, with ad bc. Where in C is f conformal? cz + d (ii) Let f(z) = z +. What are the

More information

Jim Lambers MAT 169 Fall Semester Lecture 6 Notes. a n. n=1. S = lim s k = lim. n=1. n=1

Jim Lambers MAT 169 Fall Semester Lecture 6 Notes. a n. n=1. S = lim s k = lim. n=1. n=1 Jim Lambers MAT 69 Fall Semester 2009-0 Lecture 6 Notes These notes correspond to Section 8.3 in the text. The Integral Test Previously, we have defined the sum of a convergent infinite series to be the

More information

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE MATH 3: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE Recall the Residue Theorem: Let be a simple closed loop, traversed counterclockwise. Let f be a function that is analytic on and meromorphic inside. Then

More information

Physics 6303 Lecture 15 October 10, Reminder of general solution in 3-dimensional cylindrical coordinates. sinh. sin

Physics 6303 Lecture 15 October 10, Reminder of general solution in 3-dimensional cylindrical coordinates. sinh. sin Physics 6303 Lecture 15 October 10, 2018 LAST TIME: Spherical harmonics and Bessel functions Reminder of general solution in 3-dimensional cylindrical coordinates,, sin sinh cos cosh, sin sin cos cos,

More information

MATHEMATICS OF DOPING PROFILES. C(x,t) t. = D 2 C(x,t) x 2. 4Dt dx '

MATHEMATICS OF DOPING PROFILES. C(x,t) t. = D 2 C(x,t) x 2. 4Dt dx ' EE43 MATHEMATICS OF DOPING PROFILES N. Cheung The diffusion equation with constant D : has the general solution: C(x,t) = C(x,t) = D 2 C(x,t) 4πDt F(x ' ) e -(x-x' ) 2 4Dt dx ' - where F(x') is the C(x,t)

More information

Hankel Transforms - Lecture 10

Hankel Transforms - Lecture 10 1 Introduction Hankel Transforms - Lecture 1 The Fourier transform was used in Cartesian coordinates. If we have problems with cylindrical geometry we will need to use cylindtical coordinates. Thus suppose

More information

1 otherwise. Note that the area of the pulse is one. The Dirac delta function (a.k.a. the impulse) can be defined using the pulse as follows:

1 otherwise. Note that the area of the pulse is one. The Dirac delta function (a.k.a. the impulse) can be defined using the pulse as follows: The Dirac delta function There is a function called the pulse: { if t > Π(t) = 2 otherwise. Note that the area of the pulse is one. The Dirac delta function (a.k.a. the impulse) can be defined using the

More information

The Dirac δ-function

The Dirac δ-function The Dirac δ-function Elias Kiritsis Contents 1 Definition 2 2 δ as a limit of functions 3 3 Relation to plane waves 5 4 Fourier integrals 8 5 Fourier series on the half-line 9 6 Gaussian integrals 11 Bibliography

More information

Exam TMA4120 MATHEMATICS 4K. Monday , Time:

Exam TMA4120 MATHEMATICS 4K. Monday , Time: Exam TMA4 MATHEMATICS 4K Monday 9.., Time: 9 3 English Hjelpemidler (Kode C): Bestemt kalkulator (HP 3S eller Citizen SR-7X), Rottmann: Matematisk formelsamling Problem. a. Determine the value ( + i) 6

More information

be the set of complex valued 2π-periodic functions f on R such that

be the set of complex valued 2π-periodic functions f on R such that . Fourier series. Definition.. Given a real number P, we say a complex valued function f on R is P -periodic if f(x + P ) f(x) for all x R. We let be the set of complex valued -periodic functions f on

More information

GATE EE Topic wise Questions SIGNALS & SYSTEMS

GATE EE Topic wise Questions SIGNALS & SYSTEMS www.gatehelp.com GATE EE Topic wise Questions YEAR 010 ONE MARK Question. 1 For the system /( s + 1), the approximate time taken for a step response to reach 98% of the final value is (A) 1 s (B) s (C)

More information

A review: The Laplacian and the d Alembertian. j=1

A review: The Laplacian and the d Alembertian. j=1 Chapter One A review: The Laplacian and the d Alembertian 1.1 THE LAPLACIAN One of the main goals of this course is to understand well the solution of wave equation both in Euclidean space and on manifolds

More information

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series

3 rd class Mech. Eng. Dept. hamdiahmed.weebly.com Fourier Series Definition 1 Fourier Series A function f is said to be piecewise continuous on [a, b] if there exists finitely many points a = x 1 < x 2

More information

Linear DifferentiaL Equation

Linear DifferentiaL Equation Linear DifferentiaL Equation Massoud Malek The set F of all complex-valued functions is known to be a vector space of infinite dimension. Solutions to any linear differential equations, form a subspace

More information

Ma 221 Final Exam Solutions 5/14/13

Ma 221 Final Exam Solutions 5/14/13 Ma 221 Final Exam Solutions 5/14/13 1. Solve (a) (8 pts) Solution: The equation is separable. dy dx exy y 1 y0 0 y 1e y dy e x dx y 1e y dy e x dx ye y e y dy e x dx ye y e y e y e x c The last step comes

More information