The Fourier Transform Method

Size: px
Start display at page:

Download "The Fourier Transform Method"

Transcription

1 The Fourier Transform Method R. C. Trinity University Partial Differential Equations April 22, 2014

2 Recall The Fourier transform The Fourier transform of a piecewise smooth f L 1 (R) is ˆf(ω) = F(f)(ω) = 1 f(x)e iωx dx, and f can be recovered from ˆf via the inverse Fourier transform Remarks: f(x) = F 1 (ˆf)(x) = 1 ˆf(ω)e iωx dω. See Appendix B1 for a table of Fourier transform pairs. The Fourier transform can help solve boundary value problems with unbounded domains.

3 Fourier transforms of two-variable functions If u(x,t) is defined for < x <, we define its Fourier transform in x to be û(ω,t) = F(u(x,t))(ω) = 1 u(x,t)e iωx dx. Because the Fourier transform treats t as a constant, we have ( n ) u F x n = (iω) n F(u) = (iω) n û and ( n ) u F t n = 1 = n t n ( 1 n u t n(x,t)e iωx dx u(x,t)e iωx dx ) = n t nf(u) = n û t n.

4 Example Solve the 1-D heat equation on an infinite rod, u t = c 2 u xx, < x <, t > 0, u(x,0) = f(x). We take the Fourier transform (in x) on both sides to get û t = c 2 (iω) 2 û = c 2 ω 2 û û(ω,0) = ˆf(ω). Since there is only a t derivative, we solve as though ω were a constant: û(ω,t) = A(ω)e c2 ω 2 t ˆf(ω) = û(ω,0) = A(ω).

5 To solve for u, we invert the Fourier transform, obtaining u(x,t) = 1 = 1 û(ω,t)e iωx dω ˆf(ω)e c2 ω 2t e iωx dω. This expresses the solution in terms of the Fourier transform of the initial temperature distribution f(x). Remark: By writing ˆf as an integral, reversing the order of integration, and using the (inverse) Fourier transform of e c2 ω 2t, one can show that in fact u(x,t) = 1 2c πt f(s)e (x s)2 /4c 2t ds.

6 Example Solve the boundary value problem u t = tu xx, < x <, t > 0, u(x,0) = f(x), which models the temperature in an infinitely long rod with variable thermal diffusivity. Taking the Fourier transform (in x) on both sides yields û t = t(iω) 2 û = tω 2 û, û(ω,0) = ˆf(ω). The ODE in t is separable, with solution û(ω,t) = A(ω)e t2 ω 2 /2 ˆf(ω) = û(ω,0) = A(ω).

7 As before, Fourier inversion gives u(x,t) = 1 ˆf(ω)e t2 ω 2 /2 e iωx dω. In comparison with the preceding example, this decays more rapidly as t increases. This is is physically reasonable, since the thermal diffusivity is increasing with t. Remark: Notice that this is the solution of the previous example, with t 2 /2 replacing c 2 t. Using the previous remark, this means u(x,t) = 1 t f(s)e (x s)2 /2t 2 ds.

8 Example Solve the third order mixed derivative boundary value problem u tt = u xxt, < x <, t > 0, u(x,0) = f(x), u t (x,0) = g(x). Taking the Fourier transform (in x) on both sides yields û tt = (iω) 2 û t = ω 2 û t, û(ω,0) = ˆf(ω), û t (ω,0) = ĝ(ω) Solving the ODE it t for û t gives û t (ω,t) = A(ω)e ω2 t û(ω,t) = A(ω) ω 2 e ω2t +B(ω) = A(ω)e ω2t +B(ω).

9 Imposing the initial conditions we find that ˆf(ω) = û(ω,0) = A(ω)+B(ω) ĝ(ω) = û t (ω,0) = ω 2 A(ω) A(ω) = ĝ(ω) B(ω) = ω 2 ˆf(ω)+ ĝ(ω) ω 2. Plugging these into û and applying Fourier inversion yields u(x,t) = 1 ( ĝ(ω) ω 2 e ω2t + ˆf(ω)+ ĝ(ω) ) ω 2 e iωx dω = 1 ( ˆf(ω)+ ĝ(ω) ) ω 2 (1 e ω2t ) e iωx dω = f(x)+ 1 ĝ(ω) ω 2 (1 e ω2t )e iωx dω.

10 Example Solve the boundary value problem t 2 u x u t = 0, < x <, t > 0, u(x,0) = f(x), and express the solution explicitly in terms of f. Taking the Fourier transform (in x) on both sides yields t 2 (iω)û û t = 0, û(ω,0) = ˆf(ω). The ODE in t is separable, with solution û(ω,t) = A(ω)e it3 ω/3 ˆf(ω) = û(ω,0) = A(ω).

11 Using Fourier inversion leads to u(x,t) = 1 = 1 = f (x + t3 3 ˆf(ω)e it3 ω/3 e iωx dω ˆf(ω)e iω(x+t3 /3) dω ). Remark: This particular problem is amenable to the method of characteristics, although the Fourier transform method may seem somewhat more straightforward.

12 Example Solve the Dirichlet problem in the upper half-plane 2 u = u xx +u yy = 0, < x <, y > 0, u(x,0) = f(x), which models the steady state temperature in a semi-infinite plate. Taking the Fourier transform (in x) on both sides yields (iω) 2 û +û yy = û yy ω 2 û = 0, û(ω,0) = ˆf(ω). The ODE in y has characteristic equation r 2 ω 2 = 0 r = ±ω û(ω,y) = A(ω)e ωy +B(ω)e ωy.

13 We now require that û(ω,y) remain bounded as y. Consequently, } ω > 0 A(ω) = 0 û(ω,y) = C(ω)e y ω ω < 0 B(ω) = 0 Fourier inversion then gives the result u(x,y) = 1 = 1 ˆf(ω) = û(ω,0) = C(ω) ˆf(ω)e y ω e iωx dω f(s)e iω(s x) ds e y ω dω }{{} sub. z=s x = 1 f(x +z)e iωz dz e y ω dω.

14 Now reverse the order of integration to obtain u(x,y) = 1 = 1 f(x +z) e y ω e iωz dωdz f(x +z)f ω (e y ω )(z)dz, where we have written F ω to indicate the Fourier transform in ω. Recall that 2 F(e x 1 ) = π 1+ω 2 F(g(ax)) = 1 ( ω ) a ĝ a F(e a x ) = 2 π a a 2 +ω 2.

15 Setting a = y and ω = z, it finally follows that u(x,y) = y π f(x +z) y 2 +z 2 dz }{{} sub. s=x+z = y π which is known as the Poisson integral formula. f(s) y 2 +(x s) 2 ds, Remark: The simplification technique above can be generalized by introducing the convolution of functions g and h: (g h)(x) = 1 See Sections 7.2, 7.4 and 7.5. g(x t)h(t)dt.

1 From Fourier Series to Fourier transform

1 From Fourier Series to Fourier transform Differential Equations 2 Fall 206 The Fourier Transform From Fourier Series to Fourier transform Recall: If fx is defined and piecewise smooth in the interval [, ] then we can write where fx = a n = b

More information

Fourier transforms. R. C. Daileda. Partial Differential Equations April 17, Trinity University

Fourier transforms. R. C. Daileda. Partial Differential Equations April 17, Trinity University The Fourier Transform R. C. Trinity University Partial Differential Equations April 17, 214 The Fourier series representation For periodic functions Recall: If f is a 2p-periodic (piecewise smooth) function,

More information

1 The Complex Fourier Series

1 The Complex Fourier Series The Complex Fourier Series Adding Complexity to life The complex Fourier series is in some ways a superior product, at least for those people who are not terrified by complex numbers. Suppose fx) is a

More information

sech(ax) = 1 ch(x) = 2 e x + e x (10) cos(a) cos(b) = 2 sin( 1 2 (a + b)) sin( 1 2

sech(ax) = 1 ch(x) = 2 e x + e x (10) cos(a) cos(b) = 2 sin( 1 2 (a + b)) sin( 1 2 Math 60 43 6 Fourier transform Here are some formulae that you may want to use: F(f)(ω) def = f(x)e iωx dx, F (f)(x) = f(ω)e iωx dω, (3) F(f g) = F(f)F(g), (4) F(e α x ) = α π ω + α, F( α x + α )(ω) =

More information

Outline. Math Partial Differential Equations. Fourier Transforms for PDEs. Joseph M. Mahaffy,

Outline. Math Partial Differential Equations. Fourier Transforms for PDEs. Joseph M. Mahaffy, Outline Math 53 - Partial Differential Equations s for PDEs Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center

More information

MATH FALL 2014 HOMEWORK 10 SOLUTIONS

MATH FALL 2014 HOMEWORK 10 SOLUTIONS Problem 1. MATH 241-2 FA 214 HOMEWORK 1 SOUTIONS Note that u E (x) 1 ( x) is an equilibrium distribution for the homogeneous pde that satisfies the given boundary conditions. We therefore want to find

More information

Applied/Numerical Analysis Qualifying Exam

Applied/Numerical Analysis Qualifying Exam Applied/Numerical Analysis Qualifying Exam August 13, 2011 Cover Sheet Applied Analysis Part Policy on misprints: The qualifying exam committee tries to proofread exams as carefully as possible. Nevertheless,

More information

M412 Assignment 9 Solutions

M412 Assignment 9 Solutions M4 Assignment 9 Solutions. [ pts] Use separation of variables to show that solutions to the quarter-plane problem can be written in the form u t u xx ; t>,

More information

MATH 3150: PDE FOR ENGINEERS FINAL EXAM (VERSION D) 1. Consider the heat equation in a wire whose diffusivity varies over time: u k(t) 2 x 2

MATH 3150: PDE FOR ENGINEERS FINAL EXAM (VERSION D) 1. Consider the heat equation in a wire whose diffusivity varies over time: u k(t) 2 x 2 MATH 35: PDE FOR ENGINEERS FINAL EXAM (VERSION D). Consider the heat equation in a wire whose diffusivity varies over time: u t = u k(t) x where k(t) is some positive function of time. Assume the wire

More information

Lecture 4: Fourier Transforms.

Lecture 4: Fourier Transforms. 1 Definition. Lecture 4: Fourier Transforms. We now come to Fourier transforms, which we give in the form of a definition. First we define the spaces L 1 () and L 2 (). Definition 1.1 The space L 1 ()

More information

Functions of a Complex Variable (S1) Lecture 11. VII. Integral Transforms. Integral transforms from application of complex calculus

Functions of a Complex Variable (S1) Lecture 11. VII. Integral Transforms. Integral transforms from application of complex calculus Functions of a Complex Variable (S1) Lecture 11 VII. Integral Transforms An introduction to Fourier and Laplace transformations Integral transforms from application of complex calculus Properties of Fourier

More information

Final Examination Solutions

Final Examination Solutions Math. 42 Fulling) December 22 Final Examination Solutions Calculators may be used for simple arithmetic operations only! Laplacian operator in polar coordinates: Some possibly useful information 2 u =

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Ryan C. Trinity University Partial Differential Equations Lecture 1 Ordinary differential equations (ODEs) These are equations of the form where: F(x,y,y,y,y,...)

More information

Lecture 9 February 2, 2016

Lecture 9 February 2, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winter 26 Elements of Modern Signal Processing Lecture 9 February 2, 26 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long, Edited by E. Bates Outline Agenda:

More information

Examination paper for TMA4122/TMA4123/TMA4125/TMA4130 Matematikk 4M/N

Examination paper for TMA4122/TMA4123/TMA4125/TMA4130 Matematikk 4M/N Department of Mathematical Sciences Examination paper for TMA4122/TMA4123/TMA4125/TMA4130 Matematikk 4M/N Academic contact during examination: Markus Grasmair Phone: 97 58 04 35 Code C): Basic calculator.

More information

λ n = L φ n = π L eınπx/l, for n Z

λ n = L φ n = π L eınπx/l, for n Z Chapter 32 The Fourier Transform 32. Derivation from a Fourier Series Consider the eigenvalue problem y + λy =, y( L = y(l, y ( L = y (L. The eigenvalues and eigenfunctions are ( nπ λ n = L 2 for n Z +

More information

MAT 372 K.T.D.D. Final Sınavın Çözümleri N. Course. Question 1 (Canonical Forms). Consider the second order partial differential equation

MAT 372 K.T.D.D. Final Sınavın Çözümleri N. Course. Question 1 (Canonical Forms). Consider the second order partial differential equation OKAN ÜNİVERSİTESİ FEN EDEBİYAT FAKÜTESİ MATEMATİK BÖÜMÜ 1.5. MAT 7 K.T.D.D. Final Sınavın Çözümleri N. Course Question 1 (Canonical Forms). Consider the second order partial differential equation (sin

More information

The Central Limit Theorem

The Central Limit Theorem The Central Limit Theorem (A rounding-corners overiew of the proof for a.s. convergence assuming i.i.d.r.v. with 2 moments in L 1, provided swaps of lim-ops are legitimate) If {X k } n k=1 are i.i.d.,

More information

A sufficient condition for the existence of the Fourier transform of f : R C is. f(t) dt <. f(t) = 0 otherwise. dt =

A sufficient condition for the existence of the Fourier transform of f : R C is. f(t) dt <. f(t) = 0 otherwise. dt = Fourier transform Definition.. Let f : R C. F [ft)] = ˆf : R C defined by The Fourier transform of f is the function F [ft)]ω) = ˆfω) := ft)e iωt dt. The inverse Fourier transform of f is the function

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

4.1. Fourier integral transform (Continued) Definition. For any f(x) L 1 (IR 1 ), the function. e iµx f(x)dx

4.1. Fourier integral transform (Continued) Definition. For any f(x) L 1 (IR 1 ), the function. e iµx f(x)dx 4.. Fourier integral transform (Continued) Definition. For any f(x) L (IR ), the function f (µ) = e iµx f(x)dx is called the inverse Fourier transform of f(x). Note: I do not know how to type set the wedge

More information

12.7 Heat Equation: Modeling Very Long Bars.

12.7 Heat Equation: Modeling Very Long Bars. 568 CHAP. Partial Differential Equations (PDEs).7 Heat Equation: Modeling Very Long Bars. Solution by Fourier Integrals and Transforms Our discussion of the heat equation () u t c u x in the last section

More information

Some Aspects of Solutions of Partial Differential Equations

Some Aspects of Solutions of Partial Differential Equations Some Aspects of Solutions of Partial Differential Equations K. Sakthivel Department of Mathematics Indian Institute of Space Science & Technology(IIST) Trivandrum - 695 547, Kerala Sakthivel@iist.ac.in

More information

EXAMINATION: MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS

EXAMINATION: MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS EXAMINATION: MATHEMATICAL TECHNIQUES FOR IMAGE ANALYSIS Course code: 8D Date: Thursday April 8 th, Time: 4h 7h Place: AUD 3 Read this first! Write your name and student identification number on each paper

More information

f(s) e -i n π s/l d s

f(s) e -i n π s/l d s Pointwise convergence of complex Fourier series Let f(x) be a periodic function with period l defined on the interval [,l]. The complex Fourier coefficients of f( x) are This leads to a Fourier series

More information

Math 241 Final Exam Spring 2013

Math 241 Final Exam Spring 2013 Name: Math 241 Final Exam Spring 213 1 Instructor (circle one): Epstein Hynd Wong Please turn off and put away all electronic devices. You may use both sides of a 3 5 card for handwritten notes while you

More information

DISCRETE FOURIER TRANSFORM

DISCRETE FOURIER TRANSFORM DD2423 Image Processing and Computer Vision DISCRETE FOURIER TRANSFORM Mårten Björkman Computer Vision and Active Perception School of Computer Science and Communication November 1, 2012 1 Terminology:

More information

Traffic flow problems. u t + [uv(u)] x = 0. u 0 x > 1

Traffic flow problems. u t + [uv(u)] x = 0. u 0 x > 1 The flow of cars is modelled by the PDE Traffic flow problems u t + [uvu)] x = 1. If vu) = 1 u and x < a) ux, ) = u x 2 x 1 u x > 1 b) ux, ) = u e x, where < u < 1, determine when and where a shock first

More information

Last name: name: 1. (B A A B)dx = (A B) = (A B) nds. which implies that B Adx = A Bdx + (A B) nds.

Last name: name: 1. (B A A B)dx = (A B) = (A B) nds. which implies that B Adx = A Bdx + (A B) nds. Last name: name: Notes, books, and calculators are not authorized. Show all your work in the blank space you are given on the exam sheet. Answers with no justification will not be graded. Question : Let

More information

MATH 3150: PDE FOR ENGINEERS FINAL EXAM (VERSION A)

MATH 3150: PDE FOR ENGINEERS FINAL EXAM (VERSION A) MAH 35: PDE FOR ENGINEERS FINAL EXAM VERSION A). Draw the graph of 2. y = tan x labelling all asymptotes and zeros. Include at least 3 periods in your graph. What is the period of tan x? See figure. Asymptotes

More information

Spectrum of Fractal Interpolation Functions

Spectrum of Fractal Interpolation Functions Spectrum of Fractal Interpolation Functions ikolaos Vasiloglou, Member, IEEE and Petros Maragos, Fellow, IEEE June 8, Abstract In this paper we compute the Fourier spectrum of the Fractal Interpolation

More information

NONLOCAL DIFFUSION EQUATIONS

NONLOCAL DIFFUSION EQUATIONS NONLOCAL DIFFUSION EQUATIONS JULIO D. ROSSI (ALICANTE, SPAIN AND BUENOS AIRES, ARGENTINA) jrossi@dm.uba.ar http://mate.dm.uba.ar/ jrossi 2011 Non-local diffusion. The function J. Let J : R N R, nonnegative,

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

The Heat Equation John K. Hunter February 15, The heat equation on a circle

The Heat Equation John K. Hunter February 15, The heat equation on a circle The Heat Equation John K. Hunter February 15, 007 The heat equation on a circle We consider the diffusion of heat in an insulated circular ring. We let t [0, ) denote time and x T a spatial coordinate

More information

Math 5588 Final Exam Solutions

Math 5588 Final Exam Solutions Math 5588 Final Exam Solutions Prof. Jeff Calder May 9, 2017 1. Find the function u : [0, 1] R that minimizes I(u) = subject to u(0) = 0 and u(1) = 1. 1 0 e u(x) u (x) + u (x) 2 dx, Solution. Since the

More information

Final Examination Linear Partial Differential Equations. Matthew J. Hancock. Feb. 3, 2006

Final Examination Linear Partial Differential Equations. Matthew J. Hancock. Feb. 3, 2006 Final Examination 8.303 Linear Partial ifferential Equations Matthew J. Hancock Feb. 3, 006 Total points: 00 Rules [requires student signature!]. I will use only pencils, pens, erasers, and straight edges

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 Lecture Notes 8 - PDEs Page 8.01 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

MATHS & STATISTICS OF MEASUREMENT

MATHS & STATISTICS OF MEASUREMENT Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship MATHS & STATISTICS OF MEASUREMENT For Second-Year Physics Students Tuesday,

More information

How many initial conditions are required to fully determine the general solution to a 2nd order linear differential equation?

How many initial conditions are required to fully determine the general solution to a 2nd order linear differential equation? How many initial conditions are required to fully determine the general solution to a 2nd order linear differential equation? (A) 0 (B) 1 (C) 2 (D) more than 2 (E) it depends or don t know How many of

More information

The first order quasi-linear PDEs

The first order quasi-linear PDEs Chapter 2 The first order quasi-linear PDEs The first order quasi-linear PDEs have the following general form: F (x, u, Du) = 0, (2.1) where x = (x 1, x 2,, x 3 ) R n, u = u(x), Du is the gradient of u.

More information

MATH 220 solution to homework 5

MATH 220 solution to homework 5 MATH 220 solution to homework 5 Problem. (i Define E(t = k(t + p(t = then E (t = 2 = 2 = 2 u t u tt + u x u xt dx u 2 t + u 2 x dx, u t u xx + u x u xt dx x [u tu x ] dx. Because f and g are compactly

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 ecture Notes 8 - PDEs Page 8.0 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform DD2423 Image Analysis and Computer Vision Mårten Björkman Computational Vision and Active Perception School of Computer Science and Communication November 13, 2013 Mårten Björkman

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

Fourier Series Example

Fourier Series Example Fourier Series Example Let us compute the Fourier series for the function on the interval [ π,π]. f(x) = x f is an odd function, so the a n are zero, and thus the Fourier series will be of the form f(x)

More information

Jim Lambers ENERGY 281 Spring Quarter Lecture 3 Notes

Jim Lambers ENERGY 281 Spring Quarter Lecture 3 Notes Jim Lambers ENERGY 8 Spring Quarter 7-8 Lecture 3 Notes These notes are based on Rosalind Archer s PE8 lecture notes, with some revisions by Jim Lambers. Introduction The Fourier transform is an integral

More information

The One-Dimensional Heat Equation

The One-Dimensional Heat Equation The One-Dimensional Heat Equation R. C. Trinity University Partial Differential Equations February 24, 2015 Introduction The heat equation Goal: Model heat (thermal energy) flow in a one-dimensional object

More information

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes

n 1 f n 1 c 1 n+1 = c 1 n $ c 1 n 1. After taking logs, this becomes Root finding: 1 a The points {x n+1, }, {x n, f n }, {x n 1, f n 1 } should be co-linear Say they lie on the line x + y = This gives the relations x n+1 + = x n +f n = x n 1 +f n 1 = Eliminating α and

More information

Take Home Exam I Key

Take Home Exam I Key Take Home Exam I Key MA 336 1. (5 points) Read sections 2.1 to 2.6 in the text (which we ve already talked about in class), and the handout on Solving the Nonhomogeneous Heat Equation. Solution: You did

More information

Partial Differential Equations Separation of Variables. 1 Partial Differential Equations and Operators

Partial Differential Equations Separation of Variables. 1 Partial Differential Equations and Operators PDE-SEP-HEAT-1 Partial Differential Equations Separation of Variables 1 Partial Differential Equations and Operators et C = C(R 2 ) be the collection of infinitely differentiable functions from the plane

More information

Differential equations, comprehensive exam topics and sample questions

Differential equations, comprehensive exam topics and sample questions Differential equations, comprehensive exam topics and sample questions Topics covered ODE s: Chapters -5, 7, from Elementary Differential Equations by Edwards and Penney, 6th edition.. Exact solutions

More information

Math Assignment 14

Math Assignment 14 Math 2280 - Assignment 14 Dylan Zwick Spring 2014 Section 9.5-1, 3, 5, 7, 9 Section 9.6-1, 3, 5, 7, 14 Section 9.7-1, 2, 3, 4 1 Section 9.5 - Heat Conduction and Separation of Variables 9.5.1 - Solve the

More information

Fourier Series. Suppose f : [0, 2π] C and: f(x) = n=0. a n cos nx. How could we find the a n if we know f? Having a look at cos :

Fourier Series. Suppose f : [0, 2π] C and: f(x) = n=0. a n cos nx. How could we find the a n if we know f? Having a look at cos : Fourier Series Suppose f : [0, 2π] C and: f(x) = n=0 a n cos nx How could we find the a n if we know f? Having a look at cos : cos(0x) cos(1x) cos(2x) Average 1 Average 0 Average 0 2π 0 f(x) dx = n=0 2π

More information

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering Department of Mathematics and Statistics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4006 SEMESTER: Spring 2011 MODULE TITLE:

More information

Jim Lambers ENERGY 281 Spring Quarter Lecture 5 Notes

Jim Lambers ENERGY 281 Spring Quarter Lecture 5 Notes Jim ambers ENERGY 28 Spring Quarter 27-8 ecture 5 Notes These notes are based on Rosalind Archer s PE28 lecture notes, with some revisions by Jim ambers. Fourier Series Recall that in ecture 2, when we

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1

More information

Lecture Notes for Ch 10 Fourier Series and Partial Differential Equations

Lecture Notes for Ch 10 Fourier Series and Partial Differential Equations ecture Notes for Ch 10 Fourier Series and Partial Differential Equations Part III. Outline Pages 2-8. The Vibrating String. Page 9. An Animation. Page 10. Extra Credit. 1 Classic Example I: Vibrating String

More information

ANALYTIC SEMIGROUPS AND APPLICATIONS. 1. Introduction

ANALYTIC SEMIGROUPS AND APPLICATIONS. 1. Introduction ANALYTIC SEMIGROUPS AND APPLICATIONS KELLER VANDEBOGERT. Introduction Consider a Banach space X and let f : D X and u : G X, where D and G are real intervals. A is a bounded or unbounded linear operator

More information

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of,

[2] (a) Develop and describe the piecewise linear Galerkin finite element approximation of, 269 C, Vese Practice problems [1] Write the differential equation u + u = f(x, y), (x, y) Ω u = 1 (x, y) Ω 1 n + u = x (x, y) Ω 2, Ω = {(x, y) x 2 + y 2 < 1}, Ω 1 = {(x, y) x 2 + y 2 = 1, x 0}, Ω 2 = {(x,

More information

The method of lines (MOL) for the diffusion equation

The method of lines (MOL) for the diffusion equation Chapter 1 The method of lines (MOL) for the diffusion equation The method of lines refers to an approximation of one or more partial differential equations with ordinary differential equations in just

More information

17 Source Problems for Heat and Wave IB- VPs

17 Source Problems for Heat and Wave IB- VPs 17 Source Problems for Heat and Wave IB- VPs We have mostly dealt with homogeneous equations, homogeneous b.c.s in this course so far. Recall that if we have non-homogeneous b.c.s, then we want to first

More information

Math Fall 2006 Sample problems for the final exam: Solutions

Math Fall 2006 Sample problems for the final exam: Solutions Mth 42-5 Fll 26 Smple problems for the finl exm: Solutions Any problem my be ltered or replced by different one! Some possibly useful informtion Prsevl s equlity for the complex form of the Fourier series

More information

Fourier Analysis for Engineers

Fourier Analysis for Engineers Fourier Analysis for Engineers M. Behrens January 12, 22 1 Motivation: Finite dimensional vector spaces The periodic theory of Fourier analysis may be likened to the decomposition of an ordinary vector

More information

CS711008Z Algorithm Design and Analysis

CS711008Z Algorithm Design and Analysis CS711008Z Algorithm Design and Analysis Lecture 5 FFT and Divide and Conquer Dongbo Bu Institute of Computing Technology Chinese Academy of Sciences, Beijing, China 1 / 56 Outline DFT: evaluate a polynomial

More information

PHYS 391 Fourier Transform Primer Eric Torrence with modifications by Dean Livelybrooks, March 2014

PHYS 391 Fourier Transform Primer Eric Torrence with modifications by Dean Livelybrooks, March 2014 PHYS 391 Fourier Transform Primer Eric Torrence with modifications by Dean Livelybrooks, March 2014 1 Introduction This document is intended to give you just enough information to follow the discussion

More information

PARTIAL DIFFERENTIAL EQUATIONS (MATH417) SOLUTIONS FOR THE FINAL EXAM

PARTIAL DIFFERENTIAL EQUATIONS (MATH417) SOLUTIONS FOR THE FINAL EXAM PARTIAL DIFFERENTIAL EQUATIONS (MATH417) SOLUTIONS FOR THE FINAL EXAM Problem 1 (1 pts.) Classify each equation as linear homogeneous, linear inhomogeneous, or nonlinear: a) u = u x + x 3 b) u + u c) u

More information

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD

LECTURE 19: SEPARATION OF VARIABLES, HEAT CONDUCTION IN A ROD ECTURE 19: SEPARATION OF VARIABES, HEAT CONDUCTION IN A ROD The idea of separation of variables is simple: in order to solve a partial differential equation in u(x, t), we ask, is it possible to find a

More information

Examination paper for TMA4125 Matematikk 4N

Examination paper for TMA4125 Matematikk 4N Department of Mathematical Sciences Examination paper for TMA45 Matematikk 4N Academic contact during examination: Anne Kværnø a, Louis-Philippe Thibault b Phone: a 9 66 38 4, b 9 3 0 95 Examination date:

More information

Time-Dependent Statistical Mechanics A1. The Fourier transform

Time-Dependent Statistical Mechanics A1. The Fourier transform Time-Dependent Statistical Mechanics A1. The Fourier transform c Hans C. Andersen November 5, 2009 1 Definition of the Fourier transform and its inverse. Suppose F (t) is some function of time. Then its

More information

MATH 220: MIDTERM OCTOBER 29, 2015

MATH 220: MIDTERM OCTOBER 29, 2015 MATH 22: MIDTERM OCTOBER 29, 25 This is a closed book, closed notes, no electronic devices exam. There are 5 problems. Solve Problems -3 and one of Problems 4 and 5. Write your solutions to problems and

More information

6 Non-homogeneous Heat Problems

6 Non-homogeneous Heat Problems 6 Non-homogeneous Heat Problems Up to this point all the problems we have considered for the heat or wave equation we what we call homogeneous problems. This means that for an interval < x < l the problems

More information

Separation of variables

Separation of variables Separation of variables Idea: Transform a PDE of 2 variables into a pair of ODEs Example : Find the general solution of u x u y = 0 Step. Assume that u(x,y) = G(x)H(y), i.e., u can be written as the product

More information

Midterm 2: Sample solutions Math 118A, Fall 2013

Midterm 2: Sample solutions Math 118A, Fall 2013 Midterm 2: Sample solutions Math 118A, Fall 213 1. Find all separated solutions u(r,t = F(rG(t of the radially symmetric heat equation u t = k ( r u. r r r Solve for G(t explicitly. Write down an ODE for

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

Wave Equation With Homogeneous Boundary Conditions

Wave Equation With Homogeneous Boundary Conditions Wave Equation With Homogeneous Boundary Conditions MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 018 Objectives In this lesson we will learn: how to solve the

More information

v(x, 0) = g(x) where g(x) = f(x) U(x). The solution is where b n = 2 g(x) sin(nπx) dx. (c) As t, we have v(x, t) 0 and u(x, t) U(x).

v(x, 0) = g(x) where g(x) = f(x) U(x). The solution is where b n = 2 g(x) sin(nπx) dx. (c) As t, we have v(x, t) 0 and u(x, t) U(x). Problem set 4: Solutions Math 27B, Winter216 1. The following nonhomogeneous IBVP describes heat flow in a rod whose ends are held at temperatures u, u 1 : u t = u xx < x < 1, t > u(, t) = u, u(1, t) =

More information

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs Chapter Two: Numerical Methods for Elliptic PDEs Finite Difference Methods for Elliptic PDEs.. Finite difference scheme. We consider a simple example u := subject to Dirichlet boundary conditions ( ) u

More information

A Motivation for Fourier Analysis in Physics

A Motivation for Fourier Analysis in Physics A Motivation for Fourier Analysis in Physics PHYS 500 - Southern Illinois University November 8, 2016 PHYS 500 - Southern Illinois University A Motivation for Fourier Analysis in Physics November 8, 2016

More information

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx.

Problem set 3: Solutions Math 207B, Winter Suppose that u(x) is a non-zero solution of the eigenvalue problem. (u ) 2 dx, u 2 dx. Problem set 3: Solutions Math 27B, Winter 216 1. Suppose that u(x) is a non-zero solution of the eigenvalue problem u = λu < x < 1, u() =, u(1) =. Show that λ = (u ) 2 dx u2 dx. Deduce that every eigenvalue

More information

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs)

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) 13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) A prototypical problem we will discuss in detail is the 1D diffusion equation u t = Du xx < x < l, t > finite-length rod u(x,

More information

University of Toronto at Scarborough Department of Computer and Mathematical Sciences, Mathematics MAT C46S 2013/14.

University of Toronto at Scarborough Department of Computer and Mathematical Sciences, Mathematics MAT C46S 2013/14. University of Toronto at Scarborough Department of Computer and Mathematical Sciences, Mathematics MAT C46S 213/14 Problem Set #4 Due date: Thursday, March 2, 214 at the beginning of class Part A: 1. 1.

More information

FOURIER TRANSFORMS. 1. Fourier series 1.1. The trigonometric system. The sequence of functions

FOURIER TRANSFORMS. 1. Fourier series 1.1. The trigonometric system. The sequence of functions FOURIER TRANSFORMS. Fourier series.. The trigonometric system. The sequence of functions, cos x, sin x,..., cos nx, sin nx,... is called the trigonometric system. These functions have period π. The trigonometric

More information

Dispersion relations, stability and linearization

Dispersion relations, stability and linearization Dispersion relations, stability and linearization 1 Dispersion relations Suppose that u(x, t) is a function with domain { < x 0}, and it satisfies a linear, constant coefficient partial differential

More information

Wavefield extrapolation via Sturm-Liouville transforms

Wavefield extrapolation via Sturm-Liouville transforms Extrapolation via Sturm-Liouville Wavefield extrapolation via Sturm-Liouville transforms Michael P. Lamoureux, Agnieszka Pawlak and Gary F. Margrave ABSTACT We develop a procedure for building a wavefield

More information

1. Differential Equations (ODE and PDE)

1. Differential Equations (ODE and PDE) 1. Differential Equations (ODE and PDE) 1.1. Ordinary Differential Equations (ODE) So far we have dealt with Ordinary Differential Equations (ODE): involve derivatives with respect to only one variable

More information

Generalized Central Limit Theorem and Extreme Value Statistics

Generalized Central Limit Theorem and Extreme Value Statistics Generalized Central Limit Theorem and Extreme Value Statistics Ariel Amir, 9/2017 Let us consider some distribution P (x) from which we draw x1, x2,..., xn. If the distribution has a finite standard deviation

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Lecture 34. Fourier Transforms

Lecture 34. Fourier Transforms Lecture 34 Fourier Transforms In this section, we introduce the Fourier transform, a method of analyzing the frequency content of functions that are no longer τ-periodic, but which are defined over the

More information

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Math 251 December 14, 2005 Final Exam Name Section There are 10 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning of each question

More information

UNIVERSITY OF MANITOBA

UNIVERSITY OF MANITOBA Question Points Score INSTRUCTIONS TO STUDENTS: This is a 6 hour examination. No extra time will be given. No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic

More information

Numerical Analysis and Methods for PDE I

Numerical Analysis and Methods for PDE I Numerical Analysis and Methods for PDE I A. J. Meir Department of Mathematics and Statistics Auburn University US-Africa Advanced Study Institute on Analysis, Dynamical Systems, and Mathematical Modeling

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

Math 201 Assignment #11

Math 201 Assignment #11 Math 21 Assignment #11 Problem 1 (1.5 2) Find a formal solution to the given initial-boundary value problem. = 2 u x, < x < π, t > 2 u(, t) = u(π, t) =, t > u(x, ) = x 2, < x < π Problem 2 (1.5 5) Find

More information

MATH-UA 263 Partial Differential Equations Recitation Summary

MATH-UA 263 Partial Differential Equations Recitation Summary MATH-UA 263 Partial Differential Equations Recitation Summary Yuanxun (Bill) Bao Office Hour: Wednesday 2-4pm, WWH 1003 Email: yxb201@nyu.edu 1 February 2, 2018 Topics: verifying solution to a PDE, dispersion

More information

Examination paper for TMA4130 Matematikk 4N

Examination paper for TMA4130 Matematikk 4N Department of Mathematical Sciences Examination paper for TMA4130 Matematikk 4N Academic contact during examination: Morten Nome Phone: 90 84 97 83 Examination date: 13 December 2017 Examination time (from

More information

u tt = a 2 u xx u tt = a 2 (u xx + u yy )

u tt = a 2 u xx u tt = a 2 (u xx + u yy ) 10.7 The wave equation 10.7 The wave equation O. Costin: 10.7 1 This equation describes the propagation of waves through a medium: in one dimension, such as a vibrating string u tt = a 2 u xx 1 This equation

More information

CHAPTER 4. Introduction to the. Heat Conduction Model

CHAPTER 4. Introduction to the. Heat Conduction Model A SERIES OF CLASS NOTES FOR 005-006 TO INTRODUCE LINEAR AND NONLINEAR PROBLEMS TO ENGINEERS, SCIENTISTS, AND APPLIED MATHEMATICIANS DE CLASS NOTES 4 A COLLECTION OF HANDOUTS ON PARTIAL DIFFERENTIAL EQUATIONS

More information

f(x) cos dx L L f(x) sin L + b n sin a n cos

f(x) cos dx L L f(x) sin L + b n sin a n cos Chapter Fourier Series and Transforms. Fourier Series et f(x be an integrable functin on [, ]. Then the fourier co-ecients are dened as a n b n f(x cos f(x sin The claim is that the function f then can

More information

f(x)e ikx dx. (19.1) ˆf(k)e ikx dk. (19.2)

f(x)e ikx dx. (19.1) ˆf(k)e ikx dk. (19.2) 9 Fourier transform 9 A first look at the Fourier transform In Math 66 you all studied the Laplace transform, which was used to turn an ordinary differential equation into an algebraic one There are a

More information