Differential equations, comprehensive exam topics and sample questions

Size: px
Start display at page:

Download "Differential equations, comprehensive exam topics and sample questions"

Transcription

1 Differential equations, comprehensive exam topics and sample questions Topics covered ODE s: Chapters -5, 7, from Elementary Differential Equations by Edwards and Penney, 6th edition.. Exact solutions of first and second order ODEs: separable, linear, exact, integrating factor, of form y = F (y, y ) and y = F (x, y ), linear n-th order, variation of parameters. 2. Series solutions: various singularities, method of Frobenius. 3. Laplace transform methods: Table will be given (see attached). Transforms for periodic, functions, step function, and delta functions. 4. Linear systems: exact solutions; fundamental matrix; inhomogeneous systems; stability; phase portraits, classification of equilibria. 5. Stability and phase analysis: equilibria, stability, phase portrait, Hopf bifurcation. PDE s: Chapters 8,9 from Edwards&Penney; Chapters,2,4,5,6, 7, 4. from Partial Differential Equations by Walter Strauss. Derivation of diffusion/heat equation and wave equation 2. Maximum principle 3. Heat and wave equation on entire line; heat kernel 4. Separation of Variables, Strurm-Liouville problems, Eigenfunction Expansions (Chap. 8,9 of E-P or chap 4-5 of Strauss) 5. Method of Characteristics, including nonlinear PDE s and shock formation (chap. 4. from Strauss) 6. Fourier transform, Laplace transform. Vector calculus: see Adams, multivariable calculus.. Divergence, Stokes, Gauss theorems; computing fluxes. 2 Some sample exam questions. Find the general solution to each one the following ODE s: (a) y 6y + 9y = exp( 3x) (b) y + y = tanh(x) (c) y y y y = t (d) y = y2 x 2xy (e) y = yy

2 2. Let M =. (a) Compute exp (tm). (b) Determine the solution to ẏ = My subject to y() = (, 2, ). (c) Determine the general solution to y = My + e t ; y() = (, 2, ). (d) Solve the following initial value problem using the Laplace transform, y + 4y = δ (t π) + δ(t 2π) + δ (t 3π), y () =, y () =. Here δ is the Dirac delta function. Sketch the resulting solution. (e) Use Laplace transform to find the solution to tx (t) + 2x (t) + tx = ; x() =, x () =. (f) Use Laplace transform and the convolution to show that the solution to x + 2x + x = f(t); x() = = x () is given by 3. Consider the Hermite ODE, x(t) = t τe τ f(t τ)dτ. u 2xu + λu =, < x <. () (a) Compute the recursion relation for the power series solution u = a nx n. (b) Show that () has a polynomial solution of degree n whenever λ = 2n. Denote such a solution by H n (x). (c) Show that there exists a function w (x) > such that H n (x) H m (x) w(x) = whenever n m. Find w (x). 4. Consider the ODE system modelling a certain two-species interaction, x = x ( (x + y)) y, x, y. = y (2 (x + y)) Here, x and y represent two competing species. a) Plot the nullclines of the system and find the equilibria points. b) Classify the stability of each of the equilibria and sketch the phase portrait of the system. c) What is the eventual state of the system, in the limit t, if initially x > and y >? 5. Consider the system ẋ = y + µx + xy 2, ẏ = x + µy x 2. a. Analyse the stability of the zero equilibrium and classify any bifurcations that occur as µ is varied. b. Find all equilibria when µ = and classify their stability. c. With µ =, sketch a phase plot diagram, labelling nullclines and equilibrium points. 2

3 6. (a) Let u(x, t) be the vertical displacement of an elastic homogenous string undergoing small transverse vibrations. Carefully derive the wave equation ρu tt = T u xx, where T is the tension magnitude and ρ is its linear density. (b) In the derivation above, you ve neglected the gravity. How does the equation change if you incorporate the gravity acting in the vertical direction? 7. (a) Carefully derive the one-dimensional diffusion equation. (b) Suppose that a pollutant is diffusing in a river. The river moves at speed v from left to right. Derive the PDE describing this situation. 8. Solve the Wave equation u tt = u xx on the entire plane subject to the initial conditions u (x, ) = φ(x), u t (x, ) = where φ(x) is given by, if x < φ(x) =, if x. 9.. Sketch your solution for t =,.5, and.5. (a) State the maximum principle for the Heat equation. (b) Consider the heat equation with drift: u t = u xx + vu x where v is some constant. Does the maximum principle also hold for this PDE? Explain why or why not. (c) Does the maximum principle still hold for the heat equation u t = u xx if = is replaced by? by? (a) What is the general solution to the Wave equation u tt = u xx? What is its solution when the u(x, ) = φ(x) and u t (x, ) = ψ(x)? (b) Consider the PDE 3u tt +u xx 4u xt =. Is it elliptic, parabolic or hyperbolic? Find its general solution. HINT: 3t 2 + x 2 4xt = (x 2t) 2 t 2.. Show that the solution to the problem u t = u xx + f(x, t), u(x, ) = φ(x), u(, t) = h(t), u(, t) = g(t) is unique. 2. A rod is is heated from the right end and cooled at the left end. Initially, the temperature is zero. This situation can be modelled as: (a) Determine u(x, t). u t = u xx ; u(, t) =, u(, t) = u(x, ) =. (b) Let v(x) = u(x, ) = lim t u(x, t). Determine v(x). (c) Show that u(x, t) v(x) for all t >, x (, ) 3

4 3. Let D = (x, y) : y > and x 2 + y 2 < }, be an upper half-disk and suppose that u = inside D and moreover u has the following boundary conditions: u = on the right-bottom boundary y = and x > ; n u = on the left-bottom boundary y = and x < ; u = on the top boundary (x, y) = (cos θ, sin θ). Find the solution for u in terms of an appropriate infinite series. 4. Consider the system u t + (2 u)u x = ; u(x, ) = + tanh(x). (a) Determine the characteristic curves for this ODE. (b) Show that the solution develops a shock and compute the time t = t s at which the shock first occurs. (c) Sketch the solution profile u(x, t) for t =,.5,, Consider the PDE u t uu x = subject to the initial condition u(x, ) = φ(x) where φ(x) is a tent function given by x, x < φ(x) =, x. (a) Solve for the characteristics and sketch them. (b) Sketch the solution for t =,.5,,.5. (c) Does the solution exhibit a shock? If yes, determine t shock, the time when the shock first occurs. 6. Solve the PDE u t + 2xu x = t subject to the condition u(x, ) = x The temperature u(x, t) in a rod of length L satisfies u t = u xx with boundary conditions u x (, t) =, u (L, t) = and initial conditions u (x, ) = x. a) What is the steady state solution? b) Determine an expansion for u (x, t) in terms of appropriate eigenfunctions. Evaluate all coefficients explicitly. 8. Let λ < λ 2 < be the eigenvalues and y, y 2,... the corresponding eigenfunctions of the following boundary value problem on [, ]: y + λy =, y () = = 2y () + y () a) Derive an implicit formula for λ. Give an approximate formula for λ n for large n. b) Obtain a formula for the eigenfunctions y n. What orthogonality relation do they satisfy? c) Consider the boundary value problem u + µu = f(x) with u () = = 2u () + u (), µ >. Suppose that f can be expanded in terms of y n (x) as f = c n y n (x) for some coefficients c n. Derive the solution to this problem in terms of the eigenfunctions y n. 9. Solve the following problem for the Laplace s equation on the exterior of the unit disk: u rr + r u r + r u 2 θθ =, < θ 2π, r > u r (, θ) = 2 cos θ 3 sin 3θ u (r, θ) is bounded for r. 4

5 2. The telegraph equation is given by c 2 2 u x 2 = 2 u t 2 + 2b u t + au. u(x, ) = f(x), u (x, ) = g(x), t < x <, t >. (a) Set U(ω, t) = 2π u(x, t)eiωx dx and solve for U. (b) In the special case where b 2 = a solve for u(x, t). You may find the following Fourier transforms useful for this problem Where, 2π eiωa = F(δ(x a)), sin(aω) = F(v(x)), π ω cos(ωa) = F((δ(x + a) + δ(x a))) π v(x) = F(f(x)) = 2π L(f(t)) = if x a if x a f(x)e iωx dx f(t)e st dt 2. Let Ω be the top half of unit disk, Ω = (r cos θ, r sin θ) : < r <, θ (, π)}. Consider the following Green s function: 22. G = δ( x x ) inside Ω n G = on bottom boundary of Ω (y = ) G = on top (circle) boundary of Ω (r = ) (a) Write down an explicit formula for G. (hint: try the method of images) (b) Solve the following problem in terms of the Green s function you just found: u = inside Ω n u = f(x) on bottom boundary of Ω (y = ) u = g(θ) on top (circle) boundary of Ω (r = ) Simplify your final answer as much as you can. (a) Suppose that u = for all x R 2. Show that for any smooth domain D, and for any x D, we have: u(x ) = n ln x x u(x) ln x x n u(x)} ds(x). 2π D 5

6 (b) Deduce from part (a) that u(, ) = 2π 2π u(cos(θ), sin (θ))dθ. 23. Consider the PDE u t = u xx subject to initial condition u(x, ) = cos(x). By solving this PDE in two distinct ways, find the value of e ay2 cos(y)dy with a >. 24. (a) Briefly state Stokes, Green and Divergence theorems. (b) A smooth surface S lies above the plane z = and has as its boundary the circle x 2 + y 2 = 4y in the plane z =. This circle is also the boundary of a disk D in that plane. The volume of the 3-dimensional region R bounded by S and D is cubic units. Find the flux of F (x, y, z) = (x + x 2 y)i + (y xy 2 )j + (z + 2x + 3y)k through S in the direction outward from R. (c) Let F = 2xzi + e z2 j+ ( x 2 x cos (y) ) k. Using one of the three theorems stated in Part a, find F dr where c is the boundary of the unit sphere intersected with the xz plane, traversed c in the couterclockwise direction when viewed from (,, ). (d) Find the flux of F = xy 2 i + x 2 yj + k outward through the hemispherical surface x 2 + y 2 + z 2 = 4, z. Hint: You can use the Divergence theorem to simplify the computation. 6

7 Table of Laplace Transforms (will be given during the exam) f(t) = L F (s)} F (s) = Lf(t)} e at s a, t n n positive integer t p, p > sin(at) cos(at) t n e at, n positive integer H(t) s, s > s > a n! s n+, s > Γ(p + ) s p+, s > a s 2 + a 2, s > s s 2 + a 2, s > n! (s a) n+, s > a e cs s, s > H(t)f(t c) e cs F (s) e ct f(t) F (s c) t f(ct) f(t τ)g(τ) dτ F ( s ) c F, c > c (s)g(s) δ(t c) e cs f (n) (t) s n F (s) s n f() f (n ) () H(t) is the Heaviside function 7

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 14, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 14, 2015 FORM A Name: Student Number: Section: This exam has 11 questions for a total of 150 points. Show all your work! In order to obtain full credit for partial credit

More information

MATH 251 Final Examination May 3, 2017 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 3, 2017 FORM A. Name: Student Number: Section: MATH 5 Final Examination May 3, 07 FORM A Name: Student Number: Section: This exam has 6 questions for a total of 50 points. In order to obtain full credit for partial credit problems, all work must be

More information

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2015 FORM A. Name: Student Number: Section: MATH 5 Final Examination December 6, 5 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 5 points. In order to obtain full credit for partial credit problems, all work must

More information

MATH 251 Final Examination December 16, 2014 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 16, 2014 FORM A. Name: Student Number: Section: MATH 2 Final Examination December 6, 204 FORM A Name: Student Number: Section: This exam has 7 questions for a total of 0 points. In order to obtain full credit for partial credit problems, all work must

More information

McGill University April 20, Advanced Calculus for Engineers

McGill University April 20, Advanced Calculus for Engineers McGill University April 0, 016 Faculty of Science Final examination Advanced Calculus for Engineers Math 64 April 0, 016 Time: PM-5PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer Student

More information

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Math 251 December 14, 2005 Final Exam Name Section There are 10 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning of each question

More information

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section:

MATH 251 Final Examination May 4, 2015 FORM A. Name: Student Number: Section: MATH 251 Final Examination May 4, 2015 FORM A Name: Student Number: Section: This exam has 16 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work must

More information

Homework for Math , Fall 2016

Homework for Math , Fall 2016 Homework for Math 5440 1, Fall 2016 A. Treibergs, Instructor November 22, 2016 Our text is by Walter A. Strauss, Introduction to Partial Differential Equations 2nd ed., Wiley, 2007. Please read the relevant

More information

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt

Math 251 December 14, 2005 Answer Key to Final Exam. 1 18pt 2 16pt 3 12pt 4 14pt 5 12pt 6 14pt 7 14pt 8 16pt 9 20pt 10 14pt Total 150pt Name Section Math 51 December 14, 5 Answer Key to Final Exam There are 1 questions on this exam. Many of them have multiple parts. The point value of each question is indicated either at the beginning

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

FINAL EXAM, MATH 353 SUMMER I 2015

FINAL EXAM, MATH 353 SUMMER I 2015 FINAL EXAM, MATH 353 SUMMER I 25 9:am-2:pm, Thursday, June 25 I have neither given nor received any unauthorized help on this exam and I have conducted myself within the guidelines of the Duke Community

More information

MA Chapter 10 practice

MA Chapter 10 practice MA 33 Chapter 1 practice NAME INSTRUCTOR 1. Instructor s names: Chen. Course number: MA33. 3. TEST/QUIZ NUMBER is: 1 if this sheet is yellow if this sheet is blue 3 if this sheet is white 4. Sign the scantron

More information

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012

MATH 131P: PRACTICE FINAL SOLUTIONS DECEMBER 12, 2012 MATH 3P: PRACTICE FINAL SOLUTIONS DECEMBER, This is a closed ook, closed notes, no calculators/computers exam. There are 6 prolems. Write your solutions to Prolems -3 in lue ook #, and your solutions to

More information

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE 1. Linear Partial Differential Equations A partial differential equation (PDE) is an equation, for an unknown function u, that

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

Math 46, Applied Math (Spring 2008): Final

Math 46, Applied Math (Spring 2008): Final Math 46, Applied Math (Spring 2008): Final 3 hours, 80 points total, 9 questions, roughly in syllabus order (apart from short answers) 1. [16 points. Note part c, worth 7 points, is independent of the

More information

MATH 251 Final Examination August 10, 2011 FORM A. Name: Student Number: Section:

MATH 251 Final Examination August 10, 2011 FORM A. Name: Student Number: Section: MATH 251 Final Examination August 10, 2011 FORM A Name: Student Number: Section: This exam has 10 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all work

More information

Traffic flow problems. u t + [uv(u)] x = 0. u 0 x > 1

Traffic flow problems. u t + [uv(u)] x = 0. u 0 x > 1 The flow of cars is modelled by the PDE Traffic flow problems u t + [uvu)] x = 1. If vu) = 1 u and x < a) ux, ) = u x 2 x 1 u x > 1 b) ux, ) = u e x, where < u < 1, determine when and where a shock first

More information

UNIVERSITY OF MANITOBA

UNIVERSITY OF MANITOBA Question Points Score INSTRUCTIONS TO STUDENTS: This is a 6 hour examination. No extra time will be given. No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic

More information

MATH 220: Problem Set 3 Solutions

MATH 220: Problem Set 3 Solutions MATH 220: Problem Set 3 Solutions Problem 1. Let ψ C() be given by: 0, x < 1, 1 + x, 1 < x < 0, ψ(x) = 1 x, 0 < x < 1, 0, x > 1, so that it verifies ψ 0, ψ(x) = 0 if x 1 and ψ(x)dx = 1. Consider (ψ j )

More information

Partial Differential Equations for Engineering Math 312, Fall 2012

Partial Differential Equations for Engineering Math 312, Fall 2012 Partial Differential Equations for Engineering Math 312, Fall 2012 Jens Lorenz July 17, 2012 Contents Department of Mathematics and Statistics, UNM, Albuquerque, NM 87131 1 Second Order ODEs with Constant

More information

MATH-UA 263 Partial Differential Equations Recitation Summary

MATH-UA 263 Partial Differential Equations Recitation Summary MATH-UA 263 Partial Differential Equations Recitation Summary Yuanxun (Bill) Bao Office Hour: Wednesday 2-4pm, WWH 1003 Email: yxb201@nyu.edu 1 February 2, 2018 Topics: verifying solution to a PDE, dispersion

More information

MATH 251 Examination II April 3, 2017 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 3, 2017 FORM A. Name: Student Number: Section: MATH 251 Examination II April 3, 2017 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

Introduction to Partial Differential Equations

Introduction to Partial Differential Equations Introduction to Partial Differential Equations Philippe B. Laval KSU Current Semester Philippe B. Laval (KSU) Key Concepts Current Semester 1 / 25 Introduction The purpose of this section is to define

More information

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH College of Informatics and Electronics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MS425 SEMESTER: Autumn 25/6 MODULE TITLE: Applied Analysis DURATION OF EXAMINATION:

More information

Degree Master of Science in Mathematical Modelling and Scientific Computing Mathematical Methods I Thursday, 12th January 2012, 9:30 a.m.- 11:30 a.m.

Degree Master of Science in Mathematical Modelling and Scientific Computing Mathematical Methods I Thursday, 12th January 2012, 9:30 a.m.- 11:30 a.m. Degree Master of Science in Mathematical Modelling and Scientific Computing Mathematical Methods I Thursday, 12th January 2012, 9:30 a.m.- 11:30 a.m. Candidates should submit answers to a maximum of four

More information

Practice Problems For Test 3

Practice Problems For Test 3 Practice Problems For Test 3 Power Series Preliminary Material. Find the interval of convergence of the following. Be sure to determine the convergence at the endpoints. (a) ( ) k (x ) k (x 3) k= k (b)

More information

Mathematics Qualifying Exam Study Material

Mathematics Qualifying Exam Study Material Mathematics Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering mathematics topics. These topics are listed below for clarification. Not all instructors

More information

Final Exam May 4, 2016

Final Exam May 4, 2016 1 Math 425 / AMCS 525 Dr. DeTurck Final Exam May 4, 2016 You may use your book and notes on this exam. Show your work in the exam book. Work only the problems that correspond to the section that you prepared.

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Physics 250 Green s functions for ordinary differential equations

Physics 250 Green s functions for ordinary differential equations Physics 25 Green s functions for ordinary differential equations Peter Young November 25, 27 Homogeneous Equations We have already discussed second order linear homogeneous differential equations, which

More information

Math 46, Applied Math (Spring 2009): Final

Math 46, Applied Math (Spring 2009): Final Math 46, Applied Math (Spring 2009): Final 3 hours, 80 points total, 9 questions worth varying numbers of points 1. [8 points] Find an approximate solution to the following initial-value problem which

More information

Name: ID.NO: Fall 97. PLEASE, BE NEAT AND SHOW ALL YOUR WORK; CIRCLE YOUR ANSWER. NO NOTES, BOOKS, CALCULATORS, TAPE PLAYERS, or COMPUTERS.

Name: ID.NO: Fall 97. PLEASE, BE NEAT AND SHOW ALL YOUR WORK; CIRCLE YOUR ANSWER. NO NOTES, BOOKS, CALCULATORS, TAPE PLAYERS, or COMPUTERS. MATH 303-2/6/97 FINAL EXAM - Alternate WILKERSON SECTION Fall 97 Name: ID.NO: PLEASE, BE NEAT AND SHOW ALL YOUR WORK; CIRCLE YOUR ANSWER. NO NOTES, BOOKS, CALCULATORS, TAPE PLAYERS, or COMPUTERS. Problem

More information

Final: Solutions Math 118A, Fall 2013

Final: Solutions Math 118A, Fall 2013 Final: Solutions Math 118A, Fall 2013 1. [20 pts] For each of the following PDEs for u(x, y), give their order and say if they are nonlinear or linear. If they are linear, say if they are homogeneous or

More information

Half of Final Exam Name: Practice Problems October 28, 2014

Half of Final Exam Name: Practice Problems October 28, 2014 Math 54. Treibergs Half of Final Exam Name: Practice Problems October 28, 24 Half of the final will be over material since the last midterm exam, such as the practice problems given here. The other half

More information

Math 216 Final Exam 14 December, 2017

Math 216 Final Exam 14 December, 2017 Math 216 Final Exam 14 December, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

MATH 251 Examination II April 4, 2016 FORM A. Name: Student Number: Section:

MATH 251 Examination II April 4, 2016 FORM A. Name: Student Number: Section: MATH 251 Examination II April 4, 2016 FORM A Name: Student Number: Section: This exam has 12 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must

More information

BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES

BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES 1 BOUNDARY-VALUE PROBLEMS IN RECTANGULAR COORDINATES 1.1 Separable Partial Differential Equations 1. Classical PDEs and Boundary-Value Problems 1.3 Heat Equation 1.4 Wave Equation 1.5 Laplace s Equation

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

MATH 220: MIDTERM OCTOBER 29, 2015

MATH 220: MIDTERM OCTOBER 29, 2015 MATH 22: MIDTERM OCTOBER 29, 25 This is a closed book, closed notes, no electronic devices exam. There are 5 problems. Solve Problems -3 and one of Problems 4 and 5. Write your solutions to problems and

More information

DUHAMEL S PRINCIPLE FOR THE WAVE EQUATION HEAT EQUATION WITH EXPONENTIAL GROWTH or DECAY COOLING OF A SPHERE DIFFUSION IN A DISK SUMMARY of PDEs

DUHAMEL S PRINCIPLE FOR THE WAVE EQUATION HEAT EQUATION WITH EXPONENTIAL GROWTH or DECAY COOLING OF A SPHERE DIFFUSION IN A DISK SUMMARY of PDEs DUHAMEL S PRINCIPLE FOR THE WAVE EQUATION HEAT EQUATION WITH EXPONENTIAL GROWTH or DECAY COOLING OF A SPHERE DIFFUSION IN A DISK SUMMARY of PDEs MATH 4354 Fall 2005 December 5, 2005 1 Duhamel s Principle

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives with respect to those variables. Most (but

More information

Introduction of Partial Differential Equations and Boundary Value Problems

Introduction of Partial Differential Equations and Boundary Value Problems Introduction of Partial Differential Equations and Boundary Value Problems 2009 Outline Definition Classification Where PDEs come from? Well-posed problem, solutions Initial Conditions and Boundary Conditions

More information

Differential Equations Class Notes

Differential Equations Class Notes Differential Equations Class Notes Dan Wysocki Spring 213 Contents 1 Introduction 2 2 Classification of Differential Equations 6 2.1 Linear vs. Non-Linear.................................. 7 2.2 Seperable

More information

Separation of variables in two dimensions. Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 )

Separation of variables in two dimensions. Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 ) Separation of variables in two dimensions Overview of method: Consider linear, homogeneous equation for u(v 1, v 2 ) Separation of variables in two dimensions Overview of method: Consider linear, homogeneous

More information

Mathematical Methods - Lecture 9

Mathematical Methods - Lecture 9 Mathematical Methods - Lecture 9 Yuliya Tarabalka Inria Sophia-Antipolis Méditerranée, Titane team, http://www-sop.inria.fr/members/yuliya.tarabalka/ Tel.: +33 (0)4 92 38 77 09 email: yuliya.tarabalka@inria.fr

More information

Math 216 Final Exam 24 April, 2017

Math 216 Final Exam 24 April, 2017 Math 216 Final Exam 24 April, 2017 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/

TMA4120, Matematikk 4K, Fall Date Section Topic HW Textbook problems Suppl. Answers. Sept 12 Aug 31/ TMA420, Matematikk 4K, Fall 206 LECTURE SCHEDULE AND ASSIGNMENTS Date Section Topic HW Textbook problems Suppl Answers Aug 22 6 Laplace transform 6:,7,2,2,22,23,25,26,4 A Sept 5 Aug 24/25 62-3 ODE, Heaviside

More information

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m.

THE UNIVERSITY OF WESTERN ONTARIO. Applied Mathematics 375a Instructor: Matt Davison. Final Examination December 14, :00 12:00 a.m. THE UNIVERSITY OF WESTERN ONTARIO London Ontario Applied Mathematics 375a Instructor: Matt Davison Final Examination December 4, 22 9: 2: a.m. 3 HOURS Name: Stu. #: Notes: ) There are 8 question worth

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 15 Heat with a source So far we considered homogeneous wave and heat equations and the associated initial value problems on the whole line, as

More information

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017

Analysis III (BAUG) Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Analysis III (BAUG Assignment 3 Prof. Dr. Alessandro Sisto Due 13th October 2017 Question 1 et a 0,..., a n be constants. Consider the function. Show that a 0 = 1 0 φ(xdx. φ(x = a 0 + Since the integral

More information

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6 Strauss PDEs 2e: Section 5.3 - Exercise 4 Page of 6 Exercise 4 Consider the problem u t = ku xx for < x < l, with the boundary conditions u(, t) = U, u x (l, t) =, and the initial condition u(x, ) =, where

More information

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section:

MATH 251 Final Examination December 19, 2012 FORM A. Name: Student Number: Section: MATH 251 Final Examination December 19, 2012 FORM A Name: Student Number: Section: This exam has 17 questions for a total of 150 points. In order to obtain full credit for partial credit problems, all

More information

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH Faculty of Science and Engineering Department of Mathematics and Statistics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MA4006 SEMESTER: Spring 2011 MODULE TITLE:

More information

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4.

Entrance Exam, Differential Equations April, (Solve exactly 6 out of the 8 problems) y + 2y + y cos(x 2 y) = 0, y(0) = 2, y (0) = 4. Entrance Exam, Differential Equations April, 7 (Solve exactly 6 out of the 8 problems). Consider the following initial value problem: { y + y + y cos(x y) =, y() = y. Find all the values y such that the

More information

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates. LEGENDRE POLYNOMIALS AND APPLICATIONS We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.. Legendre equation: series solutions The Legendre equation is

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

= e t sin 2t. s 2 2s + 5 (s 1) Solution: Using the derivative of LT formula we have

= e t sin 2t. s 2 2s + 5 (s 1) Solution: Using the derivative of LT formula we have Math 090 Midterm Exam Spring 07 S o l u t i o n s. Results of this problem will be used in other problems. Therefore do all calculations carefully and double check them. Find the inverse Laplace transform

More information

Partial Differential Equations (PDEs)

Partial Differential Equations (PDEs) C H A P T E R Partial Differential Equations (PDEs) 5 A PDE is an equation that contains one or more partial derivatives of an unknown function that depends on at least two variables. Usually one of these

More information

Math 241 Final Exam Spring 2013

Math 241 Final Exam Spring 2013 Name: Math 241 Final Exam Spring 213 1 Instructor (circle one): Epstein Hynd Wong Please turn off and put away all electronic devices. You may use both sides of a 3 5 card for handwritten notes while you

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1

More information

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014 MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014 Dr. E. Jacobs The main texts for this course are Calculus by James Stewart and Fundamentals of Differential Equations by Nagle, Saff

More information

Autumn 2015 Practice Final. Time Limit: 1 hour, 50 minutes

Autumn 2015 Practice Final. Time Limit: 1 hour, 50 minutes Math 309 Autumn 2015 Practice Final December 2015 Time Limit: 1 hour, 50 minutes Name (Print): ID Number: This exam contains 9 pages (including this cover page) and 8 problems. Check to see if any pages

More information

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots,

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots, Chapter 8 Elliptic PDEs In this chapter we study elliptical PDEs. That is, PDEs of the form 2 u = lots, where lots means lower-order terms (u x, u y,..., u, f). Here are some ways to think about the physical

More information

Additional Homework Problems

Additional Homework Problems Additional Homework Problems These problems supplement the ones assigned from the text. Use complete sentences whenever appropriate. Use mathematical terms appropriately. 1. What is the order of a differential

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

The Laplace transform

The Laplace transform The Laplace transform Samy Tindel Purdue University Differential equations - MA 266 Taken from Elementary differential equations by Boyce and DiPrima Samy T. Laplace transform Differential equations 1

More information

Guide for Ph.D. Area Examination in Applied Mathematics

Guide for Ph.D. Area Examination in Applied Mathematics Guide for Ph.D. Area Examination in Applied Mathematics (for graduate students in Purdue University s School of Mechanical Engineering) (revised Fall 2016) This is a 3 hour, closed book, written examination.

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

Math 311, Partial Differential Equations, Winter 2015, Midterm

Math 311, Partial Differential Equations, Winter 2015, Midterm Score: Name: Math 3, Partial Differential Equations, Winter 205, Midterm Instructions. Write all solutions in the space provided, and use the back pages if you have to. 2. The test is out of 60. There

More information

Math 341 Fall 2008 Friday December 12

Math 341 Fall 2008 Friday December 12 FINAL EXAM: Differential Equations Math 341 Fall 2008 Friday December 12 c 2008 Ron Buckmire 1:00pm-4:00pm Name: Directions: Read all problems first before answering any of them. There are 17 pages in

More information

Math 266 Midterm Exam 2

Math 266 Midterm Exam 2 Math 266 Midterm Exam 2 March 2st 26 Name: Ground Rules. Calculator is NOT allowed. 2. Show your work for every problem unless otherwise stated (partial credits are available). 3. You may use one 4-by-6

More information

SAMPLE FINAL EXAM SOLUTIONS

SAMPLE FINAL EXAM SOLUTIONS LAST (family) NAME: FIRST (given) NAME: ID # : MATHEMATICS 3FF3 McMaster University Final Examination Day Class Duration of Examination: 3 hours Dr. J.-P. Gabardo THIS EXAMINATION PAPER INCLUDES 22 PAGES

More information

Hyperbolic PDEs. Chapter 6

Hyperbolic PDEs. Chapter 6 Chapter 6 Hyperbolic PDEs In this chapter we will prove existence, uniqueness, and continuous dependence of solutions to hyperbolic PDEs in a variety of domains. To get a feel for what we might expect,

More information

My signature below certifies that I have complied with the University of Pennsylvania s Code of Academic Integrity in completing this exam.

My signature below certifies that I have complied with the University of Pennsylvania s Code of Academic Integrity in completing this exam. My signature below certifies that I have complied with the University of Pennsylvania s Code of Academic Integrity in completing this exam. Signature Printed Name Math 241 Exam 1 Jerry Kazdan Feb. 17,

More information

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01

ENGI 9420 Lecture Notes 8 - PDEs Page 8.01 ENGI 940 Lecture Notes 8 - PDEs Page 8.01 8. Partial Differential Equations Partial differential equations (PDEs) are equations involving functions of more than one variable and their partial derivatives

More information

A proof for the full Fourier series on [ π, π] is given here.

A proof for the full Fourier series on [ π, π] is given here. niform convergence of Fourier series A smooth function on an interval [a, b] may be represented by a full, sine, or cosine Fourier series, and pointwise convergence can be achieved, except possibly at

More information

First order Partial Differential equations

First order Partial Differential equations First order Partial Differential equations 0.1 Introduction Definition 0.1.1 A Partial Deferential equation is called linear if the dependent variable and all its derivatives have degree one and not multiple

More information

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length. Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet Sketch the curve in the plane given parametrically by r(u) = ( x(u), y(u) ) = ( a cos 3 u, a sin 3 u ) with 0 u

More information

Name: Math Homework Set # 5. March 12, 2010

Name: Math Homework Set # 5. March 12, 2010 Name: Math 4567. Homework Set # 5 March 12, 2010 Chapter 3 (page 79, problems 1,2), (page 82, problems 1,2), (page 86, problems 2,3), Chapter 4 (page 93, problems 2,3), (page 98, problems 1,2), (page 102,

More information

MATH 6B Spring 2017 Vector Calculus II Study Guide Final Exam Chapters 8, 9, and Sections 11.1, 11.2, 11.7, 12.2, 12.3.

MATH 6B Spring 2017 Vector Calculus II Study Guide Final Exam Chapters 8, 9, and Sections 11.1, 11.2, 11.7, 12.2, 12.3. MATH 6B pring 2017 Vector Calculus II tudy Guide Final Exam Chapters 8, 9, and ections 11.1, 11.2, 11.7, 12.2, 12.3. Before starting with the summary of the main concepts covered in the quarter, here there

More information

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016

Geometry and Motion Selected answers to Sections A and C Dwight Barkley 2016 MA34 Geometry and Motion Selected answers to Sections A and C Dwight Barkley 26 Example Sheet d n+ = d n cot θ n r θ n r = Θθ n i. 2. 3. 4. Possible answers include: and with opposite orientation: 5..

More information

An Introduction to Partial Differential Equations

An Introduction to Partial Differential Equations An Introduction to Partial Differential Equations Ryan C. Trinity University Partial Differential Equations Lecture 1 Ordinary differential equations (ODEs) These are equations of the form where: F(x,y,y,y,y,...)

More information

Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation:

Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation: Chapter 7 Heat Equation Partial differential equation for temperature u(x, t) in a heat conducting insulated rod along the x-axis is given by the Heat equation: u t = ku x x, x, t > (7.1) Here k is a constant

More information

Partial Differential Equations Summary

Partial Differential Equations Summary Partial Differential Equations Summary 1. The heat equation Many physical processes are governed by partial differential equations. temperature of a rod. In this chapter, we will examine exactly that.

More information

Sturm-Liouville Theory

Sturm-Liouville Theory More on Ryan C. Trinity University Partial Differential Equations April 19, 2012 Recall: A Sturm-Liouville (S-L) problem consists of A Sturm-Liouville equation on an interval: (p(x)y ) + (q(x) + λr(x))y

More information

Fundamental Solutions and Green s functions. Simulation Methods in Acoustics

Fundamental Solutions and Green s functions. Simulation Methods in Acoustics Fundamental Solutions and Green s functions Simulation Methods in Acoustics Definitions Fundamental solution The solution F (x, x 0 ) of the linear PDE L {F (x, x 0 )} = δ(x x 0 ) x R d Is called the fundamental

More information

Vibrating-string problem

Vibrating-string problem EE-2020, Spring 2009 p. 1/30 Vibrating-string problem Newton s equation of motion, m u tt = applied forces to the segment (x, x, + x), Net force due to the tension of the string, T Sinθ 2 T Sinθ 1 T[u

More information

MATH 251 Examination II November 5, 2018 FORM A. Name: Student Number: Section:

MATH 251 Examination II November 5, 2018 FORM A. Name: Student Number: Section: MATH 251 Examination II November 5, 2018 FORM A Name: Student Number: Section: This exam has 14 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work

More information

McGill University Department of Mathematics and Statistics. Ph.D. preliminary examination, PART A. PURE AND APPLIED MATHEMATICS Paper BETA

McGill University Department of Mathematics and Statistics. Ph.D. preliminary examination, PART A. PURE AND APPLIED MATHEMATICS Paper BETA McGill University Department of Mathematics and Statistics Ph.D. preliminary examination, PART A PURE AND APPLIED MATHEMATICS Paper BETA 17 August, 2018 1:00 p.m. - 5:00 p.m. INSTRUCTIONS: (i) This paper

More information

6 Non-homogeneous Heat Problems

6 Non-homogeneous Heat Problems 6 Non-homogeneous Heat Problems Up to this point all the problems we have considered for the heat or wave equation we what we call homogeneous problems. This means that for an interval < x < l the problems

More information

Partial differential equations (ACM30220)

Partial differential equations (ACM30220) (ACM3. A pot on a stove has a handle of length that can be modelled as a rod with diffusion constant D. The equation for the temperature in the rod is u t Du xx < x

More information

Differential Equations

Differential Equations Differential Equations Problem Sheet 1 3 rd November 2011 First-Order Ordinary Differential Equations 1. Find the general solutions of the following separable differential equations. Which equations are

More information

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine Lecture 2 The wave equation Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine V1.0 28/09/2018 1 Learning objectives of this lecture Understand the fundamental properties of the wave equation

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Separation of Variables

Separation of Variables Separation of Variables A typical starting point to study differential equations is to guess solutions of a certain form. Since we will deal with linear PDEs, the superposition principle will allow us

More information

PH.D. PRELIMINARY EXAMINATION MATHEMATICS

PH.D. PRELIMINARY EXAMINATION MATHEMATICS UNIVERSITY OF CALIFORNIA, BERKELEY Dept. of Civil and Environmental Engineering FALL SEMESTER 2014 Structural Engineering, Mechanics and Materials NAME PH.D. PRELIMINARY EXAMINATION MATHEMATICS Problem

More information

Final Exam Sample Problems, Math 246, Spring 2018

Final Exam Sample Problems, Math 246, Spring 2018 Final Exam Sample Problems, Math 246, Spring 2018 1) Consider the differential equation dy dt = 9 y2 )y 2. a) Find all of its stationary points and classify their stability. b) Sketch its phase-line portrait

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information