Weizhu Bao. Modeling, Analysis & Simulation for Quantized Vortices in Superfluidity and Superconductivity

Size: px
Start display at page:

Download "Weizhu Bao. Modeling, Analysis & Simulation for Quantized Vortices in Superfluidity and Superconductivity"

Transcription

1 Modeling, Analysis & Simulation for Quantized Vortices in Superfluidity and Superconductivity Weizhu Bao Department of Mathematics & Center for Computational Science and Engineering National University of Singapore URL:

2 Vortex: From macroscale to microscale Cloud vortex Saturn hexagon at the north pole of the planet Saturn

3 Vortex: From macroscale to microscale Vortex galaxy vortex in cosmos

4 Vortex: From macroscale to microscale Tornado Vortex in air

5 Vortex: From macroscale to microscale Vortex in water generated by a boat

6 Vortex: From macroscale to microscale Vortex in water generated by an airplane

7 Vortex: From macroscale to microscale Magnetic vortex vortex in plasma

8 Vortex: From macroscale to microscale Vortex in plant

9 Vortex: From macroscale to microscale Quantized Vortex in liquid Helium 3

10 Vortex: From macroscale to microscale Quantized Vortex in a type-ii superconductor

11 Vortex: From macroscale to microscale Quantized Vortex in Bose-Einstein condensation (BEC)

12 Outline Vortex vs quantized vortex Mathematical models Gross-Pitaevekii equation (GPE) / nonlinear Schrodinger equation Ginzburg-Landau equation (GLE); nonlinear wave equation,. Numerical methods & results for vortex nucleation Numerical methods & results for dynamics Central vortex states & interactions Conclusions

13 Vortex In fluid dynamics, a vortex is a region, in a fluid medium, in which the flow is mostly rotating on an axis line, the vortical flow that occurs either on a straight-axis or a curved-axis. Vortices Form in stirred fluids: liquid, gas & plasma Evidenced in: smoke rings; whirlpool of the wake of a boat or paddle or an airplane; winds surrounding a tropical cyclone (hurricane); a dust devil, a tornado It is a major component of turbulence flow

14 Models for vortex in fluid dynamics Physical quantities: Velocity, pressure, vorticity, streamfunction Mathematical models Euler equations Navier-Stokes equations Shallow water equations,.. Classifications Viscous vs inviscid Compressible vs incompressible Vortex sheet in D vs vortex patch in 3D

15 Quantized vortex In physics, a quantized (quantum) vortex is a topological (particle-like) defect exhibited in superfluids & superconductors Zero of the complex scalar field localized phase singularities with integer topological charge: iφ ψ ( x 0 ) 0, ψ ( x) = ρ e, d(argψ ) = dφ = π n 0 = Key of superfluidity: ability to support dissipationless flow Γ Γ

16 Quantized vortex In different physical system Type-II superconductors: Ginzburg-Landau equations (GLE) Liquid helium: Two-fluid model Gross-Pitaevskii equation (GPE) Bose-Einstein condensation (BEC): Nonlinear Schroedinger equation (NLSE) or GPE Nonlinear optics & propagation of laser beams Nonlinear Schroedinger equation (NLSE) Nonlinear wave equation (NLWE)

17 Vortex in superconductivity Superconductivity: a phenomenon of exactly zero electrical resistance and expulsion of magnetic fields occurring in certain materials when cooled below a characteristic critical temperature. Heike Kamerlingh Onnes, 1911 Phase transition Type I single critical field Type II -- two critical fields, between which it allows partial penetration of the magnetic field. High-temperature superconductivity A superconductor that is capable of supporting vortex lattices is called a type-ii superconductor

18 Nobel Prizes for superconductivity H. K. Onnes (1913), "for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium" J. Bardeen, L. N. Cooper& J. R. Schrieffer (197), "for their jointly developed theory of superconductivity, usually called the BCS-theory" L. Esaki, I. Giaever, and B. D. Josephson (1973), "for their experimental discoveries regarding tunneling phenomena in semiconductors and superconductors, respectively," and "for his theoretical predictions of the properties of a supercurrent through a tunnel barrier, in particular those phenomena which are generally known as the Josephson effects" G. Bednorz and K. A. Müller (1987), "for their important break-through in the discovery of superconductivity in ceramic materials" A. A. Abrikosov, V. L. Ginzburg & A. J. Leggett (003), "for pioneering contributions to the theory of superconductors and superfluids"

19 Models for superconductivity Microscopic theory --- BCS theory By Bardeen, Cooper & Schrieffer, Macroscopic theory --- Ginzburg-Landau theory A phenomenal model & be formally derived from BCS theory Complex order parameter field Total energy density β 4 1 ( ) F = Fn + αψ + ψ + i ea ψ + m B = A--magnetic field & A---magnetic vector potential F n ψ --free energy in the normal phase & m-- effectiv mass B µ 0

20 Ginzburg-Landau equation (GLE) Time-independent GLE 1 αψ + β ψ ψ + ( i ea) ψ = 0 m e µ ; Re{ ψ * ψ} B = 0 j j = ( i ea) m GLE without external magnetic potential 1 ( ) ψt = ψ + 1 ψ ψ, x Ω, t > 0, ε = 0, x Ω ( ) ψ ψ ε GLE energy functional ( ) E 1 ( ) V ( x ψ ψ ) ψ dx = +, ε Ω A dissipative PDE --- complex heat-type (parabolic) equation

21 Vortex in superfluidity Superfluidity is a state of matter in which the matter behaves like a fluid with zero viscosity; where it appears to exhibit the ability to self-propel and travel in a way that defies the forces of gravity and surface tension. It was originally discovered in liquid helium in 1937 It is also found in astrophysics, high-energy physics, and theories of quantum gravity. The phenomenon is related to the Bose Einstein condensation (BEC), especially ultracold atomic gas.

22 Bose-Einstein condensation (BEC) Bose-Einstein condensation: Bosons at nano-kevin temperature many atoms occupy in one obit (at quantum mechanical ground state) `super-atom new matter of wave. i.e., the fifth matter of state Theoretical predication: Bose & Einstein Bose, Z. Phys., 6 (194) 8 Einstein, Sitz. Ber. Kgl. Preuss. Adad., Wiss. (194) 61 Experimental realization: JILA 1995 Anderson et al., Science, 69 (1995), 198: JILA Group; Rb Davis et al., Phys. Rev. Lett., 75 (1995), 3969: MIT Group; Rb Bradly et al., Phys. Rev. Lett., 75 (1995), 1687, Rice Group; Li

23 Experimental techniques for BEC Laser cooling Magnetic trapping Evaporative Cooling ($100k 300k)

24 Experimental Results of BEC JILA (95,Rb,5,000) ETH (0,Rb, 300,000)

25 BEC 001 Nobel prize in physics: C. Wiemann: U. Colorado; E. Cornell: NIST & W. Ketterle: MIT Mathematical models: Gross-Pitaevskii equation (mean field theory) Quantum Boltzmann master equation (kinetic) Mathematical analysis Existence, dynamical laws, soliton-like solution, damping effect, etc. Numerical Simulations Numerical methods Guiding and predicting outcome of new experiments

26 Possible applications of BEC Quantized vortex for studying superfluidity Square Vortex lattices in spinor BECs Giant vortices Vortex lattice dynamics Test quantum mechanics theory Bright atom laser: multi-component Quantum computing Quantum Transport, Atomic circuit,..

27 Mathematical models N-body problem (3N+1)-dim linear Schroedinger equation Mean field theory--zeor or `extremely low temperatures Gross-Pitaevskii equation (GPE): T < T = O(nK) (3+1)-dim nonlinear Schroedinger equation (NLSE) Quantum kinetic theory-- high temperatures High temperature: QBME (3+3+1)-dim Around critical temperature: QBME+GPE Below critical temperature: GPE c

28 Model for a BEC at zero temperature with N identical bosons N-body problem 3N+1 dim. (linear) Schrodinger equation i Ψ ( x, x,, x, t) = H Ψ ( x, x,, x, t), with t N 1 N N N 1 N N HN = j + V( xj) Vint( xj xk) j= 1 m + 1 j< k N Hartree ansatz Fermi interaction N Ψ ( x, x,, x,) t ψ ( x,), t x N 1 N j j j= 1 Dilute quantum gas -- two-body elastic interaction N N N N N 1 N 3N 4 as Vint( x π j x k) = gδ ( x j x k) with g = m E ( Ψ ) : = Ψ H Ψ dx dx NEψ ( )--energy per particle 3

29 Model for a BEC with N identical bosons Energy per particle mean field approximation (Lieb et al, 00 ) Ng 4 E( ψ) = ψ + V( x) ψ + ψ dx with ψ : = ψ( x, t) 3 m Dynamics (Gross, Pitaevskii 1961 ; Erdos, Schlein & Yau, Ann. Math. 010 ) δe( ψ) i tψ( x,) t = = V ( x) Ng ψ ψ, x δψ + + m 3 Proper non-dimensionalization & dimension reduction GPE/NLSE 1 d 4π Na i tψ( xt, ) = ψ + V( x ) ψ + β ψ ψ, x with β = x s s

30 Other applications of GPE/NLSE 1 i ( xt,) = + V( x) + tψ ψ ψ β ψ ψ For laser beam propagation In plasma physics: wave interaction between electrons and ions Zakharov system---nlse +wave equation,.. In quantum chemistry: chemical interaction based on the first principle Schrodinger-Poisson system In materials science: First principle computation, DFT, Semiconductor industry In nonlinear (quantum) optics In biology protein folding H + O HO In superfluids flow without friction, liquid 4 He

31 Mathematical model for BEC mean field theory The Gross-Pitaevskii equation (GPE/NLSE) 1 i ( xt,) = + V( x) + t ψ ψ ψ β ψ ψ d t : time & x ( ) : spatial coordinate (d=1,,3) ψ (,) xt : complex-valued wave function V( x ) : real-valued external potential β : dimensionless interaction constant =0: linear; >0(<0): repulsive (attractive) interaction β = 0 :Schrodinger equation (E. Schrodinger 195 ) :GPE (E.P. Gross 1961 ; L.P. Pitaevskii 1961 ) β 0 E. Schrodinger

32 Dispersive Time symmetric: Conservation laws Time transverse (gauge) invariant Mass conservation d Energy conservation 1 i ( xt,) = + V( x) + tψ ψ ψ β ψ ψ t t & take conjugate unchanged!! V( x) V( x) + α ψ ψe iαt ρ = ψ --unchanged!! N(): t = N( ψ(,)) t = ψ( x,) t dx ψ( x,0) dx= 1, t 0 1 β 4 E( t) : = E( ψ(, t)) = ψ + V( x) ψ + ψ dx E(0), t 0 d d

33 Stationary states Stationary states (ground & excited states) it ψ( xt,) = φ( x) e µ Nonlinear eigenvalue problems: Find 1 µφ( x) = φ( x) + V( x) φ( x) + β φ( x) φ( x), x with φ : = (x) dx= 1 Time-independent NLSE or GPE: Eigenfunctions are φ d 1 i xt = + V x + tψ(,) ψ ( ) ψ β ψ ψ ( µφ, ) s.t. Orthogonal in linear case & Superposition is valid for dynamics!! Not orthogonal in nonlinear case!!!! No superposition for dynamics!!! d

34 Ground states The eigenvalue is also called as chemical potential β 4 µ : = µφ ( ) = E( φ) + φ(x) dx d With energy 1 β φ = φ + φ + φ d 4 E( ) [ ( x) V( x) ( x) ( x) ] dx Ground states -- nonconvex minimization problem { } E( φ ) = min E( φ) S = φ φ = 1, E( φ) < g φ S Euler-Lagrange equation nonlinear eigenvalue problem

35 Existence & uniqueness Theorem (Lieb, etc, PRA, 0 ; Bao & Cai, KRM, 13 ) If potential is confining d V( x) 0 for x & lim V( x) = x There exists a ground state if one of the following holds ( i) d = 3& β 0; ( ii) d = & β > C ; ( iii) d = 1& β The ground state can be chosen as nonnegative Nonnegative ground state is unique if β 0 The nonnegative ground state is strictly positive if There is no ground stats if one of the following holds b φ,.. ieφ = φ g g g V( x) L ( i)' d = 3& β < 0; ( ii)' d = & β Cb C b = inf 1 0 f H ( ) f f L ( ) L ( ) 4 f 4 L ( ) loc i 0 e θ

36 Key Techniques in Proof Positivity & semi-lower continuous E( φ) E( φ ) = E( ρ), φ S with ρ = φ The energy E( ρ): = E( ρ) is bounded below if conditons (i) or (ii) or (iii) and strictly convex if Confinement potential implies decay at far field The set Using convex minimization theorem Non-existence result S= ρ ρ( x) dx=1 & E ( ρ) < is convex in ρ d ε 0 E( φ ε ) 1 x d φε ( x) = exp, x with ε 0 d /4 ( πε ) ε β 0

37 Linear case Ground state approximation 1 µφ( x) = φ( x) + V( x) φ( x) + β φ( x) φ( x), x β = 0 d Weakly interaction regime β 1 Strongly repulsive interaction regime β 1

38 Computing ground states Idea: Steepest decent method + Projection 1 δ E( ϕ) 1 = = < δϕ φ 0 φ ϕ t 1 φ φˆ 1 tϕ( xt,) ϕ V( x) ϕ β ϕ ϕ, tn t tn+ 1 ϕ( x, ) n+ 1 ( xt, n+ 1) =, n= 0,1,, ϕ( x, ) n+ 1 t ϕ( x,0) = ϕ (x) with ϕ ( x) = The first equation can be viewed as choosing in NLSE For linear case: (Bao & Q. Du, SIAM Sci. Comput., 03 ) E0( φ(., tn+ 1) ) E0( φ(., tn) ) E0( φ(., 0) ) For nonlinear case with small time step, CNGF φ g t = E( ˆ φ1) < E( φ0) E( ˆ φ1) < E( φ1) E( φ ) < E( φ ) i τ 1 0??

39 Normalized gradient glow Idea: letting time step go to 0 (Bao & Q. Du, SIAM Sci. Comput., 03 ) 1 µφ ( (., t)) tφ xt = φ V x φ β φ φ+ φ t φ(., t) φ( x,0) = φ ( x) with φ ( x) = 1. (, ) ( ), 0, 0 0 Mass conservation & energy diminishing Numerical discretizations ϕ(., t) = ϕ0 = 1, d E( ϕ(., t)) 0, t 0 dt BEFD: Energy diminishing & monotone (Bao & Q. Du, SIAM Sci. Comput., 03 ) TSSP: Spectral accurate with splitting error (Bao & Q. Du, SIAM Sci. Comput., 03 ) BESP: Spectral accuracy in space & stable (Bao, I. Chern & F. Lim, JCP, 06 )

40 Ground states in 1D & 3D

41 Vortex nucleation in BEC With an external perturber 1 i ( xt,) = + [ V( x) + W( xt,)] + tψ ψ ψ β ψ ψ BEC with an angular momentum rotation

42 Rotating BEC GPE / NLSE with an angular momentum rotation 1 d i tψ( xt,) = [ + V( x) Ω Lz + β ψ ] ψ, x, t> 0 L : = xp yp = i( x y ) i, L = x P, P = i z y x y x θ Mass conservation N() t = ψ ( x,) t dx Energy conservation 1 β 4 EΩ( ψ): = ψ + V( x) ψ Ω ψlzψ + ψ dx d R d

43 Ground states Ground states Seiringer, CMP, 0 ; Bao,Wang & Markowich, CMS, 05 ;.. min E ( φ) φ S Ω Existence & uniqueness Exists a ground state when β 0 & Ω min { γ x, γ y} Uniqueness when Ω <Ω c ( β ) Ω Ω Quantized vortices appear when c ( β ) Phase transition & bifurcation in energy diagram Numerical methods --- GFDN & BEFD or BEFP

44 Ground states with different Ω

45 Vortex nucleation in BEC

46

47

48 In D: point vortex Central vortex states 1 µφ ( x) = [ + V( x) Ω L β z + φ ] φ φ (, xy) = f () re imθ m In 3D: vortex line vortex ring φ ( xyz,, ) = f ( rze, ) imθ m

49 Dynamics of vortex in BEC Time-dependent NLSE / GPE 1 i tψ xt = ψ + V xψ Ω Lψ + β ψ ψ x t> ψ( x,0) = ψ ( x) d (,) ( ) z,, 0 0 Well-posedness & dynamical laws Well-posedness & finite time blow-up Dynamical laws Center-of-mass An exact solution under special initial data Numerical methods and applications

50 Well-posedenss Theorem (T. Cazenave, 03 ; C. Sulem & P.L. Sulem, 99 ) Assumptions d d α d (i) V( x) C ( ), V( x) 0, x & D V( x) L ( ) α X= u H u = u + u + V x u x dx< 1 d (ii) ψ 0 ( ) ( ) ( ) X L L d Local existence, i.e. T (0, ], s. t. the problem has a unique solution ψ C([0, T ), X) max Global existence, i.e. T = + if max d = 1 or d = with β C / ψ or d = 3 & β 0 b 0 d L ( ) max

51 Finite time blowup Theorem (T. Cazenave, 03 ; C. Sulem & P.L. Sulem, 99 ) Assumptions d There exists finite time blowup, i.e. T max < + if one of the following holds (i) E( ψ ) < 0 Proof: d β <0 & V( x) d + x V( x) 0, x with d =,3 0 X with finite variance V(0):= x 0( x) dx ψ δ ψ < 0 (ii) E( ψ ) = 0 & Im ψ ( x) ( x ψ ( x)) dx< (iii) E( ψ ) > 0 & Im ψ ( x) ( x ψ ( x)) dx< E( ψ ) d xψ δv(): t = x ψ( x,) t dx δv() t d E( ψ0), t 0, d =,3 d (i) Variance identity: ' δ ( t) de( ψ ) t + δ (0) t+ δ (0) 0 < t* < & δ ( t*) = 0!! (ii) Uncertainty principle: d d V 0 V V V 1 = ψ xψ ψ = δ () t ψ L L L V L L

52 ψ Dynamics with no potential V( x) 0, x Momentum conservation Dispersion relation Soliton solutions in 1D: Bright soliton β < decaying to zero at far-field Dark (or gray) soliton β > 0 -- nonzero &oscillatory at far-field d J( t) : = Im ψ ψ dx J(0) t 0 d i( k x ωt) 1 ψ( x,) t = Ae ω = k + βa 1 a ψ x t = a x vt x0 e x t β 1 ( ( ) 0 ) (, ) sech( ( )) i vx v a t + θ,, 0 [ ] i( kx ( k + a + ( v k ) ) t+ θ0 ) ( x, t) = a tanh( a( x vt x )) + i( v k) e, x, t 0 β 0 1

53 ψ Dynamics with harmonic potential Harmonic potential Center-of-mass: = d x t x t t An analytical solution if γ x x d = 1 1 V( x) = γ x x + γ y y d = γ x x + γ y y + γ z z d = 3 xc() t xψ ( x,) t dx c( ) + diag( γ x, γ y, γ z) c( ) = 0, > 0 each component is periodic!! ψ ( x ) = φ ( x x ) 0 s 0 (,) (,) i s t ( ()) iw x µ xt = e φ t s x xc t e, xc(0) = x0 & wxt (,) = 0 ρ = ψ = φ ( xt, ) : ( xt, ) s( x xc( t)) -- moves like a particle!! 1 µφ s s( x) = φs + V( x) φs + β φs φs

54 Semiclassical limits 0< ε 1 ψ : = ψ ε ε iε tψ (,) xt = ψ + V( x) ψ + β ψ ψ is0 ( x)/ ( x,0): ( x) ( x) e ε ε ψ = ψ = ρ ε ε ε ε ε ε ε ε 0 0 WKB analysis -- Gregor Wentzel, Hans Kramers & Leon Brillouin, 196 Formally assume ε ψ = ρ = = ρ ε ε is / ε ε ε ε ε ε e, v S, J v Geometrical Optics: Transport + Hamilton-Jacobi ε ε ε ρ + ( ρ S ) = 0, t ε ts + S + V x + = ρ ε 1 ε ε 1 ε d ( ) βρ ρ ε

55 From QM to fluid dynamics Quantum Hydrodynamics (QHD): Euler +3 rd dispersion ε ε ε t ρ + ( ρ v ) = 0 P( ρ) = βρ / ε ε ε J J ε ε ε ε ε t ( J ) + ( ) + P( ρ ) + ρ V = ( ρ ln ρ ) ε ρ 4 Formal Limits --- Euler equations for fluids t ρ + ( ρ v ) = 0 P( ρ) = βρ / J J 0 0 t ( J ) + ( ) + P( ρ ) + ρ V = 0 0 ρ Mathematical justification: G. B. Whitman, E. Madelung, E. Wigner, P.L. Lious, P. A. Markowich, F.-H. Lin, P. Degond, C. D. Levermore, D. W. McLaughlin, E. Grenier, F. Poupaud, C. Ringhofer, N. J. Mauser, P. Gerand, R. Carles, P. Zhang, P. Marcati, J. Jungel, C. Gardner, S. Kerranni, H.L. Li, C.-K. Lin, C. Sparber,.. Linear case NLSE before caustics

56 Time-splitting spectral method (TSSP) For [ t,, apply time-splitting technique (Bao, Jaksch&Markowich, JCP, 03 ) n t n + 1] Step 1: Discretize by spectral method & integrate in phase space exactly 1 i tψ(,) xt = ψ Step : solve the nonlinear ODE analytically i tψ(,) xt = V( x) ψ(,) xt + β ψ(,) xt ψ(,) xt = = i ψ xt = V xψ xt + β ψ xt ψ xt t 1 i xt = + V x + t( ψ( xt, ) ) 0 ψ( xt, ) ψ( xt, n) (, ) ( ) (, ) (, n) (, ) i( t tn)[ V( x) + βψ ( xt, n) ] ψ( xt, ) = e ψ( xt, n) t ψ(,) ψ ( ) ψ β ψ ψ Use nd order Strang splitting (or 4 th order time-splitting)

57 Properties of TSSP Explicit & computational cost per time step: Time symmetric: yes Time transverse invariant: yes Mass conservation: yes Stability: yes Dispersion relation without potential: yes Accuracy Spatial: spectral order; Temporal: nd or 4 th order OM ( ln M) Best resolution in strong interaction regime: β 1

58 Numerical methods for rotating BEC Use polar coordinates (B., Q. Du & Y. Zhang, SIAP 06 ) Time-splitting + ADI technique (B. & H. Wang, JCP, 06 ) Generalized Laguerre-Hermite functions (B., H. Li & J. Shen, SISC, 09 ) TSSP via Langrage coordinate (B., D. Marharens, Q. Tang & Y. Zhang, SISC, 13 ). 1 i tψ( xt,) = [ + V( x) Ω Lz + β ψ ] ψ

59 Numerical methods for rotating BEC Numerical Method 1: (Bao, Q. Du & Y. Zhang, SIAM, Appl. Math. 06 ) Ideas Time-splitting Use polar coordinates: angular momentum becomes constant coefficient Fourier spectral method in transverse direction + FD or FE in radial direction Crank-Nicolson in time Features Time reversible; Time transverse invariant Mass Conservation in discretized level Implicit in 1D & efficient to solve; Accurate & unconditionally stable 1 iψt( xt,) = ψ Ω Lzψ, Lz : = ix ( y y x) = i θ iψ xt = V xψ xt + β ψ xt ψ xt ψ xt = ψ xt t(, ) d( ) (, ) d (, ) (, ) (, ) (, n)

60 Numerical methods for rotating BEC Numerical Method : (Bao & H. Wang, J. Comput. Phys. 06 ) Ideas Time-splitting ADI technique: Equation in each direction become constant coefficient Fourier spectral method Features Time reversible; Time transverse invariant Mass Conservation in discretized level Explicit & unconditionally stable; Spectrally accurate in space 1 1 iψt( xt,) = xxψ iωy xψ, iψt( xt,) = yyψ + iωx yψ iψ xt V xψ xt β ψ xt ψ xt ψ xt ψ xt t(, ) = d( ) (, ) + d (, ) (, ) (, ) = (, n)

61 Numerical methods for rotating BEC Numerical Method 3: (B., H. Li & J. Shen, 09 ) Ideas Time-splitting Use polar coordinates: angular momentum becomes constant coefficient Use the generalized Laguerre-Fourier Hermite functions as basis Features Time reversible; Time transverse invariant Mass Conservation in discretized level Explicit; spectral accurate & unconditionally stable 1 iψt( xt,) = ψ + Vho( x) ψ( xt,) ΩLzψ, iψ xt V x V x ψ xt β ψ xt ψ xt t(,) = [ d ( ) ho( )] (,) + d (,) (,)

62 Method 4 Bao, Du & Zhang, SIAP, 05 ; Bao & Cai, KRM, 13 ; 1 i tψ( xt,) = [ + V( x) Ω Lz + β ψ ] ψ Numerical methods A new formulation A rotating Lagrange coordinate: 1 x = At () x & φ( xt,): = ψ( xt,) = ψ( Atxt (),) cos( Ωt) sin( Ωt) 0 cos( Ωt) sin( Ωt) At ( ) = for d ; At ( ) sin( t) cos( t) 0 for d 3 sin( t) cos( t) = = Ω Ω = Ω Ω GPE in rotating Lagrange coordinates 1 d i t φ( xt,) = [ + V( At () x ) + β φ ] φ, x, t> 0 Analysis & numerical methods -- Bao & Wang, JCP6 ; Bao, Li & Shen, SISC, 09 ; Bao, Marahrens, Tang & Zhang, 13,.

63 Dynamics of a vortex lattice

64

65

66

67

68

69

70 Models for central vortex states Ginzburg-Landau equation (GLE):Superconductivity, nonlinear heat flow, etc. 1 ( ) ψt = ψ + V( x) ψ ψ, x R, t > 0, ε Gross-Pitaevskii equation (GPE): nonlinear optics, BEC, superfluidity 1 ( ) iψt = ψ + V( x ) ψ ψ, x R, t > 0, ε Nonlinear wave equation (NLWE): wave motion 1 ( ) ψtt = ψ + V( x) ψ ψ, x R, t > 0, ε Here ψ : complex-valued wave function or order parameter, ε > 0: dimensionless constant, V( x) : real-valued external potential

71 Model property `Free Energy or Lyapunov functional: E 1 ( ) ( ) V ( x ψ ψ ) ψ dx, ψ δe( ψ) i = t δψ * E( ψ ) E( ψ 0), t 0 = + ε R Dispersive system (GPE): Energy conservation: Density conservation: Admits particle like solutions: solitons, kinks & vortices Dissipative system (GLE): Energy diminishing, etc. ( ψ ( x, t) ψ 0( x) ) dx 0, t 0 R ψ δe( ψ) = t δψ *

72 Two kinds of vortices `Bright-tail vortex: GLE, GPE & NLWE (`order parameter ) im V( x) 1, when x, ψ( x, t) 1, x, ( eg.. ψ e θ ), Time independent case (Neu, 90 ): Vortex solutions: 1 n f ( ) n r + fn ( r) r r f (0) = 0, n Asymptotic results f ψ ( x ) = φ ( x) = f ( r) e f n n ( r) + (1 f n f n ( ) = 1. ε = 1, V ( x ) 1 n ( r)) f n inθ n n + ar + O( r ), r) 1 n / r + O(1/ r ( n 4 ( r) = 0, 0 < r <, r 0, ), r.

73 `Bright-tail vortex

74 Two kinds of vortices `Dark-tail vortex: BEC (wave function) x i, x R, t 0, dx 1 ψt = ψ + ψ + β ψ ψ > ψ = ψ = n n ψ(,) xt = e φ ( x) = e f() r e Center vortex states: iµ t iµ t inθ n n d dfn() r n r 3 n fn() r = r + + f () (), 0, n r + fn r < r< µ β dr dr r n(0) = 0, n( ) = 0, π n ( ) = 1 0 f f f r r dr Asymptotic results f n () r n n + ar + O r r n r br e ( ), 0,, r.

75 `Dark-tail vortex

76 Stability of vortices Data chosen h ε = 1, V ( x, t) 1 ( + W ( x, t)), ψ 0 ( x) = φ ( x) ( + n noise) Results (Bao,Du & Zhang, Eur. J. Appl. Math., 07 ) For GLE or NLWE with initial data perturbed n=1: velocity density N=3: velocity density For NLSE with external potential perturbed Results n=1: velocity density N=3: velocity density

77 back

78 back

79 back

80 back

81 back

82 back

83 back

84 back

85 Summary of Stability For GLE or NLWE: under perturbation either in initial data or in external potential n =1: dynamically stable, n >1: dynamically unstable. Splitting pattern depends on perturbation, when t >>1, it becomes n well-separated vortices with index 1 or 1. For NLSE or GPE: under perturbation in initial data dynamically stable: Angular momentum expectation is conserved!! under perturbation in external potential n =1: dynamically stable, n >1: dynamically unstable. Vortex centers can NOT move out of core size.

86 Vortex interaction For `bright-tail vortex: ψ φ φ N N ( x) = m ( x x ) (, ) j j = m x x j j y yj j= 1 j= 1 For `dark-tail vortex 0 Well-separate N ψ ( xy, ) = φ ( x x, y y) / j= 1 Overlapped n j j j

87 Reduced dynamic laws For `bright-tail vortex Take ansatz N ψ( xt, ) = φ ( x x( t)) + high order terms j= 1 N m j = φ ( x x ( t), y y ( t))+high order terms j j= 1 Plug into GLE or GPE or NLWE Using matched asymptotic techniques Prove rigorously j m j j

88 Reduced dynamic laws For `bright-tail vortex For GLE For GPE For NLWE () N d xj t xj() t xl() t κvj( t): = κ = mj ml, t 0 dt l= 1, l j xj() t xl() t x x j N 0 j(0) = j, 1. d x () t J( x () t x ()) t vj( t) : = = m t 0, () () N j j l l dt l= 1, l j xj t xl t xj(0) = xj 1 j N; J = 1 0 d x () N j t xj() t xl() t κ = m, 0 j ml t dt l= 1, l j xj() t xl() t x = x x = v j N 0 ' 0 j(0) j, j(0) j, 1.

89 Existing mathematical results For GLE (or NLHE): Pairs of vortices with like (opposite) index undergo a replusive (attractive) interaction: Neu 90, Pismen & Rubinstein 91, W. E, 94, Bethual, etc. Energy concentrated at vortices in D & filaments in 3D: Lin 95-- Vortices are attracted by impurities: Chapman & Richardson 97, Jian 01 For NLSE: Vortices behave like point vortices in ideal fluid: Neu 90 Obeys classical Kirchhoff law for fluid point vortices: Lin & Xin 98 Equations for vortex dynamics & radiation: Ovchinnikov& Sigal 98--; Jerrard, Bethual, etc.

90 Conservation laws Mass center N 1 xt (): = x () t N j = 1 Lemma The mass center of the N vortices for GLE is conserved xt ( ) : = x( t) x(0) : = x(0) = x N N N N N N 0 j j j j= 1 j= 1 j= 1 Lemma The mass center of the N vortices for NLWE is conserved if initial velocity is zero and it moves linearly if initial velocity is nonzero j

91 Conservation laws Signed mass center N 1 xt (): = m x () t N j = 1 j j Lemma The signed mass center of the N vortices for NLSE is conserved x ( t) : = m x ( t) x(0) : = m x (0) = m x N N N N N N 0 j j j j j j j= 1 j= 1 j= 1

92 Analytical Solutions N ( ) like vortices on a circle (Bao, Du & Zhang, SIAP, 07 ) 0 jπ jπ xj = a cos, sin, mj = m0 =± 1, 1 j N N N Analytical solutions for GLE figure ( N 1) jπ jπ xj ( t) = a + t cos, sin κ N N Analytical solutions for NLSE figure next jπ N 1 jπ N 1 xj ( t) = a cos + t, sin t + N a N a

93 N= N=3 back N=4

94 N= N=3 back

95 Analytical Solutions N ( 3) like vortices on a circle and its center(bao,du&zhang, SIAP, 07 ) 0 0 jπ jπ xn = 0; xj = a cos, sin, 1 j N 1 N 1 N 1 Analytical solutions for GLE figure N jπ jπ xn() t = 0; xj() t = a + t cos, sin, 1 j N 1 κ N 1 N 1 Analytical solutions for NLSE figure next jπ N jπ N xn() t = 0; xj() t = a cos + t, sin t + N 1 a N 1 a

96 N=3 back N=4

97 N=3 back N=4

98 Analytical Solutions Two opposite vortices (Bao, Du & Zhang, SIAP, 07 ) 0 0 x1 = x = a( cos ( θ0), sin ( θ0) ), m1 = m = 1 Analytical solutions for GLE figure x1() t = x() t = a t cos θ0, sinθ0 κ ( ( ) ( )) Analytical solutions for NLSE figure next t x t x ( ( θ0) ( θ0) ) j a 0 j( ) = j + sin, cos, = 1,

99 back

100 back

101 Analytical Solutions N ( 3) opposite vortices on a circle and its center 0 0 jπ jπ xn = 0 ( ); xj = a cos, sin ( + ), 1 j N 1 N 1 N 1 Analytical solutions for GLE figure ( N 4) jπ jπ xn() t = 0; xj() t = a + t cos, sin, 1 j N 1 κ N 1 N 1 Analytical solutions for NLSE figure next jπ N 4 jπ N 4 xn() t = 0; xj() t = a cos + t, sin t + N 1 a N 1 a

102 N=3 N=4 back N=5

103 N=3 N=4 back N=5

104 Numerical difficulties for `bright-tail vortex Numerical difficulties: Highly oscillatory nature in the transverse direction: resolution Quadratic decay rate in radial direction: large domain For NLSE, more difficulties: Time reversible Time transverse invariant Dispersive equation Keep conservation laws in discretized level Radiation

105 Numerical methods For `bright-tail vortex (Bao,Du & Zhang, Eur. J. Appl. Math., 07 ) Apply a time-splitting technique: decouple nonlinearity Adapt polar coordinate: resolve solution in transverse better Use Fourier pesudo-spectral discretization in transverse Use nd or 4 th order FEM or FDM in radial direction For `dark-tail vortex Apply a time-splitting technique: decouple nonlinearity Use Fourier pseudo-spectral discretization Use generalized Laguerre-Hermite pseudo-spectral method

106 Vortex dynamics & interaction Data chosen (Bao, Du & Zhang, SIAM, J. Appl. Math., 07 ) ε = 1, V ( x, t) Two vortices with like winding numbers N = For GLE: velocity density For GPE: velocity density Trajectory Summary 1, ψ N 0 ( x) = φn ( x x j j ), j= 1 m =, n1 = 1, n = 1, x1 = ( a,0), x = ( a,0) N j= 1 n j

107 back

108 back

109 back

110 back

111 GLE GPE back NLWE

112 Summary of interaction For GLE (Bao, Du & Zhang, SIAP, 07 ) Undergo a repulsive interaction Core size of the two vortices will well separated Energy decreasing: For NLSE (Bao, Du & Zhang, SIAP, 07 ) Behave like point vortices in ideal fluid The two vortex centers move almost along a circle Energy conservation & radiation For NLWE (Bao & Zhang, Physica D 07 ) Similar as GLE but with different speed E ψ ( x, t)) E( ψ ( x)), ( 1 t

113 Vortex dynamics & interaction Two vortices with opposite winding numbers N =, n = 1, n = 1, x1 = ( a,0), x ( 1 = a,0) For GLE: velocity density For NLSE: Case 1: velocity density Case : velocity density Trajectory Summary

114 back

115 back

116 back

117 back

118 back

119 back

120 GLE NLSE NLSE NLWE back

121 Summary of interaction For GLE (Bao, Du & Zhang, SIAP, 07 ) Undergo an attractive interaction & merge at finite time Energy decreasing: For GPE (Bao, Du & Zhang, SIAP, 07 ) depends on initial distance of the two centers Small: merge at finite time & generate shock wave Large: move almost paralleling & don t merge, solitary wave Energy conservation & radiation Sound wave generation E ( ψ ( x, t)) 0, For NLWE (Bao & Zhang, Physica D 07 ) Undergo an attractive interaction & merge at finite time t

122

123 Vortex-pair on bounded domain

124 Vortex-dipole on bounded domain

125 Interaction of 3 like vortices

126 Interaction of 3 opposite vortices

127 Interaction of a lattice

128 `dark-tail vortex-pair in BEC well-separate

129 `dark-tail vortex-dipole in BEC

130 `dark-tail vortex lattice in BEC

131 Conclusions Models for vortex in superfluidity & superconductivity Ginzburg-Landau equation (GLE) Gross-Pitaevskii equation (GPE)/ nonlinear Schrodinger equation (NLSE) Nonlinear wave equation Methods for vortex nucleation in superfluidity Gradient flow with normalization Backward Euler spectral (BESP) method Methods for vortex dynamics in superfluidity Time-splitting spectral (TSSP) method Central vortex stability and interaction

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas

Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

Numerical Methods for the Dynamics of the Nonlinear Schrodinger / Gross-Pitaevskii Equations. Weizhu Bao.

Numerical Methods for the Dynamics of the Nonlinear Schrodinger / Gross-Pitaevskii Equations. Weizhu Bao. Numerical Methods for the Dynamics of the Nonlinear Schrodinger / Gross-Pitaevskii Equations Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

FDM for wave equations

FDM for wave equations FDM for wave equations Consider the second order wave equation Some properties Existence & Uniqueness Wave speed finite!!! Dependence region Analytical solution in 1D Finite difference discretization Finite

More information

Qinglin TANG. INRIA & IECL, University of Lorraine, France

Qinglin TANG. INRIA & IECL, University of Lorraine, France Numerical methods on simulating dynamics of the nonlinear Schrödinger equation with rotation and/or nonlocal interactions Qinglin TANG INRIA & IECL, University of Lorraine, France Collaborators: Xavier

More information

Quantized vortex stability and interaction in the nonlinear wave equation

Quantized vortex stability and interaction in the nonlinear wave equation Physica D 237 (2008) 2391 2410 www.elsevier.com/locate/physd Quantized vortex stability and interaction in the nonlinear wave equation Weizhu Bao a,b,, Rong Zeng c, Yanzhi Zhang a,1 a Department of Mathematics,

More information

Vortices in Bose-Einstein condensates. Ionut Danaila

Vortices in Bose-Einstein condensates. Ionut Danaila Vortices in Bose-Einstein condensates 3D numerical simulations Ionut Danaila Laboratoire Jacques Louis Lions Université Pierre et Marie Curie (Paris 6) http://www.ann.jussieu.fr/ danaila October 16, 2008

More information

Numerical simulation of the dynamics of the rotating dipolar Bose-Einstein condensates

Numerical simulation of the dynamics of the rotating dipolar Bose-Einstein condensates Numerical simulation of the dynamics of the rotating dipolar Bose-Einstein condensates Qinglin TANG Inria, University of Lorraine Joint work with: Prof. Weizhu BAO, Daniel MARAHRENS, Yanzhi ZHANG and Yong

More information

Rapporto di ricerca Research report

Rapporto di ricerca Research report Dipartimento di Informatica Università degli Studi di Verona Rapporto di ricerca Research report September 2009 76/2009 Spectral methods for dissipative nonlinear Schrödinger equations Laura M. Morato

More information

A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems

A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems Weizhu Bao and Ming-Huang Chai Abstract In this paper we propose a uniformly convergent numerical method for

More information

Computer Physics Communications. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations

Computer Physics Communications. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations Computer Physics Communications (13) 1 3 Computer Physics Communications Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations Xavier Antoine a,b, Weizhu Bao 1c,d,

More information

Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations

Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations 1/38 Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations Xavier ANTOINE Institut Elie Cartan de Lorraine (IECL) & Inria-SPHINX Team Université de Lorraine, France Funded

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Mean Field Limits for Ginzburg-Landau Vortices

Mean Field Limits for Ginzburg-Landau Vortices Mean Field Limits for Ginzburg-Landau Vortices Sylvia Serfaty Université P. et M. Curie Paris 6, Laboratoire Jacques-Louis Lions & Institut Universitaire de France Jean-Michel Coron s 60th birthday, June

More information

Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila

Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila Numerical methods for computing vortex states in rotating Bose-Einstein condensates Ionut Danaila Laboratoire de mathématiques Raphaël Salem Université de Rouen www.univ-rouen.fr/lmrs/persopage/danaila

More information

Superfluidity and Superconductivity

Superfluidity and Superconductivity Superfluidity and Superconductivity These are related phenomena of flow without resistance, but in very different systems Superfluidity: flow of helium IV atoms in a liquid Superconductivity: flow of electron

More information

Superfluidity. v s. E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN University of Oulu, Finland (Dated: June 8, 2012)

Superfluidity. v s. E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN University of Oulu, Finland (Dated: June 8, 2012) Superfluidity E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN-90014 University of Oulu, Finland (Dated: June 8, 01) PACS numbers: 67.40.-w, 67.57.-z, 74., 03.75.-b I. INTRODUCTION Fluids

More information

On the Higgs mechanism in the theory of

On the Higgs mechanism in the theory of On the Higgs mechanism in the theory of superconductivity* ty Dietrich Einzel Walther-Meißner-Institut für Tieftemperaturforschung Bayerische Akademie der Wissenschaften D-85748 Garching Outline Phenomenological

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

A Superfluid Universe

A Superfluid Universe A Superfluid Universe Lecture 2 Quantum field theory & superfluidity Kerson Huang MIT & IAS, NTU Lecture 2. Quantum fields The dynamical vacuum Vacuumscalar field Superfluidity Ginsburg Landau theory BEC

More information

Mean Field Limits for Ginzburg-Landau Vortices

Mean Field Limits for Ginzburg-Landau Vortices Mean Field Limits for Ginzburg-Landau Vortices Sylvia Serfaty Courant Institute, NYU & LJLL, Université Pierre et Marie Curie Conference in honor of Yann Brenier, January 13, 2017 Fields Institute, 2003

More information

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory Tien-Tsan Shieh joint work with I-Liang Chern and Chiu-Fen Chou National Center of Theoretical Science December 19, 2015

More information

Superconductivity and Superfluidity

Superconductivity and Superfluidity Superconductivity and Superfluidity Contemporary physics, Spring 2015 Partially from: Kazimierz Conder Laboratory for Developments and Methods, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland Resistivity

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Superfluidity & Bogoliubov Theory: Rigorous Results

Superfluidity & Bogoliubov Theory: Rigorous Results Superfluidity & Bogoliubov Theory: Rigorous Results Mathieu LEWIN mathieu.lewin@math.cnrs.fr (CNRS & Université Paris-Dauphine) collaborations with P.T. Nam (Vienna), N. Rougerie (Grenoble), B. Schlein

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

When superfluids are a drag

When superfluids are a drag When superfluids are a drag KITP October 2008 David Roberts Los Alamos National Laboratory In collaboration with Yves Pomeau (ENS), Andrew Sykes (Queensland), Matt Davis (Queensland), What makes superfluids

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

Vortices and superfluidity

Vortices and superfluidity Vortices and superfluidity Vortices in Polariton quantum fluids We should observe a phase change by π and a density minimum at the core Michelson interferometry Forklike dislocation in interference pattern

More information

A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems

A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol 4, No, pp 35-6 Commun Comput Phys July 8 A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems Weizhu Bao, and Ming-Huang

More information

1 Interaction of Quantum Fields with Classical Sources

1 Interaction of Quantum Fields with Classical Sources 1 Interaction of Quantum Fields with Classical Sources A source is a given external function on spacetime t, x that can couple to a dynamical variable like a quantum field. Sources are fundamental in the

More information

Effective Dynamics of Solitons I M Sigal

Effective Dynamics of Solitons I M Sigal Effective Dynamics of Solitons I M Sigal Porquerolles October, 008 Joint work with Jürg Fröhlich, Stephen Gustafson, Lars Jonsson, Gang Zhou and Walid Abou Salem Bose-Einstein Condensation Consider a system

More information

Lecture I: numerical computation of the dynamics of Schrödinger equations. Extension to the GPE for BECs

Lecture I: numerical computation of the dynamics of Schrödinger equations. Extension to the GPE for BECs /67 Lecture I: numerical computation of the dynamics of Schrödinger equations. Extension to the GPE for BECs Xavier Antoine Institut Elie Cartan de Lorraine (IECL) Université de Lorraine INRIA-CORIDA Team

More information

70 YEAR QUEST ENDS IN SUCCESS BOSE-EINSTEIN CONDENSATION 2001 NOBEL PRIZE IN PHYSICS

70 YEAR QUEST ENDS IN SUCCESS BOSE-EINSTEIN CONDENSATION 2001 NOBEL PRIZE IN PHYSICS 70 YEAR QUEST ENDS IN SUCCESS BOSE-EINSTEIN CONDENSATION 2001 NOBEL PRIZE IN PHYSICS 8.044, LECTURE 33, SPRING 2004 BOSE-EINSTEIN CONDENSATION IS A QUANUM MECHANICAL EFFECT Image removed due to copyright

More information

Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas

Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas 0.5 setgray0 0.5 setgray1 Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas IV EBED João Pessoa - 2011 Rolci Cipolatti Instituto de Matemática - UFRJ

More information

Superfluid Helium-3: From very low Temperatures to the Big Bang

Superfluid Helium-3: From very low Temperatures to the Big Bang Superfluid Helium-3: From very low Temperatures to the Big Bang Universität Frankfurt; May 30, 2007 Dieter Vollhardt Contents: The quantum liquids 3 He and 4 He Superfluid phases of 3 He Broken symmetries

More information

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/ Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps Michele Correggi Erwin Schrödinger Institute, Vienna T. Rindler-Daller, J. Yngvason math-ph/0606058 in collaboration with preprint

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

Dark & Bright Solitons in Strongly Repulsive Bose-Einstein Condensate

Dark & Bright Solitons in Strongly Repulsive Bose-Einstein Condensate Dark & Bright Solitons in Strongly Repulsive Bose-Einstein Condensate Indu Satija, George Mason Univ & National Institute of Standard and Tech ( NIST) collaborator:radha Balakrishnan, Institute of Mathematical

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Chapter 1. Macroscopic Quantum Phenomena

Chapter 1. Macroscopic Quantum Phenomena Chapter 1 Macroscopic Quantum Phenomena Chap. 1-2 I. Foundations of the Josephson Effect 1. Macroscopic Quantum Phenomena 1.1 The Macroscopic Quantum Model of Superconductivity Macroscopic systems Quantum

More information

The Nonlinear Schrödinger Equation and Applications in Bose-Einstein Condensation and Plasma Physics

The Nonlinear Schrödinger Equation and Applications in Bose-Einstein Condensation and Plasma Physics The Nonlinear Schrödinger Equation and Applications in Bose-Einstein Condensation and Plasma Physics Weizhu Bao Department of Mathematics Center for Computational Science and Engineering National University

More information

Superfluid Helium-3: From very low Temperatures to the Big Bang

Superfluid Helium-3: From very low Temperatures to the Big Bang Superfluid Helium-3: From very low Temperatures to the Big Bang Dieter Vollhardt Yukawa Institute, Kyoto; November 27, 2007 Contents: The quantum liquids 3 He and 4 He Superfluid phases of 3 He Broken

More information

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9

Contents. 1.1 Prerequisites and textbooks Physical phenomena and theoretical tools The path integrals... 9 Preface v Chapter 1 Introduction 1 1.1 Prerequisites and textbooks......................... 1 1.2 Physical phenomena and theoretical tools................. 5 1.3 The path integrals..............................

More information

Mean Field Limits for Ginzburg-Landau Vortices

Mean Field Limits for Ginzburg-Landau Vortices Mean Field Limits for Ginzburg-Landau Vortices Sylvia Serfaty Courant Institute, NYU Rivière-Fabes symposium, April 28-29, 2017 The Ginzburg-Landau equations u : Ω R 2 C u = u ε 2 (1 u 2 ) Ginzburg-Landau

More information

The Ginzburg-Landau Theory

The Ginzburg-Landau Theory The Ginzburg-Landau Theory A normal metal s electrical conductivity can be pictured with an electron gas with some scattering off phonons, the quanta of lattice vibrations Thermal energy is also carried

More information

1 Superfluidity and Bose Einstein Condensate

1 Superfluidity and Bose Einstein Condensate Physics 223b Lecture 4 Caltech, 04/11/18 1 Superfluidity and Bose Einstein Condensate 1.6 Superfluid phase: topological defect Besides such smooth gapless excitations, superfluid can also support a very

More information

Excitations and dynamics of a two-component Bose-Einstein condensate in 1D

Excitations and dynamics of a two-component Bose-Einstein condensate in 1D Author: Navarro Facultat de Física, Universitat de Barcelona, Diagonal 645, 0808 Barcelona, Spain. Advisor: Bruno Juliá Díaz Abstract: We study different solutions and their stability for a two component

More information

10 Supercondcutor Experimental phenomena zero resistivity Meissner effect. Phys463.nb 101

10 Supercondcutor Experimental phenomena zero resistivity Meissner effect. Phys463.nb 101 Phys463.nb 101 10 Supercondcutor 10.1. Experimental phenomena 10.1.1. zero resistivity The resistivity of some metals drops down to zero when the temperature is reduced below some critical value T C. Such

More information

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom Superconductivity S2634: Physique de la matière condensée & nano-objets Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom 1 What is superconductivity? 2 Superconductivity Superconductivity generally

More information

Preface Introduction to the electron liquid

Preface Introduction to the electron liquid Table of Preface page xvii 1 Introduction to the electron liquid 1 1.1 A tale of many electrons 1 1.2 Where the electrons roam: physical realizations of the electron liquid 5 1.2.1 Three dimensions 5 1.2.2

More information

Chapter 1. Macroscopic Quantum Phenomena

Chapter 1. Macroscopic Quantum Phenomena Chapter 1 Macroscopic Quantum Phenomena Chap. 1-2 I. Foundations of the Josephson Effect 1. Macroscopic Quantum Phenomena 1.1 The Macroscopic Quantum Model of Superconductivity quantum mechanics: - physical

More information

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin

Supersolids. Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin Supersolids Bose-Einstein Condensation in Quantum Solids Does it really exist?? W. J. Mullin This is a lively controversy in condensed matter physics. Experiment says yes. Theory says no, or at best maybe.

More information

1 Quantum Theory of Matter

1 Quantum Theory of Matter Quantum Theory of Matter: Superfluids & Superconductors Lecturer: Derek Lee Condensed Matter Theory Blackett 809 Tel: 020 7594 7602 dkk.lee@imperial.ac.uk Level 4 course: PT4.5 (Theory Option) http://www.cmth.ph.ic.ac.uk/people/dkk.lee/teach/qtm

More information

What are we going to talk about: BEC and Nonlinear Atom Optics

What are we going to talk about: BEC and Nonlinear Atom Optics What are we going to talk about: BEC and Nonlinear Atom Optics Nobel Prize Winners E. A. Cornell 1961JILA and NIST Boulder, Co, USA W. Ketterle C. E. Wieman 19571951MIT, JILA and UC, Cambridge.M Boulder,

More information

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and :

We can then linearize the Heisenberg equation for in the small quantity obtaining a set of linear coupled equations for and : Wednesday, April 23, 2014 9:37 PM Excitations in a Bose condensate So far: basic understanding of the ground state wavefunction for a Bose-Einstein condensate; We need to know: elementary excitations in

More information

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Dmitry Pelinovsky 1 and Panos Kevrekidis 2 1 Department of Mathematics, McMaster University, Hamilton, Ontario, Canada

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

Superfluids, Superconductors and Supersolids: Macroscopic Manifestations of the Microworld Laws

Superfluids, Superconductors and Supersolids: Macroscopic Manifestations of the Microworld Laws University of Massachusetts Amherst From the SelectedWorks of Egor Babaev 2008 Superfluids, Superconductors and Supersolids: Macroscopic Manifestations of the Microworld Laws Egor Babaev, University of

More information

Hamiltonian aspects of fluid dynamics

Hamiltonian aspects of fluid dynamics Hamiltonian aspects of fluid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08, 01/31/08 Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 1 / 34 Outline

More information

CHAPTER 8 The Quantum Theory of Motion

CHAPTER 8 The Quantum Theory of Motion I. Translational motion. CHAPTER 8 The Quantum Theory of Motion A. Single particle in free space, 1-D. 1. Schrodinger eqn H ψ = Eψ! 2 2m d 2 dx 2 ψ = Eψ ; no boundary conditions 2. General solution: ψ

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Solitons and vortices in Bose-Einstein condensates with finite-range interaction

Solitons and vortices in Bose-Einstein condensates with finite-range interaction Solitons and vortices in Bose-Einstein condensates with finite-range interaction Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research Unit

More information

The Superfluid Phase s of Helium 3

The Superfluid Phase s of Helium 3 The Superfluid Phase s of Helium 3 DIETER VOLLHARD T Rheinisch-Westfälische Technische Hochschule Aachen, Federal Republic of German y PETER WÖLFL E Universität Karlsruhe Federal Republic of Germany PREFACE

More information

Bose-Einstein condensates under rotation: The structures within

Bose-Einstein condensates under rotation: The structures within Bose-Einstein condensates under rotation: The structures within Peter Mason Centre de Mathématiques Appliquées, Ecole Polytechnique Paris, France In collaboration with Amandine Aftalion and Thierry Jolicoeur:

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

Bose Einstein Condensation

Bose Einstein Condensation April 3, 2017 Quantum Physics becomes visible in the cold Quantum Effects in Macroscopic World at Low Temperature Superconductivity Quantum Hall Effect Bose Einstein Condensation Deep down, all matter

More information

Looking Through the Vortex Glass

Looking Through the Vortex Glass Looking Through the Vortex Glass Lorenz and the Complex Ginzburg-Landau Equation Igor Aronson It started in 1990 Project started in Lorenz Kramer s VW van on the way back from German Alps after unsuccessful

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Microscopic Derivation of Ginzburg Landau Theory. Mathematics and Quantum Physics

Microscopic Derivation of Ginzburg Landau Theory. Mathematics and Quantum Physics Microscopic Derivation of Ginzburg Landau heory Robert Seiringer IS Austria Joint work with Rupert Frank, Christian Hainzl, and Jan Philip Solovej J. Amer. Math. Soc. 25 (2012), no. 3, 667 713 Mathematics

More information

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA Shigeji Fujita and Salvador V Godoy Mathematical Physics WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA Contents Preface XIII Table of Contents and Categories XV Constants, Signs, Symbols, and General Remarks

More information

A simple Dufort-Frankel type scheme for the Gross-Pitaevskii equation of Bose-Einstein condensates on different geometries

A simple Dufort-Frankel type scheme for the Gross-Pitaevskii equation of Bose-Einstein condensates on different geometries A simple Dufort-Frankel type scheme for the Gross-Pitaevskii equation of Bose-Einstein condensates on different geometries Ming-Chih Lai Chung-Yin Huang Te-Sheng Lin Department of Applied Mathematics,

More information

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University 1: Bose-Einstein Condensation Department of Physics Umeå University lundh@tp.umu.se April 13, 2011 Umeå 114 000 inhabitants Average age 37.9 years Cultural capital of Europe 2014 400 km ski tracks 180

More information

Condensed Matter Physics and the Nature of Spacetime

Condensed Matter Physics and the Nature of Spacetime Condensed Matter Physics and the Nature of Spacetime Jonathan Bain Polytechnic University Prospects for modeling spacetime as a phenomenon that emerges in the low-energy limit of a quantum liquid. 1. EFTs

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Low dimensional quantum gases, rotation and vortices

Low dimensional quantum gases, rotation and vortices Goal of these lectures Low dimensional quantum gases, rotation and vortices Discuss some aspect of the physics of quantum low dimensional systems Planar fluids Quantum wells and MOS structures High T c

More information

Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics

Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics Luigi Barletti (Università di Firenze) Carlo Cintolesi (Università di Trieste) 6th MMKT Porto Ercole, june 9th

More information

Vortex dynamics in finite temperature two-dimensional superfluid turbulence. Andrew Lucas

Vortex dynamics in finite temperature two-dimensional superfluid turbulence. Andrew Lucas Vortex dynamics in finite temperature two-dimensional superfluid turbulence Andrew Lucas Harvard Physics King s College London, Condensed Matter Theory Special Seminar August 15, 2014 Collaborators 2 Paul

More information

Superfluid Helium-3: From very low Temperatures to the Big Bang

Superfluid Helium-3: From very low Temperatures to the Big Bang Center for Electronic Correlations and Magnetism University of Augsburg Superfluid Helium-3: From very low Temperatures to the Big Bang Dieter Vollhardt Dvořák Lecture Institute of Physics, Academy of

More information

Dynamics and Statistics of Quantum Turbulence in Quantum Fluid

Dynamics and Statistics of Quantum Turbulence in Quantum Fluid Dynamics and Statistics of Quantum Turbulence in Quantum Fluid Faculty of Science, Osaka City University Michikazu Kobayashi May 25, 2006, Kansai Seminar House Contents 1. 2. 3. 4. 5. Introduction - history

More information

Theory of singular vortex solutions of the nonlinear Schrödinger equation

Theory of singular vortex solutions of the nonlinear Schrödinger equation Physica D 37 (8) 696 73 www.elsevier.com/locate/physd Theory of singular vortex solutions of the nonlinear Schrödinger equation Gadi Fibich, Nir Gavish School of Mathematical Sciences, Tel Aviv University,

More information

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems * Mesoscopic Nano-Electro-Mechanics of Shuttle Systems Robert Shekhter University of Gothenburg, Sweden Lecture1: Mechanically assisted single-electronics Lecture2: Quantum coherent nano-electro-mechanics

More information

Quantum vortex reconnections

Quantum vortex reconnections Quantum vortex reconnections A.W. Baggaley 1,2, S. Zuccher 4, Carlo F Barenghi 2, 3, A.J. Youd 2 1 University of Glasgow 2 Joint Quantum Centre Durham-Newcastle 3 Newcastle University 4 University of Verona

More information

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University BEC Vortex Matter Aaron Sup October 6, 006 Advisor: Dr. Charles Hanna, Department of Physics, Boise State University 1 Outline 1. Bosons: what are they?. Bose-Einstein Condensation (BEC) 3. Vortex Formation:

More information

Pattern Formation in the Fractional Quantum Hall Effect

Pattern Formation in the Fractional Quantum Hall Effect Journal of the Physical Society of Japan 72, Supplement C (2003) 18-23 Pattern Formation in the Fractional Quantum Hall Effect Pierre Gaspard Center for Nonlinear Phenomena and Complex Systems, Université

More information

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Spontaneous Symmetry Breaking in Bose-Einstein Condensates The 10th US-Japan Joint Seminar Spontaneous Symmetry Breaking in Bose-Einstein Condensates Masahito UEDA Tokyo Institute of Technology, ERATO, JST collaborators Yuki Kawaguchi (Tokyo Institute of Technology)

More information

Singular Limits of the Klein-Gordon Equation

Singular Limits of the Klein-Gordon Equation Singular Limits of the Klein-Gordon Equation Abstract Chi-Kun Lin 1 and Kung-Chien Wu 2 Department of Applied Mathematics National Chiao Tung University Hsinchu 31, TAIWAN We establish the singular limits

More information

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA Third Critical Speed for Rotating Bose-Einstein Condensates Mathematical Foundations of Physics Daniele Dimonte, SISSA 1 st November 2016 this presentation available on daniele.dimonte.it based on a joint

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Singularity Formation in Nonlinear Schrödinger Equations with Fourth-Order Dispersion

Singularity Formation in Nonlinear Schrödinger Equations with Fourth-Order Dispersion Singularity Formation in Nonlinear Schrödinger Equations with Fourth-Order Dispersion Boaz Ilan, University of Colorado at Boulder Gadi Fibich (Tel Aviv) George Papanicolaou (Stanford) Steve Schochet (Tel

More information

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016

Ana Maria Rey. Okinawa School in Physics 2016: Coherent Quantum Dynamics. Okinawa, Japan, Oct 4-5, 2016 Ana Maria Rey Okinawa School in Physics 016: Coherent Quantum Dynamics Okinawa, Japan, Oct 4-5, 016 What can we do with ultra-cold matter? Quantum Computers Lecture II-III Clocks and sensors Synthetic

More information

Workshop on Supersolid August Brief introduction to the field. M. Chan Pennsylvania State University, USA

Workshop on Supersolid August Brief introduction to the field. M. Chan Pennsylvania State University, USA 1959-11 Workshop on Supersolid 2008 18-22 August 2008 Brief introduction to the field M. Chan Pennsylvania State University, USA Superfluid and supersolid An introduction at the ICTP Supersolid 2008 workshop

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Experimental realization of Bose Einstein condensation (BEC) of dilute atomic gases [Anderson, et al. (1995); Davis, et al. (1995); Bradley, et al. (1995, 1997)] has ignited a virtual explosion of research.

More information

Superconductivity. Alexey Ustinov Universität Karlsruhe WS Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1

Superconductivity. Alexey Ustinov Universität Karlsruhe WS Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1 Superconductivity Alexey Ustinov Universität Karlsruhe WS 2008-2009 Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1 Lectures October 20 Phenomenon of superconductivity October 27 Magnetic properties

More information

Lecture 4: Superfluidity

Lecture 4: Superfluidity Lecture 4: Superfluidity Previous lecture: Elementary excitations above condensate are phonons in the low energy limit. This lecture Rotation of superfluid helium. Hess-Fairbank effect and persistent currents

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information