Dark & Bright Solitons in Strongly Repulsive Bose-Einstein Condensate

Size: px
Start display at page:

Download "Dark & Bright Solitons in Strongly Repulsive Bose-Einstein Condensate"

Transcription

1 Dark & Bright Solitons in Strongly Repulsive Bose-Einstein Condensate Indu Satija, George Mason Univ & National Institute of Standard and Tech ( NIST) collaborator:radha Balakrishnan, Institute of Mathematical Sciences, Chennai, India Physical Review Letters: 103, , 2009

2 outline Soliton/solitary waves BEC Weakly interacting BEC and GPE ( NLSE) Dark solitons of GPE Strongly Interacting BEC: HCB ( in contrast to ferminization approach, use spin-coherent states to obtain equation for the order-parameter: non-gpe-type New exotic soliton for particle-hole Imbalance Soliton Dispersion Summary & Open Questions

3 Solitary Waves & Solitons A certain class of nonlinear equations support solitary waves/soliton solution Solitary waves: travelling wave, move in spendid isolation, holding their shape, size & velocity as it moves Solitons: after a collision of two solitary waves, if each retains its shape, size and velocity, such a solitary wave is called soliton. Therefore, soliton is a solitary wave with special collision property ( only their phase can change) In physics literature, a solitary wave is often referred as soliton, due to its particle-like behavior. Such solutions arise in a variety of fields such as hydrodynamics, plasma physics, magnetism... and also in BOSE EINSTEIN CONDENSATES

4 Discovered by John Scott Russel in 1834: he called them wave of translation:i was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation"

5

6 For dilute gas where range of interatomic forces << particle separation a: s-wave scattering length

7

8

9 Dark Soliton : absence of atoms that can propagate without changing shape in the condensate Solitons flatten out at sound velocity

10

11 Strongly nteracting BEC: Hard-Core Bosons

12 Hamiltonian: Extended Bose-Hubbard Order Parameter

13 Discrete-non-GPE: (HGPE)

14 Comparison with DNLSE (GPE)

15 Canonical Formulation

16 Hard Core Bosons With infinite onsite replusion ( HCB limit), Ψ S + = S x + is y η =< S + > Spin-Coherent States i τ i > = τ i > = τ > Define: τ i tan(θ i /2)e iφ i 1 1+ τ i 2exp[ τ is i 0 > τ i >= cos(θ i /2) + > +sin(θ i /2)e iφ i > η i = 1 2 sin(θ i)e iφ i ρ s = 1 4 sin2 (θ i ) ρ i = sin 2 (θ i /2) ρ s = ρ(1 ρ) ρ p ρ h

17 Glauber coherent states: ˆΨ(r) = 1 V k a k e ik.r a k α k > = α k α k > α k > = exp[ α k a k 0 > ψ(r) = 1/ V k α k e ik.r k α k > = α >= {Ψ} > ˆΨ(r) {Ψ} > = Ψ(r) {Ψ} > < ˆΨ ˆΨ > = < ˆΨ >< ˆΨ > The coherent states are normalized, are not orthogonal but form a complete set, 1/π d 2 α k α k >< α k = I

18 Two species of solitons

19 Analytic solution vs Numerical solution

20 Soliton profile for total density GPE-type non-gpe-type

21 Quarter-filling non-gpe-type non-gpe-type GPE-type Gpe-type Stationary soliton Soliton with velocity close to sound velocity

22 Brightening of the soliton in condensate fraction Two Species of Solitons GPE-type Exotic: Immortal

23 As velocity changes from zero to sound velocity, kink transforms to a vortex

24 3/4-filling

25 half-filling Condensate soliton is identical to GPE

26 GPE-solitons in the condensate are dark and have Zero amplitude at sound velocity non-gpe-type in the condensate are some-what brightened and survive all the way upto sound velocity: Immortal Soliton non-gpe-type soliton exists provided the background density is different from half-filling

27 Above Sound Velocity

28

29 Solitary Waves or Solitons?? Bill Reinhardt has studied the collision properties of the dark solitary waves and shown that they are SOLITONS ( unpublished) Collision properties of bright solitons are under investigation

30 Summary New species of solitons has been predicted in strongly repulsive BEC Unlike GPE soliton, they brighten-up away from halffilling Unlike GPE solitons, they survive all the way upto sound velocity and then brekup into periodic train for velocities bigger than sound velocity. We refer them as immortal/ persistent soliton Immortal solitons are transformed into periodic trains above sound velocity The immortal solitons could have exotic collision properties

31 Open Questions?? Does HGPE provide useful insight into the dynamics of strongly interacting quantum many body BEC? Is the brightening of dark soliton a robust phenomena for very strongly interacting BEC? Relationship between particle-hole asymmetry and Immortal Soliton Immortal soliton travel with highest possible speed and retain their shape and hence can be a good candidate for quantum information propagation for fast information travel. Experimental realization

32 I hope it will not shock experimental physicists too much if I say that we donot accept their observations unless they are confirmed by theory,.. Sir Arthur Eddinton, 11 September 1933

Solitons in optical fibers. by: Khanh Kieu

Solitons in optical fibers. by: Khanh Kieu Solitons in optical fibers by: Khanh Kieu Project 9: Observation of soliton PD (or autocorrelator) ML laser splitter Er-doped Fiber spool 980nm pump PD (or autocorrelator) P 0 is the free parameter What

More information

Nonlinear Optics (WiSe 2017/18) Lecture 12: November 28, 2017

Nonlinear Optics (WiSe 2017/18) Lecture 12: November 28, 2017 7.6 Raman and Brillouin scattering 7.6.1 Focusing Nonlinear Optics (WiSe 2017/18) Lecture 12: November 28, 2017 7.6.2 Strong conversion 7.6.3 Stimulated Brillouin scattering (SBS) 8 Optical solitons 8.1

More information

Nonlinear Optics (WiSe 2015/16) Lecture 7: November 27, 2015

Nonlinear Optics (WiSe 2015/16) Lecture 7: November 27, 2015 Review Nonlinear Optics (WiSe 2015/16) Lecture 7: November 27, 2015 Chapter 7: Third-order nonlinear effects (continued) 7.6 Raman and Brillouin scattering 7.6.1 Focusing 7.6.2 Strong conversion 7.6.3

More information

Solitons : An Introduction

Solitons : An Introduction Solitons : An Introduction p. 1/2 Solitons : An Introduction Amit Goyal Department of Physics Panjab University Chandigarh Solitons : An Introduction p. 2/2 Contents Introduction History Applications Solitons

More information

Shock Waves & Solitons

Shock Waves & Solitons 1 / 1 Shock Waves & Solitons PDE Waves; Oft-Left-Out; CFD to Follow Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support from

More information

Nonlinear Optics (WiSe 2018/19) Lecture 7: November 30, 2018

Nonlinear Optics (WiSe 2018/19) Lecture 7: November 30, 2018 Nonlinear Optics (WiSe 2018/19) Lecture 7: November 30, 2018 7 Third-order nonlinear effects (continued) 7.6 Raman and Brillouin scattering 7.6.1 Focusing 7.6.2 Strong conversion 7.6.3 Stimulated Brillouin

More information

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October

Soliton Molecules. Fedor Mitschke Universität Rostock, Institut für Physik. Benasque, October Soliton Soliton Molecules Molecules and and Optical Optical Rogue Rogue Waves Waves Benasque, October 2014 Fedor Mitschke Universität Rostock, Institut für Physik fedor.mitschke@uni-rostock.de Part II

More information

Convergence of operator splitting for the KdV equation

Convergence of operator splitting for the KdV equation Convergence of operator splitting for the KdV equation H. Holden Norwegian University of Science and Technology Trondheim, Norway Joint work with K.H. Karlsen, N. H. Risebro, and T. Tao Institute for Mathematics

More information

KdV soliton solutions to a model of hepatitis C virus evolution

KdV soliton solutions to a model of hepatitis C virus evolution KdV soliton solutions to a model of hepatitis C virus evolution T. Telksnys, Z. Navickas, M. Ragulskis Kaunas University of Technology Differential Equations and Applications, Brno 2017 September 6th,

More information

Physics Letters A. Other incarnations of the Gross Pitaevskii dark soliton. Indubala I. Satija a,b,radhabalakrishnan c, article info abstract

Physics Letters A. Other incarnations of the Gross Pitaevskii dark soliton. Indubala I. Satija a,b,radhabalakrishnan c, article info abstract Physics Letters A 375 (011) 517 51 Contents lists available at ScienceDirect Physics Letters A www.elsevier.com/locate/pla Other incarnations of the Gross Pitaevskii dark soliton Indubala I. Satija a,b,radhabalakrishnan

More information

Solitons in Bose Einstein condensates

Solitons in Bose Einstein condensates PRAMANA c Indian Academy of Sciences Vol. 77, No. 5 journal of November 2011 physics pp. 929 947 Solitons in Bose Einstein condensates RADHA BALAKRISHNAN 1, and INDUBALA I SATIJA 2,3 1 The Institute of

More information

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

12 Lecture 12. Lax pair and Toda lattice

12 Lecture 12. Lax pair and Toda lattice 128 12 Lecture 12. Lax pair and Toda lattice The story in this lecture goes as follows chronologically. Scott-Russel observed (1834) the first solitary wave propagation along the Union Canal, Scotland

More information

Self-trapped optical beams: From solitons to vortices

Self-trapped optical beams: From solitons to vortices Self-trapped optical beams: From solitons to vortices Yuri S. Kivshar Nonlinear Physics Centre, Australian National University, Canberra, Australia http://wwwrsphysse.anu.edu.au/nonlinear/ Outline of today

More information

No-hair and uniqueness results for analogue black holes

No-hair and uniqueness results for analogue black holes No-hair and uniqueness results for analogue black holes LPT Orsay, France April 25, 2016 [FM, Renaud Parentani, and Robin Zegers, PRD93 065039] Outline Introduction 1 Introduction 2 3 Introduction Hawking

More information

Lecture 2: Weak Interactions and BEC

Lecture 2: Weak Interactions and BEC Lecture 2: Weak Interactions and BEC Previous lecture: Ideal gas model gives a fair intuition for occurrence of BEC but is unphysical (infinite compressibility, shape of condensate...) Order parameter

More information

PAPER 84 QUANTUM FLUIDS

PAPER 84 QUANTUM FLUIDS MATHEMATICAL TRIPOS Part III Wednesday 6 June 2007 9.00 to 11.00 PAPER 84 QUANTUM FLUIDS Attempt TWO questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY REQUIREMENTS

More information

Workshop on Supersolid August Brief introduction to the field. M. Chan Pennsylvania State University, USA

Workshop on Supersolid August Brief introduction to the field. M. Chan Pennsylvania State University, USA 1959-11 Workshop on Supersolid 2008 18-22 August 2008 Brief introduction to the field M. Chan Pennsylvania State University, USA Superfluid and supersolid An introduction at the ICTP Supersolid 2008 workshop

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Superfluidity and Superconductivity

Superfluidity and Superconductivity Superfluidity and Superconductivity These are related phenomena of flow without resistance, but in very different systems Superfluidity: flow of helium IV atoms in a liquid Superconductivity: flow of electron

More information

1 Fluctuations of the number of particles in a Bose-Einstein condensate

1 Fluctuations of the number of particles in a Bose-Einstein condensate Exam of Quantum Fluids M1 ICFP 217-218 Alice Sinatra and Alexander Evrard The exam consists of two independant exercises. The duration is 3 hours. 1 Fluctuations of the number of particles in a Bose-Einstein

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Bunching-Antibunching of Quantum Particles From Astronomy to AMO. Indu Satija George Mason

Bunching-Antibunching of Quantum Particles From Astronomy to AMO. Indu Satija George Mason Bunching-Antibunching of Quantum Particles From Astronomy to AMO Indu Satija George Mason What is the most beautiful experiment in physics? This is the question that Robert Crease asked Physics World readers

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Superfluidity and Condensation

Superfluidity and Condensation Christian Veit 4th of June, 2013 2 / 29 The discovery of superfluidity Early 1930 s: Peculiar things happen in 4 He below the λ-temperature T λ = 2.17 K 1938: Kapitza, Allen & Misener measure resistance

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Squeezing and superposing many-body states of Bose gases in confining potentials

Squeezing and superposing many-body states of Bose gases in confining potentials Squeezing and superposing many-body states of Bose gases in confining potentials K. B. Whaley Department of Chemistry, Kenneth S. Pitzer Center for Theoretical Chemistry, Berkeley Quantum Information and

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain*

Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain* Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain* PHUOC X. TRAN, DONALD W. BRENNER, and C. T. WHITE Naval Research Laboratory, Washington, DC 20375-5000 Abstract The propagation

More information

When superfluids are a drag

When superfluids are a drag When superfluids are a drag KITP October 2008 David Roberts Los Alamos National Laboratory In collaboration with Yves Pomeau (ENS), Andrew Sykes (Queensland), Matt Davis (Queensland), What makes superfluids

More information

Many-body physics 2: Homework 8

Many-body physics 2: Homework 8 Last update: 215.1.31 Many-body physics 2: Homework 8 1. (1 pts) Ideal quantum gases (a)foranidealquantumgas,showthatthegrandpartitionfunctionz G = Tre β(ĥ µ ˆN) is given by { [ ] 1 Z G = i=1 for bosons,

More information

Towards Soliton Computer Based on Solitary Wave Solution of Maxwell-Dirac equation: A Plausible Alternative to Manakov System

Towards Soliton Computer Based on Solitary Wave Solution of Maxwell-Dirac equation: A Plausible Alternative to Manakov System Towards Soliton Computer Based on Solitary Wave Solution of Maxwell-Dirac equation: A Plausible Alternative to Manakov System Victor Christianto* 1, Florentin Smarandache 1 Malang Institute of Agriculture

More information

Interaction between atoms

Interaction between atoms Interaction between atoms MICHA SCHILLING HAUPTSEMINAR: PHYSIK DER KALTEN GASE INSTITUT FÜR THEORETISCHE PHYSIK III UNIVERSITÄT STUTTGART 23.04.2013 Outline 2 Scattering theory slow particles / s-wave

More information

From the SelectedWorks of Ji-Huan He. Soliton Perturbation. Ji-Huan He, Donghua University. Available at:

From the SelectedWorks of Ji-Huan He. Soliton Perturbation. Ji-Huan He, Donghua University. Available at: From the SelectedWorks of Ji-Huan He 29 Soliton Perturbation Ji-Huan He, Donghua University Available at: https://works.bepress.com/ji_huan_he/46/ S Soliton Perturbation 8453 49. Zhang W, Hill RW (2) A

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Aug 1999

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Aug 1999 Interference of a Bose-Einstein condensate in a hard-wall trap: Formation of vorticity arxiv:cond-mat/9908095v1 [cond-mat.stat-mech] 6 Aug 1999 J. Ruostekoski, B. Kneer, and W. P. Schleich Abteilung für

More information

1 Superfluidity and Bose Einstein Condensate

1 Superfluidity and Bose Einstein Condensate Physics 223b Lecture 4 Caltech, 04/11/18 1 Superfluidity and Bose Einstein Condensate 1.6 Superfluid phase: topological defect Besides such smooth gapless excitations, superfluid can also support a very

More information

Michikazu Kobayashi. Kyoto University

Michikazu Kobayashi. Kyoto University Topological Excitations and Dynamical Behavior in Bose-Einstein Condensates and Other Systems Michikazu Kobayashi Kyoto University Oct. 24th, 2013 in Okinawa International Workshop for Young Researchers

More information

Bose-Einstein condensates under rotation: The structures within

Bose-Einstein condensates under rotation: The structures within Bose-Einstein condensates under rotation: The structures within Peter Mason Centre de Mathématiques Appliquées, Ecole Polytechnique Paris, France In collaboration with Amandine Aftalion and Thierry Jolicoeur:

More information

Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates

Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates Antun Balaž 1 and Alexandru Nicolin 2 1 Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade,

More information

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (+2-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION ALI FILIZ ABDULLAH SONMEZOGLU MEHMET EKICI and DURGUN DURAN Communicated by Horia Cornean In this

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs RHI seminar Pascal Büscher i ( t Φ (r, t) = 2 2 ) 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) 27 Nov 2008 RHI seminar Pascal Büscher 1 (Stamper-Kurn

More information

QSim Quantum simulation with ultracold atoms

QSim Quantum simulation with ultracold atoms APS Tutorial 7 QSim Quantum simulation with ultracold atoms Lecture 1: Lecture 2: Lecture 3: Lecture 4: Introduction to quantum simulation with ultracold atoms Hubbard physics with optical lattices Ultracold

More information

Math Questions for the 2011 PhD Qualifier Exam 1. Evaluate the following definite integral 3" 4 where! ( x) is the Dirac! - function. # " 4 [ ( )] dx x 2! cos x 2. Consider the differential equation dx

More information

Trapping, tunneling & fragmentation of condensates in optical traps

Trapping, tunneling & fragmentation of condensates in optical traps Trapping, tunneling & fragmentation of condensates in optical traps Nimrod Moiseyev Department of Chemistry and Minerva Center for Non-linear Physics of Complex Systems, Technion-Israel Institute of Technology.

More information

Towards new states of matter with atoms and photons

Towards new states of matter with atoms and photons Towards new states of matter with atoms and photons Jonas Larson Stockholm University and Universität zu Köln Aarhus Cold atoms and beyond 26/6-2014 Motivation Optical lattices + control quantum simulators.

More information

What we do understand by the notion of soliton or rather solitary wave is a wave prole which is very stable in the following sense

What we do understand by the notion of soliton or rather solitary wave is a wave prole which is very stable in the following sense Introduction to Waves and Solitons What we do understand by the notion of soliton or rather solitary wave is a wave prole which is very stable in the following sense i) It is localized, which means it

More information

Hydrodynamic solitons in polariton superfluids

Hydrodynamic solitons in polariton superfluids Hydrodynamic solitons in polariton superfluids Laboratoire Kastler Brossel (Paris) A. Amo * V.G. Sala,, R. Hivet, C. Adrados,, F. Pisanello, G. Lemenager,, J. Lefrère re, E. Giacobino, A. Bramati Laboratoire

More information

Asymptotic stability for solitons of the Gross-Pitaevskii and Landau-Lifshitz equations

Asymptotic stability for solitons of the Gross-Pitaevskii and Landau-Lifshitz equations Asymptotic stability for solitons of the Gross-Pitaevskii and Landau-Lifshitz equations Philippe Gravejat Cergy-Pontoise University Joint work with F. Béthuel (Paris 6), A. de Laire (Lille) and D. Smets

More information

Shock waves in the unitary Fermi gas

Shock waves in the unitary Fermi gas Shock waves in the unitary Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova Banff, May 205 Collaboration with: Francesco Ancilotto and Flavio Toigo Summary.

More information

The nonlinear Schrödinger equation (NLSE) on metric graphs. Sven Gnutzmann (Nottingham) & Uzy Smilansky (Weizmann)

The nonlinear Schrödinger equation (NLSE) on metric graphs. Sven Gnutzmann (Nottingham) & Uzy Smilansky (Weizmann) The nonlinear Schrödinger equation (NLSE) on metric graphs Sven Gnutzmann (Nottingham) & Uzy Smilansky (Weizmann) Workshop on Random-Matrix Theory, Brunel, 19 December 2009 Physical applications of the

More information

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the

Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the Basic Concepts and the Discovery of Solitons p. 1 A look at linear and nonlinear signatures p. 1 Discovery of the solitary wave p. 3 Discovery of the soliton p. 7 The soliton concept in physics p. 11 Linear

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems

Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Modulation Instability of Spatially-Incoherent Light Beams and Pattern Formation in Incoherent Wave Systems Detlef Kip, (1,2) Marin Soljacic, (1,3) Mordechai Segev, (1,4) Evgenia Eugenieva, (5) and Demetrios

More information

Solitons and vortices in Bose-Einstein condensates with finite-range interaction

Solitons and vortices in Bose-Einstein condensates with finite-range interaction Solitons and vortices in Bose-Einstein condensates with finite-range interaction Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research Unit

More information

IAN STRACHAN. 1. Introduction

IAN STRACHAN. 1. Introduction HOW TO COUNT CURVES: FROM 19 th CENTURY PROBLEMS TO 21 st CENTURY SOLUTIONS IAN STRACHAN Guess the next term in the sequence: 1. Introduction 1, 1, 12, 620, 87304, 26312976. This problem belongs to an

More information

Superfluidity in bosonic systems

Superfluidity in bosonic systems Superfluidity in bosonic systems Rico Pires PI Uni Heidelberg Outline Strongly coupled quantum fluids 2.1 Dilute Bose gases 2.2 Liquid Helium Wieman/Cornell A. Leitner, from wikimedia When are quantum

More information

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other

The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other 1 The phases of matter familiar for us from everyday life are: solid, liquid, gas and plasma (e.f. flames of fire). There are, however, many other phases of matter that have been experimentally observed,

More information

Superconductivity and the BCS theory

Superconductivity and the BCS theory Superconductivity and the BCS theory PHY 313 - Statistical Mechanics Syed Ali Raza Roll no: 2012-10-0124 LUMS School of Science and Engineering Monday, December, 15, 2010 1 Introduction In this report

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations

Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations 1/38 Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations Xavier ANTOINE Institut Elie Cartan de Lorraine (IECL) & Inria-SPHINX Team Université de Lorraine, France Funded

More information

Bogoliubov theory of the weakly interacting Bose gas

Bogoliubov theory of the weakly interacting Bose gas Chapter 4 Bogoliubov theory of the wealy interacting Bose gas In the presence of BEC, the ideal Bose gas has a constant pressure against variation of volume, so that the system features infinite compressibility.

More information

Magnetism in ultracold gases

Magnetism in ultracold gases Magnetism in ultracold gases Austen Lamacraft Theoretical condensed matter and atomic physics April 10th, 2009 faculty.virginia.edu/austen/ Outline Magnetism in condensed matter Ultracold atomic physics

More information

Tunneling via a barrier faster than light

Tunneling via a barrier faster than light Tunneling via a barrier faster than light Submitted by: Evgeniy Kogan Numerous theories contradict to each other in their predictions for the tunneling time. 1 The Wigner time delay Consider particle which

More information

Lecture 10: Whitham Modulation Theory

Lecture 10: Whitham Modulation Theory Lecture 10: Whitham Modulation Theory Lecturer: Roger Grimshaw. Write-up: Andong He June 19, 2009 1 Introduction The Whitham modulation theory provides an asymptotic method for studying slowly varying

More information

Solitons of Waveguide Arrays

Solitons of Waveguide Arrays Solitons of Waveguide Arrays G14DIS Mathematics 4 th Year Dissertation 2010/11 School of Mathematical Sciences University of Nottingham Katie Salisbury Supervisor: Dr H Susanto Division: Applied Project

More information

Generation of magnetic fields in the early universe through charged vector bosons condensate

Generation of magnetic fields in the early universe through charged vector bosons condensate Generation of magnetic fields in the early universe through charged vector bosons condensate JCAP 1008:031,2010 Essential Cosmology for the Next Generation 2011 A. Dolgov, A. Lepidi, G. P. Centro Tecnologico,

More information

Microcavity Exciton-Polariton

Microcavity Exciton-Polariton Microcavity Exciton-Polariton Neil Na ( 那允中 ) Institute of Photonics Technologies National Tsing-Hua University 5/3/2012 Outline Microcavity Exciton-polariton QW excitons Microcavity photons Strong coupling

More information

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008

Precision Interferometry with a Bose-Einstein Condensate. Cass Sackett. Research Talk 17 October 2008 Precision Interferometry with a Bose-Einstein Condensate Cass Sackett Research Talk 17 October 2008 Outline Atom interferometry Bose condensates Our interferometer One application What is atom interferometry?

More information

Quantum lattice representation of dark solitons ABSTRACT

Quantum lattice representation of dark solitons ABSTRACT Quantum lattice representation of solitons George Vahala a, Linda Vahala b, Jeffrey Yepez c a Dept. of Physics, William & Mary, Williamsburg, VA 23187 b Dept. of Electrical & Computer Engineering, Old

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates

Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Physics 598 ESM Term Paper Giant vortices in rapidly rotating Bose-Einstein condensates Kuei Sun May 4, 2006 kueisun2@uiuc.edu Department of Physics, University of Illinois at Urbana- Champaign, 1110 W.

More information

221B Lecture Notes Spontaneous Symmetry Breaking

221B Lecture Notes Spontaneous Symmetry Breaking B Lecture Notes Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking is an ubiquitous concept in modern physics, especially in condensed matter and particle physics.

More information

arxiv:cond-mat/ v2 [cond-mat.other] 17 Oct 2006

arxiv:cond-mat/ v2 [cond-mat.other] 17 Oct 2006 Bright Matter-Wave Soliton Collisions in a Harmonic Trap: Regular and Chaotic Dynamics A. D. Martin, C. S. Adams, and S. A. Gardiner Department of Physics, Durham University, Durham DH1 3LE, United Kingdom

More information

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas

Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Non equilibrium Ferromagnetism and Stoner transition in an ultracold Fermi gas Gareth Conduit, Ehud Altman Weizmann Institute of Science See: Phys. Rev. A 82, 043603 (2010) and arxiv: 0911.2839 Disentangling

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS A047W SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS TRINITY TERM 05 Thursday, 8 June,.30 pm 5.45 pm 5 minutes

More information

Strongly correlated Cooper pair insulators and superfluids

Strongly correlated Cooper pair insulators and superfluids Strongly correlated Cooper pair insulators and superfluids Predrag Nikolić George Mason University Acknowledgments Collaborators Subir Sachdev Eun-Gook Moon Anton Burkov Arun Paramekanti Affiliations and

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

A short tutorial on optical rogue waves

A short tutorial on optical rogue waves A short tutorial on optical rogue waves John M Dudley Institut FEMTO-ST CNRS-Université de Franche-Comté Besançon, France Experiments in collaboration with the group of Guy Millot Institut Carnot de Bourgogne

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

BEC in one dimension

BEC in one dimension BEC in one dimension Tilmann John 11. Juni 2013 Outline 1 one-dimensional BEC 2 theoretical description Tonks-Girardeau gas Interaction exact solution (Lieb and Liniger) 3 experimental realization 4 conclusion

More information

QUANTUM- CLASSICAL ANALOGIES

QUANTUM- CLASSICAL ANALOGIES D. Dragoman M. Dragoman QUANTUM- CLASSICAL ANALOGIES With 78 Figures ^Ü Springer 1 Introduction 1 2 Analogies Between Ballistic Electrons and Electromagnetic Waves 9 2.1 Analog Parameters for Ballistic

More information

Quantum model for Impulsive Stimulated Raman Scattering (ISRS)

Quantum model for Impulsive Stimulated Raman Scattering (ISRS) Quantum model for Impulsive Stimulated Raman Scattering (ISRS) University of Trieste Trieste Junior Quantum Days May 18, 2018 Outline Introduction 1 Introduction 2 3 4 5 INCEPT INhomogenieties and fluctuations

More information

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017 Lecture 4: Entropy Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, PHYS 743 September 7, 2017 Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, Lecture PHYS4: 743 Entropy September

More information

What Is a Soliton? by Peter S. Lomdahl. Solitons in Biology

What Is a Soliton? by Peter S. Lomdahl. Solitons in Biology What Is a Soliton? by Peter S. Lomdahl A bout thirty years ago a remarkable discovery was made here in Los Alamos. Enrico Fermi, John Pasta, and Stan Ulam were calculating the flow of energy in a onedimensional

More information

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations

Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Fermions in the unitary regime at finite temperatures from path integral auxiliary field Monte Carlo simulations Aurel Bulgac,, Joaquin E. Drut and Piotr Magierski University of Washington, Seattle, WA

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014 2583-12 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Nonlinear Excitations of Bose-Einstein Condensates with Higherorder Interaction Etienne WAMBA University of Yaounde and

More information

Decoherence and the Classical Limit

Decoherence and the Classical Limit Chapter 26 Decoherence and the Classical Limit 26.1 Introduction Classical mechanics deals with objects which have a precise location and move in a deterministic way as a function of time. By contrast,

More information

37. 3rd order nonlinearities

37. 3rd order nonlinearities 37. 3rd order nonlinearities Characterizing 3rd order effects The nonlinear refractive index Self-lensing Self-phase modulation Solitons When the whole idea of χ (n) fails Attosecond pulses! χ () : New

More information

As in my QM3 and QM4, it is useful to replace the phase by its gradient: In the present, nonlinear case the hydrodynamic equations take a form:

As in my QM3 and QM4, it is useful to replace the phase by its gradient: In the present, nonlinear case the hydrodynamic equations take a form: 1 Lecture 3 BEC What happens if we subject the condensate to an action of a time dependent potential? In the mean field approximation we may expect that the single particle wave function will satisfy the

More information

MATH 130 FINAL REVIEW

MATH 130 FINAL REVIEW MATH 130 FINAL REVIEW Problems 1 5 refer to triangle ABC, with C=90º. Solve for the missing information. 1. A = 40, c = 36m. B = 53 30', b = 75mm 3. a = 91 ft, b = 85 ft 4. B = 1, c = 4. ft 5. A = 66 54',

More information

Roton Mode in Dipolar Bose-Einstein Condensates

Roton Mode in Dipolar Bose-Einstein Condensates Roton Mode in Dipolar Bose-Einstein Condensates Sandeep Indian Institute of Science Department of Physics, Bangalore March 14, 2013 BECs vs Dipolar Bose-Einstein Condensates Although quantum gases are

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Inclusion of Mean Field Effects in the Two-Mode Model of BECs in a Double Well

Inclusion of Mean Field Effects in the Two-Mode Model of BECs in a Double Well Inclusion of Mean Field Effects in the Two-Mode Model of BECs in a Double Well David Masiello in collaboration with Bill Reinhardt University of Washington, Seattle August 8th, 2005 masiello@u.washington.edu

More information

A guide to numerical experiments

A guide to numerical experiments BECs and and quantum quantum chaos: chaos: A guide to numerical experiments Martin Holthaus Institut für Physik Carl von Ossietzky Universität Oldenburg http://www.condmat.uni-oldenburg.de/ Quo vadis BEC?

More information

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments

Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments Quantum decoherence: From the self-induced approach to Schrödinger-cat experiments Maximilian Schlosshauer Department of Physics University of Washington Seattle, Washington Very short biography Born in

More information

Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas

Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas Nonlinear electrostatic structures in unmagnetized pair-ion (fullerene) plasmas S. Mahmood Theoretical Plasma Physics Division, PINSTECH Islamabad Collaborators: H. Saleem National Center for Physics,

More information

FDM for wave equations

FDM for wave equations FDM for wave equations Consider the second order wave equation Some properties Existence & Uniqueness Wave speed finite!!! Dependence region Analytical solution in 1D Finite difference discretization Finite

More information

NOVEL SOLITONS? Classical and quantum solitons Solitons in bers 2D & 3D solitons in parametric ampliers Optical switching with parametric solitons Gap

NOVEL SOLITONS? Classical and quantum solitons Solitons in bers 2D & 3D solitons in parametric ampliers Optical switching with parametric solitons Gap SOLITONS: NOVEL AND ATOM LASERS PARAMPS Drummond Peter He Hao Kheruntsyan Karen of Queensland University September 18, 1998 Drummond, He, Kheruntsyan { Novel solitons: paramps and atom lasers NOVEL SOLITONS?

More information