Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas

Size: px
Start display at page:

Download "Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas"

Transcription

1 Modeling, Analysis and Simulation for Degenerate Dipolar Quantum Gas Weizhu Bao Department of Mathematics National University of Singapore URL: Collaborators: Y. Cai (Postdoc, Purdue), M. Rosenkranz (Postdoc), N. Ben Abdallah (UPS, France), Z. Lei (Fudan University, China), H. Wang (Yunan Univ. Economics and Finance,)

2 Outline Motivation---dipolar BEC Mathematical models Ground state and its theory Dynamics and its efficient computation Dimension reduction Conclusion & future challenges

3 Degenerate Quantum Gas Typical degenerate quantum gas Liquid Helium 3 & 4 Bose-Einstein condensation (BEC) Boson vs Fermion condensation One component, two-component & spin-1 Boson-fermion mixture Typical properties Low (mk) or ultracold (nk) temperature Quantum phase transition & closely related to nonlinear wave Superfluids flow without friction & quantized vortices

4 Recent Developments Quantum transport Move a BEC in an optical lattice Atomic circuit, Quantum computing Interaction of BEC and particles Quantized vortices for superfluidity Vortex states Vortex lattice patterns Interaction between vortices Fermion condensate, Boson-fermion, atom-molecule,

5 Dipolar Quantum Gas Experimental setup Molecules meet to form dipoles Cool down dipoles to ultracold Hold in a magnetic trap Dipolar condensation Degenerate dipolar quantum gas Experimental realization Chroimum (Cr5) 005@Univ. Stuttgart, Germany PRL, 94 (005) Big-wave in theoretical study A. Griesmaier,et al., PRL, 94 (005)160401

6 BEC with strong DDI 164 Dy Lu, Burdick, Youn & Lev, PRL 107 (011),

7 Mathematical Model Gross-Pitaevskii equation (re-scaled) 1 i xt V x ( U ) dip xt t ψ β ψ λ ψ ψ (,) = + ext( ) + + (,) Trap potential Interaction constants 1 Vext( z) = x + y + z ( γ x γ y γ z ) Long-range dipole-dipole interaction kernel ψ = ψ( xt,) x 4π Na s mnµµ β = = a 0 dip (short-range), λ 0 3 a0 (long-range) 3 1 3( n x ) / x 3 1 3cos ( θ ) Udip( x) = =, π x 4 π x 3 n fixed & satisfies n = 1 References: L. Santos, et al. PRL 85 (000), S. Yi & L. You, PRA 61 (001), (R); D. H. J. O Dell, PRL 9 (004),

8 Mathematical Model Mass conservation (Normalization condition) N(): t = ψ(,) t = ψ(,) xt dx ψ(,0) x dx= 1 Energy conservation Long-range interaction kernel: It is highly singular near the origin!! At O 3 singularity near the origin!! x Its Fourier transform reads 3( n ξ ) No limit near origin in phase space!! Udip( ξ) = 1 + ξ ξ Bounded & no limit at far field too!! β 4 λ E( ψ(, t)): = ψ + Vext( x) ψ + ψ + ( Udip ψ ) ψ dx E( ψ0) 3 Physicists simply drop the second singular term in phase space near origin!! Locking phenomena in computation!! 1 3

9 A New Formulation Using the identity (O Dell et al., PRL 9 (004), 50401, Parker et al., PRA 79 (009), ) 3 3( n x) 1 Udip( x) = 1 = δ ( x) 3 3 nn 4πr r 4πr 3( n ξ ) Udip( ξ ) = 1+ ξ Dipole-dipole interaction becomes U r = x & = n & = ( ) dip = 3 nn n nn n n ψ ψ ϕ 1 ϕ = ψ ϕ = ψ 4π r

10 A New Formulation Gross-Pitaevskii-Poisson type equations (Bao,Cai & Wang, JCP, 10 ) 1 i ψ xt V x β λ ψ λ ϕ ψ xt t ϕ = ψ ϕ = (,) = + ext( ) + ( ) 3 nn (,) ( xt,) ( xt,), lim ( xt,) 0 x Energy 1 β λ 4 3λ E( ψ(, t)): ψ Vext( x) ψ = + + ψ + n ϕ dx 3

11 Ground State Non-convex minimization problem Nonlinear Eigenvalue problem (Euler-Language eq.) 1 µφ β λ φ λ ϕ φ ϕ = φ ϕ = φ = ( x) = + Vext( x) + ( ) 3 nn ( x) Chemical potential { } E( φ ) : = min E( φ) with S = φ φ = 1& E( φ) < g φ S ( x) ( x), lim ( x) 0, 1 x 1 4 µ : = φ + Vext( x) φ + ( β λ) φ + 3 λ n ϕ dx 3 β λ 3λ = E( φ) + φ + ϕ dx, & ϕ = φ 3 4 n

12 Ground State Results Theorem (Existence, uniqueness & nonexistence) (Bao, Cai & Wang, JCP, 10 ) Assumptions V x x V x = + 3 ext( ) 0, & lim ext( ) (confinement potential) x Results There exists a ground state Positive ground state is unique Nonexistence of ground state, i.e. Case I: Case II: β < 0 β φg S if β 0 & λ β φ S i 0 φ e θ φ with θ g = lim E ( φ) = β β 0 & λ > β or λ < g 0

13 Key Techniques in Proof Estimate on the Poisson equation ϕ = φ = ρ ϕ = ϕ ϕ = ϕ = ρ = φ : & lim ( x) 0 n ( ) x Positivity & semi-lower continuous E( φ) E( φ ) = E( ρ), φ S with ρ = φ E( ρ ) ρ The energy is strictly convex in if Confinement potential Non-existence result β β 0 & λ β 1 1 x + y z φ ε 1, ε x 1/ 1/4 ( πε1) ( πε ) ε1 ε ( ) = exp exp, x 3 4

14 Numerical Method for Ground State Gradient flow with discrete normalization 1 φ( xt,) = Vext( x) ( β λ) φ + 3 λ nnϕ φ( xt,), t ϕ xt = φ xt ϕ xt = x Ω t t< t φ( xt, ) φ (,) (,), lim (,) 0, & n n+ 1, x + n+ 1 ( xt, n+ 1): = φ( xt, n+ 1) =, x Ω& n 0, φ( xt, n+ 1) φ( xt, ) = ϕ( xt, ) = 0, t 0; φ( x,0) = φ ( x) 0, x Ω, with φ = 1. x Ω x Ω 0 0 Full discretization Backward Euler sine pseudospectal (BESP) method Avoid to use zero-mode in phase space via DST!!

15

16

17 Dynamics and its Computation The Problem 1 i ψ( xt,) = + Vext( x) + ( β λ) ψ 3 λ nnϕ ψ( xt,) t ϕ = ψ ϕ = > ψ Mathematical questions Existence & uniqueness & finite time blow-up??? Existing results 3 ( xt,) ( xt,), lim ( xt,) 0, x, t 0 x ψ 3 ( x,0) = 0( x), x, Carles, Markowich & Sparber, Nonlinearity, 1 (008), Antonelli & Sparber, Physica D (009) --- existence of solitary waves.

18 Well-posedenss Results Theorem (well-posedness) (Bao, Cai & Wang, JCP, 10 ) Assumptions 3 3 α 3 (i) Vext( x) C ( ), Vext( x) 0, x & D Vext( x) L ( ) α 1 3 (ii) ψ 0 X= u H ( ) u = u + u + Vext( x) u( x) dx< X L L 3 Results Local existence, i.e. T (0, ], s. t. the problem has a unique solution ψ C([0, T ), X) max If β β 0 & λ β global existence, i.e. max T max = +

19 Finite Time Blowup Results Theorem (finite time blowup) (Bao, Cai & Wang, JCP, 10 ) Assumptions Results: β (i) β<0 or β 0 & λ < or λ> β 3 (ii) 3 V ( x) + x V ( x) 0, x For any ψ ( x ) X, there exists finite time blowup, i.e. 0 If one of the following conditions holds (i) E( ψ 0) < 0 (ii) E( ψ ) = 0 & Im ψ ( x) ( x ψ ( x)) dx< 0 ext ext T max < + (iii) E( ψ0) > 0 & Im ψ0( x) ( x ψ0( x)) dx< 3 E( ψ0) xψ0 L 3

20 Numerical Method for dynamics Time-splitting sine pseudospectral (TSSP) method, [ tn, t n + 1] Step 1: Discretize by spectral method & integrate in phase space exactly 1 i tψ(,) xt = ψ Step : solve the nonlinear ODE analytically i tψ( xt,) = Vext( x) + ( β λ) ψ( xt,) 3 λ nnϕ( xt,) ψ( xt,) ϕ( xt,) = ψ( xt,), ψ xt = ψ xt = ψ xt ϕ xt = ϕ xt i tψ( xt, ) = Vext( x) + ( β λ) ψ( xt, n) 3 λ nnϕ( xt, n) ψ( xt,) ϕ( xt, n) = ψ( xt, n), i( t tn)[ Vext ( x) + ( β λψ ) ( xt, n) 3 λ nnϕ( xt, n)] ψ( xt, ) = e ψ( xt, ) t( (, ) ) 0 (, ) (, n) & (, ) (, n) n

21

22

23

24

25 New numerical methods for DDI How to compute nonlocal DDI FFT (fast Fourier transform) DST (discrete sine transform) dip Nonuniform FFT (Bao, Jiang, Greengard, SISC,14 ) φ= U ( ξρζ ) (, td ) ξ ρ= ψ U φ: = Udip ψ 3( n ξ ) ( ξ ) = 1+ ξ φ = ψ 3 nnϕ & ϕ( xt,) = ψ( xt,) 3 dip sphere coordinate = S + U ξ ξ ρζ dip( ) (, t)

26 Dimension Reduction Gross-Pitaevskii-Poisson equations 1 i ψ( xt,) = + Vext( x) + ( β λ) ψ 3 λ nnϕ ψ( xt,) t ϕ xt = ψ xt ϕ xt = x t> Strongly anisotropic potential 1 Vext( x) = γ x x + γ y y + γ z z ( ) Case I: 3D D T z x y & n = ( n1, n, n3), n = n1 + n + n3 = 1 Case II: 3D 1D γ γ γ 3 (,) (,), lim (,) 0,, 0 x γ γ & γ γ z x y x

27 Dimension Reduction Existing results BEC without dipole-dipole interaction: λ = 0 Formal asymptotic (Bao, Markowich, Schmeiser & Weishaupl, M3AS, 05 ) Numerical results (Bao, Ge, Jaksch, Markowich & Weishaeupl, CPC, 07 ) Rigorous proof (Ben Abdallah, Mehats et al., SIMA, 05; JDE 08 ) From N-body to mean field theory (Lieb, Seiringer & Yngvason, CMP, 04 ; Erdos, Schlein & Yau, Ann. Math., 10 ) Dipolar BEC (Carles, Markowich & Sparber, Nonlinearity, 08 ) formal result

28 Dimension Reduction (3D D) L Assumptions z γ z γ x & γ y = O(1) & Vext( x) = V D( xy, ) +, ε : = 4 ε Decomposition of the linear operator 1 1 L: = + Vext ( x) = + V D( xy, ) + L 1 z 1 1 z = + = + ε ε Ansatz z zz 4 zz it 1 z ψ( xyzt,,,) e ε ψ(, xyt,) ωε() z & ωε() z = exp 1/4 ( επ) ε z 1 γ z

29 Dimension Reduction (3D D) D equations (Bao, Cai, Lei, Rosenkranz, PRA, 10 ) 1 β λ(1 3 n3 ) i ψ( xyt,, ) = [ + V D( xy, ) + ψ t ε π ϕ D ( xyt,,) = Uε ψ, 3 λ ( n n n3 ) ϕ ] ψ ( xyt,,) ( s ) 1 exp / U (, x y) = U () r = ds, r = x + y D D ε ε 3/ π r + ε s

30 Asymptotic of D Kernel For fixed U D ε () r When π ε > 0 3/ ε 0 1 ε D 1 ε ( ε ) ln r+ ln + C, r 0 1, π r U () r, r 0 π r > r

31 Fourier Transform of D Kernel Fourier transform ( ) 1 exp ε s / D D Uε ( ξ1, ξ) = Uε ( ξ ) = ds π ξ + s Asymptotic For fixed When D U ε ε > 0 1, ξ 0 ξ ( ξ ) 1/ 1, ξ π ε ξ ε 0 1 U ε ( ξ ), ξ ξ D

32 Ground State Results for quais-d f f L ( ) L ( ) Cb : = inf ---- Gagliardo-Nirenberg inequality f H ( ) f 4 L ( ) Theorem (Existence & uniqueness) (Bao, Ben Abdallah, Cai, SIMA, 1 ) V ( x) 0, x & lim V ( x) = + (confinement potential) Results D There exists a ground state Case I: Or case II x i 0 Positive ground state is unique g e θ g with Case I: λ 0 & β λ 0 Or case II λ ( λ < 0 & β n ) No ground state if λ ( β + 1 3n ) 3 < ε πc b D φ S λ 0& β λ > ε πcb g λ λ < 0 & β + ( 1+ 3 n3 1 ) > ε πc b if φ = φ θ 0

33 γ γ = = γ x : ε 0 z

34 Dimension Reduction (3D D) D equations when ε 0 (Bao, Cai, Lei, Rosenkranz, PRA, 10 ) 1 β λ + 3λn3 i ψ( xyt,, ) = [ + V D( xy, ) + ψ t ε π 3 λ ( n n n3 ) ϕ ] ψ ( xyt,,) ϕ xyt = ψ xyt ϕ xyt = 1/ ( ) (,,) (,,), lim (,,) 0 ( xy, ) Energy 1 1 E( ψ(, t)): = { ψ + V ( x) ψ + ( β λ + 3 λn ) ψ 3 ε π 4 D 3 3λ 1/4 1/4 + [ n ( ) ϕ n3 ( ) ϕ ]} dx 4

35 Ground State Results for quais-d V x x V x D( ) 0, & lim D( ) = + (confinement potential) x Theorem (Existence & uniqueness) (Bao, Ben Abdallah, Cai, SIMA, 1 ) There exists a ground state Case I: Or case II Or case III Positive ground state is unique Case I: λ = 0 & β 0 Or case II Or case III φ S λ < 0, n3 1 / & β λ 1 3n3 0 No ground state > 0& n3 0 or < 0&n3 < 1 or = 0& < Cb g λ = 0& β > ε πcb λ > = β λ > ε π 0, n3 0 & Cb λ > 0, n = 0 & β λ 3 if ( ) λ < n β λ n > ε πc 0, 3 1 / & b i 0 φ e θ φ with θ g = g ( ) λ λ λ β ε π 0

36 Well-posedness & convergence rate Well-posedness of the Cauchy problem related to the D equations Finite time blow-up may happen!! Theorem (convergence rate) (Bao, Ben Abdallah, Cai, SIMA, 1 ) β Assume β 0, λ β, β = O( ε), λ = O( ε) Then we have it ε ψ(, xyzt,,) e ψ( xyt,,) ω () z Cε, 0 t T ε L T

37 Dimension Reduction (3D 1D) Assumptions x + y γ x = γ y γ z = O(1) & Vext( x) = V1 D( z) +, ε : = 4 ε Decomposition of the linear operator 1 1 L: = + V ( x) = + V ( z) + L ext zz 1D xy 1 γ x L Ansatz 1 x + y 1 1 x + y = + = + ε ε xy xy 4 xy it 1 x ε ψ( xyzt,,, ) e ψ( zt, ) ωε( xy, ) & ωε( xy, ) = exp πε + y ε

38 Dimension Reduction (3D 1D) 1D equations (Bao, Cai, Lei, Rosenkranz, PRA, 10 ) 1 β + λ(1 3 n3 ) i ψ(,) zt = [ zz + V1 D() z + ψ t 4πε Linear case if 3 λ(1 3 n3 ) + 8ε π ϕ ] ψ(,) zt z /ε 1D 1 D e s /ε ϕ( z,) t = Uε ψ, Uε ( z) = e ds, π z n β λ = 1/3& = 0& 0 3 zz

39 Asymptotic of 1D Kernel For fixed U 1D ε When ε > 0 1 z + Oz ( ), z 0 πε ( z) ε, z π z ε 0 1D 1, z = 0 Uε ( z) 0, z 0

40 Fourier Transform of 1D Kernel Fourier transform Asymptotic For fixed When 1D U ε ε > 0 U 1D ε ε ε γe ln ξ ln, ξ 0 π ( ξ ), ξ ε π ξ ε 0 ( ε s ) ε exp / ( ξ ) = ds, 0 π ξ + s 1 D U ε ( ξ )??, ξ

41 Ground State Results for quais-1d V ( z) 0, z & lim V ( z) = + (confinement potential) 1D Theorem (Existence & uniqueness) (Bao, Ben Abdallah, Cai, SIMA, 1 ) There exists a ground state Positive ground state is unique Case I: ( n ) Or case II for any Dynamics results global well-posedness of the Cauchy problem Convergence rate if it z 1D φ S λ & β λ(1 3 n ) g i 0 φ φ θ ( n3) ( n3) g βλε,,,n 1 = e θ with λ 1 3 < 0 & β + λ 1 3 / 0 β = O ε λ = ε ( )& O( ) ε ψ( xyzt,,,) e ψ(,) ztω (, xy) Cε, 0 t T ε L T g 0

42 γ x 1 γ : = γ = ε z

43 Reduction in Multilayered Potential With multilayered potential in z-direction V ( x) = V ( xy, ) + Vsin ( πz) Vω ext D 0 0

44 Reduction in Multilayered Potential GPEs with infinite many equations; Effective single-mode approximation; Bogoliubov enegies (Rosenkranz, Cai &Bao, PRA, 88 (013) )

45 Conclusion & future challenges Conclusion Ground state in 3D existence, uniqueness & nonexistence Dynamics in 3D well-posedness & finite time blowup Efficient numerical methods via DST Dimension Reduction --- 3D D & 3D1D Ground states and dynamics in quasi-d & quasi-1d Future challenges Convergence rate for reduction in O(1) regime In rotating frame & multi-component & spin-1 Dipolar BEC with random potential disorder!!

Numerical Methods for the Dynamics of the Nonlinear Schrodinger / Gross-Pitaevskii Equations. Weizhu Bao.

Numerical Methods for the Dynamics of the Nonlinear Schrodinger / Gross-Pitaevskii Equations. Weizhu Bao. Numerical Methods for the Dynamics of the Nonlinear Schrodinger / Gross-Pitaevskii Equations Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

Numerical simulation of the dynamics of the rotating dipolar Bose-Einstein condensates

Numerical simulation of the dynamics of the rotating dipolar Bose-Einstein condensates Numerical simulation of the dynamics of the rotating dipolar Bose-Einstein condensates Qinglin TANG Inria, University of Lorraine Joint work with: Prof. Weizhu BAO, Daniel MARAHRENS, Yanzhi ZHANG and Yong

More information

Qinglin TANG. INRIA & IECL, University of Lorraine, France

Qinglin TANG. INRIA & IECL, University of Lorraine, France Numerical methods on simulating dynamics of the nonlinear Schrödinger equation with rotation and/or nonlocal interactions Qinglin TANG INRIA & IECL, University of Lorraine, France Collaborators: Xavier

More information

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

MATHEMATICAL THEORY AND NUMERICAL METHODS FOR GROSS-PITAEVSKII EQUATIONS AND APPLICATIONS CAI YONGYONG

MATHEMATICAL THEORY AND NUMERICAL METHODS FOR GROSS-PITAEVSKII EQUATIONS AND APPLICATIONS CAI YONGYONG MATHEMATICAL THEORY AND NUMERICAL METHODS FOR GROSS-PITAEVSKII EQUATIONS AND APPLICATIONS CAI YONGYONG (M.Sc., Peking University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF

More information

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/

Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps. Michele Correggi. T. Rindler-Daller, J. Yngvason math-ph/ Rapidly Rotating Bose-Einstein Condensates in Strongly Anharmonic Traps Michele Correggi Erwin Schrödinger Institute, Vienna T. Rindler-Daller, J. Yngvason math-ph/0606058 in collaboration with preprint

More information

Superfluidity & Bogoliubov Theory: Rigorous Results

Superfluidity & Bogoliubov Theory: Rigorous Results Superfluidity & Bogoliubov Theory: Rigorous Results Mathieu LEWIN mathieu.lewin@math.cnrs.fr (CNRS & Université Paris-Dauphine) collaborations with P.T. Nam (Vienna), N. Rougerie (Grenoble), B. Schlein

More information

Bose Gases, Bose Einstein Condensation, and the Bogoliubov Approximation

Bose Gases, Bose Einstein Condensation, and the Bogoliubov Approximation Bose Gases, Bose Einstein Condensation, and the Bogoliubov Approximation Robert Seiringer IST Austria Mathematical Horizons for Quantum Physics IMS Singapore, September 18, 2013 R. Seiringer Bose Gases,

More information

Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas

Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas 0.5 setgray0 0.5 setgray1 Bose-Einstein condensates in optical lattices: mathematical analysis and analytical approximate formulas IV EBED João Pessoa - 2011 Rolci Cipolatti Instituto de Matemática - UFRJ

More information

DIMENSION REDUCTION FOR DIPOLAR BOSE-EINSTEIN CONDENSATES IN THE STRONG INTERACTION REGIME. Weizhu Bao. Loïc Le Treust and Florian Méhats

DIMENSION REDUCTION FOR DIPOLAR BOSE-EINSTEIN CONDENSATES IN THE STRONG INTERACTION REGIME. Weizhu Bao. Loïc Le Treust and Florian Méhats Kinetic and Related Models doi:1.3934/krm.21722 c American Institute of Mathematical Sciences Volume 1, Number 3, September 217 pp. 553 571 DIMENSION REDUCTION FOR DIPOLAR BOSE-EINSTEIN CONDENSATES IN

More information

Fluids with dipolar coupling

Fluids with dipolar coupling Fluids with dipolar coupling Rosensweig instability M. D. Cowley and R. E. Rosensweig, J. Fluid Mech. 30, 671 (1967) CO.CO.MAT SFB/TRR21 STUTTGART, ULM, TÜBINGEN FerMix 2009 Meeting, Trento A Quantum Ferrofluid

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014

Dipolar Interactions and Rotons in Atomic Quantum Gases. Falk Wächtler. Workshop of the RTG March 13., 2014 Dipolar Interactions and Rotons in Ultracold Atomic Quantum Gases Workshop of the RTG 1729 Lüneburg March 13., 2014 Table of contents Realization of dipolar Systems Erbium 1 Realization of dipolar Systems

More information

Rapporto di ricerca Research report

Rapporto di ricerca Research report Dipartimento di Informatica Università degli Studi di Verona Rapporto di ricerca Research report September 2009 76/2009 Spectral methods for dissipative nonlinear Schrödinger equations Laura M. Morato

More information

Downloaded 07/30/14 to Redistribution subject to SIAM license or copyright; see

Downloaded 07/30/14 to Redistribution subject to SIAM license or copyright; see SIAM J. APPL. MATH. Vol. 73, No. 6, pp. 00 3 c 03 Society for Industrial and Applied Mathematics DIMENSION REDUCTION OF THE SCHRÖDINGER EQUATION WITH COULOMB AND ANISOTROPIC CONFINING POTENTIALS WEIZHU

More information

A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems

A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems A uniformly convergent numerical method for singularly perturbed nonlinear eigenvalue problems Weizhu Bao and Ming-Huang Chai Abstract In this paper we propose a uniformly convergent numerical method for

More information

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007

Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases. 27 August - 7 September, 2007 1859-5 Summer School on Novel Quantum Phases and Non-Equilibrium Phenomena in Cold Atomic Gases 27 August - 7 September, 2007 Dipolar BECs with spin degrees of freedom Yuki Kawaguchi Tokyo Institute of

More information

Roton Mode in Dipolar Bose-Einstein Condensates

Roton Mode in Dipolar Bose-Einstein Condensates Roton Mode in Dipolar Bose-Einstein Condensates Sandeep Indian Institute of Science Department of Physics, Bangalore March 14, 2013 BECs vs Dipolar Bose-Einstein Condensates Although quantum gases are

More information

ON THE GROSS-PITAEVSKII EQUATION WITH STRONGLY ANISOTROPIC CONFINEMENT: FORMAL ASYMPTOTICS AND NUMERICAL EXPERIMENTS

ON THE GROSS-PITAEVSKII EQUATION WITH STRONGLY ANISOTROPIC CONFINEMENT: FORMAL ASYMPTOTICS AND NUMERICAL EXPERIMENTS Mathematical Models and Methods in Applied Sciences c World Scientific Publishing Company ON THE GROSS-PITAEVSKII EQUATION WITH STRONGLY ANISOTROPIC CONFINEMENT: FORMAL ASYMPTOTICS AND NUMERICAL EXPERIMENTS

More information

Quantized vortex stability and interaction in the nonlinear wave equation

Quantized vortex stability and interaction in the nonlinear wave equation Physica D 237 (2008) 2391 2410 www.elsevier.com/locate/physd Quantized vortex stability and interaction in the nonlinear wave equation Weizhu Bao a,b,, Rong Zeng c, Yanzhi Zhang a,1 a Department of Mathematics,

More information

Bose-Einstein condensation and limit theorems. Kay Kirkpatrick, UIUC

Bose-Einstein condensation and limit theorems. Kay Kirkpatrick, UIUC Bose-Einstein condensation and limit theorems Kay Kirkpatrick, UIUC 2015 Bose-Einstein condensation: from many quantum particles to a quantum superparticle Kay Kirkpatrick, UIUC/MSRI TexAMP 2015 The big

More information

FDM for wave equations

FDM for wave equations FDM for wave equations Consider the second order wave equation Some properties Existence & Uniqueness Wave speed finite!!! Dependence region Analytical solution in 1D Finite difference discretization Finite

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Effective Dynamics of Solitons I M Sigal

Effective Dynamics of Solitons I M Sigal Effective Dynamics of Solitons I M Sigal Porquerolles October, 008 Joint work with Jürg Fröhlich, Stephen Gustafson, Lars Jonsson, Gang Zhou and Walid Abou Salem Bose-Einstein Condensation Consider a system

More information

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University

Cold atoms. 1: Bose-Einstein Condensation. Emil Lundh. April 13, Department of Physics Umeå University 1: Bose-Einstein Condensation Department of Physics Umeå University lundh@tp.umu.se April 13, 2011 Umeå 114 000 inhabitants Average age 37.9 years Cultural capital of Europe 2014 400 km ski tracks 180

More information

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008

Cold Atomic Gases. California Condensed Matter Theory Meeting UC Riverside November 2, 2008 New Physics with Interacting Cold Atomic Gases California Condensed Matter Theory Meeting UC Riverside November 2, 2008 Ryan Barnett Caltech Collaborators: H.P. Buchler, E. Chen, E. Demler, J. Moore, S.

More information

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas

Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas / 6 Drag force and superfluidity in the supersolid striped phase of a spin-orbit-coupled Bose gas Giovanni Italo Martone with G. V. Shlyapnikov Worhshop on Exploring Nuclear Physics with Ultracold Atoms

More information

Spontaneous Symmetry Breaking in Bose-Einstein Condensates

Spontaneous Symmetry Breaking in Bose-Einstein Condensates The 10th US-Japan Joint Seminar Spontaneous Symmetry Breaking in Bose-Einstein Condensates Masahito UEDA Tokyo Institute of Technology, ERATO, JST collaborators Yuki Kawaguchi (Tokyo Institute of Technology)

More information

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES

SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES College de France, May 14, 2013 SUPERFLUIDTY IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INFM PLAN OF THE LECTURES Lecture 1. Superfluidity in ultra cold atomic gases: examples

More information

Superfluidity of a 2D Bose gas (arxiv: v1)

Superfluidity of a 2D Bose gas (arxiv: v1) Superfluidity of a 2D Bose gas (arxiv:1205.4536v1) Christof Weitenberg, Rémi Desbuquois, Lauriane Chomaz, Tarik Yefsah, Julian Leonard, Jérôme Beugnon, Jean Dalibard Trieste 18.07.2012 Phase transitions

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO

Ultra-cold gases. Alessio Recati. CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Ultra-cold gases Alessio Recati CNR INFM BEC Center/ Dip. Fisica, Univ. di Trento (I) & Dep. Physik, TUM (D) TRENTO Lectures L. 1) Introduction to ultracold gases Bosonic atoms: - From weak to strong interacting

More information

Weizhu Bao. Modeling, Analysis & Simulation for Quantized Vortices in Superfluidity and Superconductivity

Weizhu Bao. Modeling, Analysis & Simulation for Quantized Vortices in Superfluidity and Superconductivity Modeling, Analysis & Simulation for Quantized Vortices in Superfluidity and Superconductivity Weizhu Bao Department of Mathematics & Center for Computational Science and Engineering National University

More information

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA

Third Critical Speed for Rotating Bose-Einstein Condensates. Mathematical Foundations of Physics Daniele Dimonte, SISSA Third Critical Speed for Rotating Bose-Einstein Condensates Mathematical Foundations of Physics Daniele Dimonte, SISSA 1 st November 2016 this presentation available on daniele.dimonte.it based on a joint

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs i ( ) t Φ (r, t) = 2 2 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) (Mewes et al., 1996) 26/11/2009 Stefano Carignano 1 Contents 1 Introduction

More information

Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations

Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations 1/38 Numerical simulation of Bose-Einstein Condensates based on Gross-Pitaevskii Equations Xavier ANTOINE Institut Elie Cartan de Lorraine (IECL) & Inria-SPHINX Team Université de Lorraine, France Funded

More information

Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates

Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates Numerical Simulations of Faraday Waves in Binary Bose-Einstein Condensates Antun Balaž 1 and Alexandru Nicolin 2 1 Scientific Computing Laboratory, Institute of Physics Belgrade, University of Belgrade,

More information

High-order time-splitting methods for Schrödinger equations

High-order time-splitting methods for Schrödinger equations High-order time-splitting methods for Schrödinger equations and M. Thalhammer Department of Mathematics, University of Innsbruck Conference on Scientific Computing 2009 Geneva, Switzerland Nonlinear Schrödinger

More information

Local Density Approximation for the Almost-bosonic Anyon Gas. Michele Correggi

Local Density Approximation for the Almost-bosonic Anyon Gas. Michele Correggi Local Density Approximation for the Almost-bosonic Anyon Gas Michele Correggi Università degli Studi Roma Tre www.cond-math.it QMATH13 Many-body Systems and Statistical Mechanics joint work with D. Lundholm

More information

Superfluidity in bosonic systems

Superfluidity in bosonic systems Superfluidity in bosonic systems Rico Pires PI Uni Heidelberg Outline Strongly coupled quantum fluids 2.1 Dilute Bose gases 2.2 Liquid Helium Wieman/Cornell A. Leitner, from wikimedia When are quantum

More information

A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems

A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems COMMUNICATIONS IN COMPUTATIONAL PHYSICS Vol 4, No, pp 35-6 Commun Comput Phys July 8 A Uniformly Convergent Numerical Method for Singularly Perturbed Nonlinear Eigenvalue Problems Weizhu Bao, and Ming-Huang

More information

Universal Aspects of Dipolar Scattering Christopher Ticknor. May 15 at INT UNCLASSIFIED

Universal Aspects of Dipolar Scattering Christopher Ticknor. May 15 at INT UNCLASSIFIED Universal Aspects of Dipolar Scattering Christopher Ticknor May 15 at INT 1 Outline of Talk Universal Dipolar Scattering Theory of a long range scattering potential D Universal and tilted dipolar scattering

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon INT workshop Frontiers in quantum simulation with cold atoms University of Washington, April 2, 2015 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner,

More information

INO-CNR BEC Center

INO-CNR BEC Center Experiments @ INO-CNR BEC Center The INO-CNR team: CNR Researchers: PostDocs: Tom Bienaimé Giacomo Lamporesi, Gabriele Ferrari PhD students: Simone Serafini (INO), Eleonora Fava, Giacomo Colzi, Carmelo

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

Z. Zhou On the classical limit of a time-dependent self-consistent field system: analysis. computation

Z. Zhou On the classical limit of a time-dependent self-consistent field system: analysis. computation On the classical limit of a time-dependent self-consistent field system: analysis and computation Zhennan Zhou 1 joint work with Prof. Shi Jin and Prof. Christof Sparber. 1 Department of Mathematics Duke

More information

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs

The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs The Gross-Pitaevskii Equation and the Hydrodynamic Expansion of BECs RHI seminar Pascal Büscher i ( t Φ (r, t) = 2 2 ) 2m + V ext(r) + g Φ (r, t) 2 Φ (r, t) 27 Nov 2008 RHI seminar Pascal Büscher 1 (Stamper-Kurn

More information

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014

Workshop on Coherent Phenomena in Disordered Optical Systems May 2014 2583-12 Workshop on Coherent Phenomena in Disordered Optical Systems 26-30 May 2014 Nonlinear Excitations of Bose-Einstein Condensates with Higherorder Interaction Etienne WAMBA University of Yaounde and

More information

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length

Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length Nonlinear BEC Dynamics by Harmonic Modulation of s-wave Scattering Length I. Vidanović, A. Balaž, H. Al-Jibbouri 2, A. Pelster 3 Scientific Computing Laboratory, Institute of Physics Belgrade, Serbia 2

More information

Bose-Einstein Condensate: A New state of matter

Bose-Einstein Condensate: A New state of matter Bose-Einstein Condensate: A New state of matter KISHORE T. KAPALE June 24, 2003 BOSE-EINSTEIN CONDENSATE: A NEW STATE OF MATTER 1 Outline Introductory Concepts Bosons and Fermions Classical and Quantum

More information

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University

BEC Vortex Matter. Aaron Sup October 6, Advisor: Dr. Charles Hanna, Department of Physics, Boise State University BEC Vortex Matter Aaron Sup October 6, 006 Advisor: Dr. Charles Hanna, Department of Physics, Boise State University 1 Outline 1. Bosons: what are they?. Bose-Einstein Condensation (BEC) 3. Vortex Formation:

More information

A Mixture of Bose and Fermi Superfluids. C. Salomon

A Mixture of Bose and Fermi Superfluids. C. Salomon A Mixture of Bose and Fermi Superfluids C. Salomon Enrico Fermi School Quantum Matter at Ultralow Temperatures Varenna, July 8, 2014 The ENS Fermi Gas Team F. Chevy, Y. Castin, F. Werner, C.S. Lithium

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Contents Preface v 1. Fundamentals of Bose Einstein Condensation 1 1.1 Indistinguishability of Identical Particles.......... 1 1.2 Ideal Bose Gas in a Uniform System............ 3 1.3 Off-Diagonal Long-Range

More information

Emergence of chaotic scattering in ultracold lanthanides.

Emergence of chaotic scattering in ultracold lanthanides. Emergence of chaotic scattering in ultracold lanthanides. Phys. Rev. X 5, 041029 arxiv preprint 1506.05221 A. Frisch, S. Baier, K. Aikawa, L. Chomaz, M. J. Mark, F. Ferlaino in collaboration with : Dy

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

Condensation of fermion pairs in a domain

Condensation of fermion pairs in a domain Condensation of fermion pairs in a domain Marius Lemm (Caltech) joint with Rupert L. Frank and Barry Simon QMath 13, Georgia Tech, October 8, 2016 BCS states We consider a gas of spin 1/2 fermions, confined

More information

Landau Theory of Fermi Liquids : Equilibrium Properties

Landau Theory of Fermi Liquids : Equilibrium Properties Quantum Liquids LECTURE I-II Landau Theory of Fermi Liquids : Phenomenology and Microscopic Foundations LECTURE III Superfluidity. Bogoliubov theory. Bose-Einstein condensation. LECTURE IV Luttinger Liquids.

More information

Michikazu Kobayashi. Kyoto University

Michikazu Kobayashi. Kyoto University Topological Excitations and Dynamical Behavior in Bose-Einstein Condensates and Other Systems Michikazu Kobayashi Kyoto University Oct. 24th, 2013 in Okinawa International Workshop for Young Researchers

More information

Computer Physics Communications. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations

Computer Physics Communications. Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations Computer Physics Communications (13) 1 3 Computer Physics Communications Computational methods for the dynamics of the nonlinear Schrödinger/Gross-Pitaevskii equations Xavier Antoine a,b, Weizhu Bao 1c,d,

More information

Solitons and vortices in Bose-Einstein condensates with finite-range interaction

Solitons and vortices in Bose-Einstein condensates with finite-range interaction Solitons and vortices in Bose-Einstein condensates with finite-range interaction Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research Unit

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

Interaction between atoms

Interaction between atoms Interaction between atoms MICHA SCHILLING HAUPTSEMINAR: PHYSIK DER KALTEN GASE INSTITUT FÜR THEORETISCHE PHYSIK III UNIVERSITÄT STUTTGART 23.04.2013 Outline 2 Scattering theory slow particles / s-wave

More information

Superfluidity and Condensation

Superfluidity and Condensation Christian Veit 4th of June, 2013 2 / 29 The discovery of superfluidity Early 1930 s: Peculiar things happen in 4 He below the λ-temperature T λ = 2.17 K 1938: Kapitza, Allen & Misener measure resistance

More information

Infinitely long-range nonlocal potentials and the Bose-Einstein supersolid phase

Infinitely long-range nonlocal potentials and the Bose-Einstein supersolid phase Armenian Journal of Physics, 8, vol., issue 3, pp.7-4 Infinitely long-range nonlocal potentials and the Bose-Einstein supersolid phase Moorad Alexanian Department of Physics and Physical Oceanography University

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate CLEO Europe - IQEC Munich May 14th 013 Olivier GORCEIX Exploring quantum magnetism in a Chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris 13, SPC Villetaneuse - France

More information

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory Tien-Tsan Shieh joint work with I-Liang Chern and Chiu-Fen Chou National Center of Theoretical Science December 19, 2015

More information

Singularity Formation in Nonlinear Schrödinger Equations with Fourth-Order Dispersion

Singularity Formation in Nonlinear Schrödinger Equations with Fourth-Order Dispersion Singularity Formation in Nonlinear Schrödinger Equations with Fourth-Order Dispersion Boaz Ilan, University of Colorado at Boulder Gadi Fibich (Tel Aviv) George Papanicolaou (Stanford) Steve Schochet (Tel

More information

Adiabatic trap deformation for preparing Quantum Hall states

Adiabatic trap deformation for preparing Quantum Hall states Marco Roncaglia, Matteo Rizzi, and Jean Dalibard Adiabatic trap deformation for preparing Quantum Hall states Max-Planck Institut für Quantenoptik, München, Germany Dipartimento di Fisica del Politecnico,

More information

Cold atoms in the presence of disorder and interactions

Cold atoms in the presence of disorder and interactions Cold atoms in the presence of disorder and interactions Collaboration: A. Minguzzi, S. Skipetrov, B. van-tiggelen (Grenoble), P. Henseler (Bonn), J. Chalker (Oxford), L. Beilin, E. Gurevich (Technion).

More information

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs

ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs INT Seattle 5 March 5 ROTONS AND STRIPES IN SPIN-ORBIT COUPLED BECs Yun Li, Giovanni Martone, Lev Pitaevskii and Sandro Stringari University of Trento CNR-INO Now in Swinburne Now in Bari Stimulating discussions

More information

Effective dynamics of many-body quantum systems

Effective dynamics of many-body quantum systems Effective dynamics of many-body quantum systems László Erdős University of Munich Grenoble, May 30, 2006 A l occassion de soixantiéme anniversaire de Yves Colin de Verdiére Joint with B. Schlein and H.-T.

More information

Fundamentals and New Frontiers of Bose Einstein Condensation

Fundamentals and New Frontiers of Bose Einstein Condensation Experimental realization of Bose Einstein condensation (BEC) of dilute atomic gases [Anderson, et al. (1995); Davis, et al. (1995); Bradley, et al. (1995, 1997)] has ignited a virtual explosion of research.

More information

Max Lewandowski. Axel Pelster. March 12, 2012

Max Lewandowski. Axel Pelster. March 12, 2012 Primordial Models for Dissipative Bose-Einstein Condensates Max Lewandowski Institut für Physik und Astronomie, Universität Potsdam Axel Pelster Hanse-Wissenschaftskolleg, Delmenhorst March 12, 2012 Experiment

More information

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions Anatoli Polkovnikov Boston University Ehud Altman Weizmann Vladimir Gritsev Harvard Mikhail

More information

Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila

Numerical methods for computing vortex states in rotating Bose-Einstein condensates. Ionut Danaila Numerical methods for computing vortex states in rotating Bose-Einstein condensates Ionut Danaila Laboratoire de mathématiques Raphaël Salem Université de Rouen www.univ-rouen.fr/lmrs/persopage/danaila

More information

Vortices in Bose-Einstein condensates. Ionut Danaila

Vortices in Bose-Einstein condensates. Ionut Danaila Vortices in Bose-Einstein condensates 3D numerical simulations Ionut Danaila Laboratoire Jacques Louis Lions Université Pierre et Marie Curie (Paris 6) http://www.ann.jussieu.fr/ danaila October 16, 2008

More information

1 Superfluidity and Bose Einstein Condensate

1 Superfluidity and Bose Einstein Condensate Physics 223b Lecture 4 Caltech, 04/11/18 1 Superfluidity and Bose Einstein Condensate 1.6 Superfluid phase: topological defect Besides such smooth gapless excitations, superfluid can also support a very

More information

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill

Thermodynamics of the polarized unitary Fermi gas from complex Langevin. Joaquín E. Drut University of North Carolina at Chapel Hill Thermodynamics of the polarized unitary Fermi gas from complex Langevin Joaquín E. Drut University of North Carolina at Chapel Hill INT, July 2018 Acknowledgements Organizers Group at UNC-CH (esp. Andrew

More information

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES

SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Congresso Nazionale della Società Italiana di Fisica Università della Calabria 17/21 Settembre 2018 SYNTHETIC GAUGE FIELDS IN ULTRACOLD ATOMIC GASES Sandro Stringari Università di Trento CNR-INO - Bose-Einstein

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

Accurate and Efficient Numerical Methods for Computing Ground States and Dynamics of Dipolar Bose-Einstein Condensates via the Nonuniform FFT

Accurate and Efficient Numerical Methods for Computing Ground States and Dynamics of Dipolar Bose-Einstein Condensates via the Nonuniform FFT Commun. Comput. Phys. doi: 10.4208/cicp.scpde14.37s Vol. 19, No. 5, pp. 1141-1166 May 2016 Accurate and Efficient Numerical Methods for Computing Ground States and Dynamics of Dipolar Bose-Einstein Condensates

More information

5. Gross-Pitaevskii theory

5. Gross-Pitaevskii theory 5. Gross-Pitaevskii theory Outline N noninteracting bosons N interacting bosons, many-body Hamiltonien Mean-field approximation, order parameter Gross-Pitaevskii equation Collapse for attractive interaction

More information

CLASSICAL LIMIT FOR SEMI-RELATIVISTIC HARTREE SYSTEMS

CLASSICAL LIMIT FOR SEMI-RELATIVISTIC HARTREE SYSTEMS CLASSICAL LIMIT FOR SEMI-RELATIVISTIC HARTREE SYSTEMS GONCA L. AKI, PETER A. MARKOWICH, AND CHRISTOF SPARBER Abstract. We consider the three-dimensional semi-relativistic Hartree model for fast quantum

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

A stroboscopic averaging technique for highly-oscillatory Schrödinger equation

A stroboscopic averaging technique for highly-oscillatory Schrödinger equation A stroboscopic averaging technique for highly-oscillatory Schrödinger equation F. Castella IRMAR and INRIA-Rennes Joint work with P. Chartier, F. Méhats and A. Murua Saint-Malo Workshop, January 26-28,

More information

Lecture 2: Weak Interactions and BEC

Lecture 2: Weak Interactions and BEC Lecture 2: Weak Interactions and BEC Previous lecture: Ideal gas model gives a fair intuition for occurrence of BEC but is unphysical (infinite compressibility, shape of condensate...) Order parameter

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Condensate fraction for a polarized three-dimensional Fermi gas

Condensate fraction for a polarized three-dimensional Fermi gas Condensate fraction for a polarized three-dimensional Fermi gas Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei, Università di Padova, Italy Camerino, June 26, 2014 Collaboration with:

More information

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration Analysis ofbose Bose-Fermi Mixturesin in Optical Lattices Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock Project within FerMix collaboration Motivation

More information

Low dimensional quantum gases, rotation and vortices

Low dimensional quantum gases, rotation and vortices Goal of these lectures Low dimensional quantum gases, rotation and vortices Discuss some aspect of the physics of quantum low dimensional systems Planar fluids Quantum wells and MOS structures High T c

More information

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline

Dipolar Fermi gases. Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam. Outline Dipolar Fermi gases Introduction, Gora Shlyapnikov LPTMS, Orsay, France University of Amsterdam Outline Experiments with magnetic atoms and polar molecules Topologcal p x +ip y phase in 2D Bilayer systems

More information

been succeeded in 1997 Rb, 23 Na, 7 Li, 1 H, 85 Rb, 41 K, 4 He, 133 Cs, 174 Yb, 52 Cr, 40 Ca, 84 Sr, 164 Dy Laser cooling Trap of atoms 87

been succeeded in 1997 Rb, 23 Na, 7 Li, 1 H, 85 Rb, 41 K, 4 He, 133 Cs, 174 Yb, 52 Cr, 40 Ca, 84 Sr, 164 Dy Laser cooling Trap of atoms 87 Non-Abelian Vortices and Their Non-equilibrium Michikazu Kobayashi a University of Tokyo November 18th, 2011 at Keio University 2 nd Workshop on Quarks and Hadrons under Extreme Conditions - Lattice QCD,

More information

Sharp blow-up criteria for the Davey-Stewartson system in R 3

Sharp blow-up criteria for the Davey-Stewartson system in R 3 Dynamics of PDE, Vol.8, No., 9-60, 011 Sharp blow-up criteria for the Davey-Stewartson system in R Jian Zhang Shihui Zhu Communicated by Y. Charles Li, received October 7, 010. Abstract. In this paper,

More information

F. Chevy Seattle May 2011

F. Chevy Seattle May 2011 THERMODYNAMICS OF ULTRACOLD GASES F. Chevy Seattle May 2011 ENS FERMION GROUPS Li S. Nascimbène Li/K N. Navon L. Tarruell K. Magalhaes FC C. Salomon S. Chaudhuri A. Ridinger T. Salez D. Wilkowski U. Eismann

More information

Artificial Gauge Fields for Neutral Atoms

Artificial Gauge Fields for Neutral Atoms Artificial Gauge Fields for Neutral Atoms Simon Ristok University of Stuttgart 07/16/2013, Hauptseminar Physik der kalten Gase 1 / 29 Outline 1 2 3 4 5 2 / 29 Outline 1 2 3 4 5 3 / 29 What are artificial

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957

Bardeen Bardeen, Cooper Cooper and Schrieffer and Schrieffer 1957 Unexpected aspects of large amplitude nuclear collective motion Aurel Bulgac University of Washington Collaborators: Sukjin YOON (UW) Kenneth J. ROCHE (ORNL) Yongle YU (now at Wuhan Institute of Physics

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/20 What is common for strong coupled cold atoms and QGP? Cold atoms and AdS/CFT p.2/20

More information

Cold atoms and AdS/CFT

Cold atoms and AdS/CFT Cold atoms and AdS/CFT D. T. Son Institute for Nuclear Theory, University of Washington Cold atoms and AdS/CFT p.1/27 History/motivation BCS/BEC crossover Unitarity regime Schrödinger symmetry Plan Geometric

More information