Summary of riming onset conditions for different crystal habits. Semi-dimension: width / lateral dimension (perpendicular to c-axis)

Size: px
Start display at page:

Download "Summary of riming onset conditions for different crystal habits. Semi-dimension: width / lateral dimension (perpendicular to c-axis)"

Transcription

1 Summary of riming onset conditions for different crystal habits Semi-dimension: width / lateral dimension (perpendicular to c-axis)

2 HEAT BALANCE FOR GRAUPEL PARTICLES Consider a graupel particle growing by riming in a water saturated environment. Hence the possibility exists that the particle will also be growing by vapor deposition. Accreted droplets freeze on graupel particles and therefore release latent heat. This latent heat release effectively slows depositional growth. At some critical LWC, depositional growth will cease. At this point e v (surface)=e v (environment). At liquid water contents greater than the critical value, the particle actually falls into a state where it begins to sublime. What is W L, the critical liquid water content at which point deposition ceases? Heat balance is: specific heat of water HEAT CONDUCTION TERM Some of the latent heat released heats the surface of the particle T s = particle surface temp T o = temp of accreted water T a = ambient temperature A good approximation f v.h is a ventilation coefficient (not discussed here)

3 Let f v ventilation term for vapor deposition Particle x-sec area Combining above equations, Density of vapor at surface of particle The value of W L at which point deposition ceases is, Where is the temperature increment above ambient at which is assumed to be is slightly greater than (saturated with respect to water) or less

4 The criterion states that vapor deposition ceases. If the graupel particle is in a water saturated environment, and if supercooled drops instantly freeze, then it must mean that the surface temperature of the particle has been raised until the vapor pressure over ice at T s = vapor pressure over supercooled water at T ambient We can see that the difference will be just a few degrees So if we choose the ambient T a, we can find the ΔT, and can solve the equations for the corresponding supercooled liquid water content where vapor deposition ceases (and beyond which it reverses, to sublimation)

5 (Houghton 1985) See table of LWC (in Excel book): Growing cumulonimbus, 1-3 g cm -3 (Other clouds smaller) So limit may be reached only in strong cumulus clouds at warmer temperatures, and for larger particles (Small ones should grow rapidly by both mechanisms, vapor deposition and accretion) Critical liquid water contents As we will see later, the surface growth state of a graupel particle, whether it be in a depositional or sublimational state, controls the sign of electrical charge retained by the particle (in a non-inductive charging process) Interestingly: a particle may actually be in a sublimational state with respect to vapor transfer while it is growing by collecting supercooled liquid water. (We assumed here that water freezes instantly when it is collected) If the accretion rates get so large that T s rises to 0 C, the possibility of the drops NOT freezing on impact occurs!

6 Formation of HAIL Riming process, similar to graupel, but particles are larger Associated with convective storm systems. Provides large supercooled liquid water contents to promote hail growth Provides strong updraft velocities, that suspend and carry hail aloft, promoting growth Diameters to >13cm Weight ~1kg! Embryo required to kick-off hail growth Growth regimes: Dry growth: low to moderate liquid water contents Wet growth: Alternating dry and wet growth regimes promotes hailstone layered structure Dry growth Wet growth opaque ice clear ice graupel frozen drop

7 HGZ: hail growth zone EFZ: Embryo formation region FOZ: Fall-out zone

8 Both frozen drops and graupel particles can serve as hail embryos

9 (liquid) (trapped air)

10 DRY GROWTH Latent heat is released due to freezing of water; this heat that is liberated warms the surface of the stone. At low to moderate LWC s, this heat can be effectively dissipated to the surrounding air. Hence the stone remains below 0 C, and its surface is dry. This type of growth results in opaque ice since the rime contains quite a bit of air. The opaque layers are porous and the ice has a low bulk density. WET GROWTH At larger riming rates (higher LWC s and/or larger hail stones) latent heat release will warm the stone to 0 C, hence preventing most of the accreted liquid water from being frozen. Excess liquid water may fill in air spaces of underlying opaque ice In this case the surface of the stone becomes an ice-water mesh, promoting the term spongy ice. Even higher LWC s promote a complete liquid surface, called wet growth. Clear ice develops as this liquid layer freezes, e.g. when hailstone moves to a region of LWC and riming rate is reduced This liquid surface may be partially shed in the wake of the hailstone. The shed water produces drops that may then rapidly freeze and become new hail embryo sources.

11 Schumann-Ludlam Limit conditions that define the growth of an ice particle which freezes all the drops it collects and where surface temperature is 0 C. A liquid surface exists beyond SL limit. water that cannot be frozen may either be incorporated into a ice/water mix (spongy ice) or it may be shed.

12 Simplified models for hailstone growth rates For dry growth: the accreted water freezes instantly. Heat is released at a fast-enough rate, that although the hail particle warms, it does not exceed 0 C. The standard continuous-collection equation can be applied (same as used for graupel growth by accretion of supercooled droplets): dm h dt dry = πr h 2 V (r h )W l E c Here, r and m refer to the growing hailstone, V(r) is its fall velocity (or rather, the net rate of falling, if the strength of the updraft needs to be considered), W l is the liquid water content (the supercooled water), and E c is the collection efficiency. Since freezing is instantaneous, in dry growth, we can just apply this equation to figure out the rate of change of mass of the hailstone. For wet growth, however, this equation has to be combined with a heat balance

13 For wet growth: assume all excess water (that cannot be frozen) is shed Then the growth rate is determined by the rate at which collected water can be frozen (and thus retained) Have to dissipate latent heat to the environment: balance between latent heating and dissipation determines the growth rate Assumptions: Ignore heat storage in the hailstone (probably not a great assumption) Ignore collection of any other species except supercooled cloud drops Then the energy equation becomes: m h c p,h dt h dt dm = L h f dt Latent heat released by wet growth process wg + c w (T c T h ) dm h dt dry Sensible heat transferred between hailstone and collected water 0 (s.s) 4πr h L e D v (ρ v,rh 4πr h K(T h T E ) f h ρ v,e ) f v Latent heat transferred as vapor condenses or evaporates from hailstone Diffusion of heat between hailstone and its environment (conduction away from hailstone)

14 Further assume: The surface of the hailstone remains at 0 C (T o ) The cloud droplets are at T E Use the equation for dry growth Then the energy balance becomes: L f dm h dt wg = c w (T E T o )( πr 2 h V (r h )W l E c ) +4πr h L e D v (ρ v,rh ρ v,e ) f v +4πr h K(T o T E ) f h Solve for mass addition rate by wet growth dm h dt wg = c w (T o T E )πr 2 h V (r h )W l E c L f + 4πr h [ L e D v (ρ v,rh ρ v,e ) f v + K(T o T E ) f h ] L f

15 To find the critical water content, the conditions where dry growth switches over to wet growth: set dm h dt wg = dm h dt dry πr 2 h V (r h )W l E c = c w (T o T E )πr 2 h V (r h )W l E c + 4πr h [ L e D v (ρ v,rh ρ v,e ) f v + K(T o T E ) f h ] L f L f [ ] E c W l = 4 L ed v (ρ v,rh ρ v,e ) f v + K(T o T E ) f h r h V (r h )(L f c w (T o T E )) This is an effective liquid water content (since it includes the collection efficiency) As evaporation and conduction become more effective at dissipating the heat due to freezing (numerator increases), the critical liquid water content increases As the hailstone increases in size, the critical liquid water content decreases (collection of water increases with area and fallspeed)

16 Evaporation Conduction [ ] E c W l = 4 L D (ρ e v v,r h ρ v,e ) f v + K(T o T E ) f h r h V (r h )(L f c w (T o T E )) Note: if not all the excess water is shed, we need to modify the balance equations to account for this (see P&K) For a given T, the critical water content decreases with increasing size For a given radius, the CWC increases with decreasing T The CWC is higher for hailstones than for smooth spheres (enhanced ventilation allows heat to dissipate better) Rough Hailstones More efficient heat conduction to environment (Pruppacher & Klett 1978)

17 (Young 1993) Spongy ice: ice-water mixture on surface of hailstone. Most liquid water is accumulated around equator of particle. Schumann- Ludlam Limit (wet growth = dry growth)

18 Johnson and Rasmussen (1992) argued that once a hail particle reaches Schumann-Ludlam limit, its surface will become smoother, thereby reducing drag and increasing fallspeed. Therefore the hailstone will stay in the wet growth regime at lower LWC s compared to those required to get it into wet growth to begin with. Lower ventilation rates too----heat is dissipated less effectively. Eventually the fraction of water increases to a point where water can t be retained in ice-water matrix; SHEDDING occurs beyond this point. Shedding occurs when the overall ice fraction is <0.7.

19 Melting of ice particles: When ice particles fall below 0 C they begin to melt, but the process takes some time since heat transfer needs to occur (heat from ambient environment has to supply the latent heat to effect the phase change) We can apply the same simplified model as before: hailstone settling through population of cloud droplets, accreting them, but at temperature > 0 C Put in rate of dry collection here

20 Setting the rate of energy conduction through air equal to the rate of energy lost through evaporation, solve for the ambient temperature that yields a surface temperature = T 0 (0 C): An ice particle in cloud (RH~100%) may begin melting near 0 C, but outside the cloud, melting may not begin until ambient temperatures are a few degrees above 0 C, because at lower RH there is a driving force for evaporation, which cools the drop, and thus inhibits melting.

21 Points: Melting distance increases with density (more mass for given radius) Melting time increases with particle size Melting distance is shorter in water saturated environments Evaporation not allowed, thus all absorbed heat can go to phase change In subsaturated environment, some goes into latent heat of evaporation

22 Soviet Hail Model Start with thunderstorm model If the storm develops vigorous updrafts and high LWC during growth stage, then raindrops may form Raindrops are swept aloft, grow and ascend into supercooled regions Notice in sketch, updraft is maximum in -10 to -20 C range Many raindrops may be suspended just above the maximum: for radii > 2 mm, fall speeds are slightly > 9 m s -1 Region just above updraft maximum becomes a trap and supercooled liquid water builds up If a few of these drops freeze, they find themselves in a zone of very high LWC Hailstone formation occurs

23 (Prof. Cotton s notes)

24 Over the High Plains of the U.S. and Canada, multicell thunderstorms are found to be prolific producers of hail The mature stage of each cell provides proper updraft speeds and LWC for hailstones to grow, BUT They have to already be sizeable precipitation particles before they enter the strong updrafts (time scale issues) Weaker, transient updrafts provide sufficient time for the growth of graupel particles and aggregates of snow crystals, that then serve as hailstone embryos as the cell enters its mature stage Multicell storms thus are good environments for growing large hail Millimeter-sized ice particles settle at 8-10 m/s, compared to updrafts of m/s at low levels and m/s at high levels Supercell thunderstorm: A steady thunderstorm consisting of a single updraft cell that may exist for 2-6 hours Produce the largest hailstones: why aren t they swept out of anvil, given that updrafts of > 30 m/s can exist?

25 [Please see Cotton notes for complete discussion] Three-stage process envisioned Stage 1: embryos form in relatively narrow region on updraft edge (~10 m/s), grow to mm-sized hail embryos Can sweep around main updraft and enter the embryo curtain (trajs labeled 0 go out anvil) Stage 2: those following traj 2 experience more growth as they descend in embro-curtain region and re-enter base of main updraft Stage 3: hailstones see very high LWC during ascent in main updraft; they remain there long because their fall speeds are not so different from updraft until they get quite massive

Graupel and Hail Growth

Graupel and Hail Growth Graupel and Hail Growth I. Growth of large ice particles In this section we look at some basics of graupeln and hail growth. Important components of graupeln and hail growth models include production of

More information

Melting of ice particles:

Melting of ice particles: Melting of ice particles: When ice particles fall below 0 C they begin to melt, but the process takes some time since heat transfer needs to occur (heat from ambient environment has to supply the latent

More information

Precipitations. Terminal Velocity. Chapter 7: Precipitation Processes. Growth of Cloud Droplet Forms of Precipitations Cloud Seeding

Precipitations. Terminal Velocity. Chapter 7: Precipitation Processes. Growth of Cloud Droplet Forms of Precipitations Cloud Seeding Chapter 7: Precipitation Processes Precipitations Water Vapor Saturated Need cloud nuclei Cloud Droplet formed around Cloud Nuclei Growth of Cloud Droplet Forms of Precipitations Cloud Seeding Precipitation

More information

Chapter 7: Precipitation Processes. ESS5 Prof. Jin-Yi Yu

Chapter 7: Precipitation Processes. ESS5 Prof. Jin-Yi Yu Chapter 7: Precipitation Processes From: Introduction to Tropical Meteorology, 1st Edition, Version 1.1.2, Produced by the COMET Program Copyright 2007-2008, 2008, University Corporation for Atmospheric

More information

Chapter 7 Precipitation Processes

Chapter 7 Precipitation Processes Chapter 7 Precipitation Processes Chapter overview: Supersaturation and water availability Nucleation of liquid droplets and ice crystals Liquid droplet and ice growth by diffusion Collision and collection

More information

Collision and Coalescence 3/3/2010. ATS 351 Lab 7 Precipitation. Droplet Growth by Collision and Coalescence. March 7, 2006

Collision and Coalescence 3/3/2010. ATS 351 Lab 7 Precipitation. Droplet Growth by Collision and Coalescence. March 7, 2006 ATS 351 Lab 7 Precipitation March 7, 2006 Droplet Growth by Collision and Coalescence Growth by condensation alone takes too long ( 15 C -) Occurs in clouds with tops warmer than 5 F Greater the speed

More information

Water in the Atmosphere

Water in the Atmosphere Water in the Atmosphere Characteristics of Water solid state at 0 o C or below (appearing as ice, snow, hail and ice crystals) liquid state between 0 o C and 100 o C (appearing as rain and cloud droplets)

More information

Air stability. About. Precipitation. air in unstable equilibrium will move--up/down Fig. 5-1, p.112. Adiabatic = w/ no exchange of heat from outside!

Air stability. About. Precipitation. air in unstable equilibrium will move--up/down Fig. 5-1, p.112. Adiabatic = w/ no exchange of heat from outside! Air stability About clouds Precipitation A mass of moist, stable air gliding up and over these mountains condenses into lenticular clouds. Fig. 5-CO, p.110 air in unstable equilibrium will move--up/down

More information

1. describe the two methods by which cloud droplets can grow to produce precipitation (pp );

1. describe the two methods by which cloud droplets can grow to produce precipitation (pp ); 10 Precipitation Learning Goals After studying this chapter, students should be able to: 1. describe the two methods by which cloud droplets can grow to produce precipitation (pp. 232 236); 2. distinguish

More information

Chapter 8 - Precipitation. Rain Drops, Cloud Droplets, and CCN

Chapter 8 - Precipitation. Rain Drops, Cloud Droplets, and CCN Chapter 8 - Precipitation Rain Drops, Cloud Droplets, and CCN Recall the relative sizes of rain drops, cloud drops, and CCN: raindrops - 2000 μ m = 2 mm fall at a speed of 4-5 ms -1 cloud drops - 20 μ

More information

5/26/2010. Hailstone Formation and Growth Lightning Stroke Downburst Formation, Structure, and Type

5/26/2010. Hailstone Formation and Growth Lightning Stroke Downburst Formation, Structure, and Type Chapters 20-22: 22: Hailstorms, Lightning, Downbursts Hail Hailstone Formation and Growth Lightning Stroke Downburst Formation, Structure, and Type Hail is one of the most spectacular phenomena associated

More information

Precipitation. AT350: Ahrens Chapter 8

Precipitation. AT350: Ahrens Chapter 8 Precipitation AT350: Ahrens Chapter 8 Precipitation Formation How does precipitation form from tiny cloud drops? Warm rain process The Bergeron (ice crystal) process Most important at mid and northern

More information

EARTH SCIENCE. Prentice Hall Water in the Atmosphere Water in the Atmosphere Water in the Atmosphere.

EARTH SCIENCE. Prentice Hall Water in the Atmosphere Water in the Atmosphere Water in the Atmosphere. Prentice Hall EARTH SCIENCE Tarbuck Lutgens Water s Changes of State 1. Precipitation is any form of water that falls from a cloud. a. Examples: Snow, rain, hail, sleet 3 States of matter of water: 1.

More information

Ch. 6 Cloud/precipitation Formation and Process: Reading: Text, ch , p

Ch. 6 Cloud/precipitation Formation and Process: Reading: Text, ch , p Ch. 6 Cloud/precipitation Formation and Process: Reading: Text, ch. 6.1-6.6, p209-245 Reference: Ch.3 of Cloud Dynamics by Houze Topics: Cloud microphysics: cloud droplet nucleation and growth, precipitation

More information

Aircraft Icing Icing Physics

Aircraft Icing Icing Physics Aircraft Icing Icing Physics Prof. Dr. Dept. Aerospace Engineering, METU Fall 2015 Outline Formation of ice in the atmosphere Supercooled water droplets Mechanism of aircraft icing Icing variations Ice

More information

Precipitation Processes. Precipitation Processes 2/24/11. Two Mechanisms that produce raindrops:

Precipitation Processes. Precipitation Processes 2/24/11. Two Mechanisms that produce raindrops: Precipitation is any form of water that falls from a cloud and reaches the ground. How do cloud drops grow? Chapter 7 When air is saturated with respect to a flat surface it is unsaturated with respect

More information

Weather, Atmosphere and Meteorology

Weather, Atmosphere and Meteorology S c i e n c e s Weather, Atmosphere and Meteorology Key words: Atmosphere, Ozone, Water vapor, solar radiation, Condensation, Evaporation, Humidity, Dew-Point Temperature, Cirrus Clouds, Stratus Clouds,

More information

Trade wind inversion. is a highly stable layer (~2 km high) that caps the moist surface layer (often cloudy) from the dry atmosphere above.

Trade wind inversion. is a highly stable layer (~2 km high) that caps the moist surface layer (often cloudy) from the dry atmosphere above. Hilo 9/19/06 2:00 am HST Td T Trade wind inversion is a highly stable layer (~2 km high) that caps the moist surface layer (often cloudy) from the dry atmosphere above. 1 Mountain/lee waves in a stable

More information

1. Droplet Growth by Condensation

1. Droplet Growth by Condensation 1. Droplet Growth by Condensation It was shown before that a critical size r and saturation ratio S must be exceeded for a small solution droplet to become a cloud droplet. Before the droplet reaches the

More information

Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning

Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds

More information

Clouds associated with cold and warm fronts. Whiteman (2000)

Clouds associated with cold and warm fronts. Whiteman (2000) Clouds associated with cold and warm fronts Whiteman (2000) Dalton s law of partial pressures! The total pressure exerted by a mixture of gases equals the sum of the partial pressure of the gases! Partial

More information

Exam 2 Results (20% toward final grade)

Exam 2 Results (20% toward final grade) Exam 2 Results (20% toward final grade) Score between 90-99: 6 students (3 grads, 3 under) Score between 80-89: 2 students Score between 70-79: 3 students Score between 60-69: 2 students Below 59: 1 student

More information

Moisture, Clouds, and Precipitation Earth Science, 13e Chapter 17

Moisture, Clouds, and Precipitation Earth Science, 13e Chapter 17 Moisture, Clouds, and Precipitation Earth Science, 13e Chapter 17 Stanley C. Hatfield Southwestern Illinois College Changes of state of water, H 2 O Water is the only substance in atmosphere that exists

More information

ESCI Cloud Physics and Precipitation Processes Lesson 9 - Precipitation Dr. DeCaria

ESCI Cloud Physics and Precipitation Processes Lesson 9 - Precipitation Dr. DeCaria ESCI 34 - Cloud Physics and Precipitation Processes Lesson 9 - Precipitation Dr. DeCaria References: A Short Course in Cloud Physics, 3rd ed., Rogers and Yau, Ch. 1 Microphysics of Clouds and Precipitation

More information

In this chapter we explain the processes by which nonprecipitating cloud droplets and ice crystals grow large enough to fall as precipitation

In this chapter we explain the processes by which nonprecipitating cloud droplets and ice crystals grow large enough to fall as precipitation Goals for today: 19 Oct., 2011 Ch 7, Precipitation Processes In this chapter we explain the processes by which nonprecipitating cloud droplets and ice crystals grow large enough to fall as precipitation

More information

Solutions to questions from chapter 8 in GEF Cloud Physics

Solutions to questions from chapter 8 in GEF Cloud Physics Solutions to questions from chapter 8 in GEF4310 - Cloud Physics i.h.h.karset@geo.uio.no Problem 1 a) What is expressed by the equation below? Answer: The left side is the time rate of change of the mass

More information

Name Class Date. 3. In what part of the water cycle do clouds form? a. precipitation b. evaporation c. condensation d. runoff

Name Class Date. 3. In what part of the water cycle do clouds form? a. precipitation b. evaporation c. condensation d. runoff Skills Worksheet Directed Reading B Section: Water in the Air 1. What do we call the condition of the atmosphere at a certain time and place? a. the water cycle b. weather c. climate d. precipitation THE

More information

Warm Cloud Processes. Some definitions. Two ways to make big drops: Effects of cloud condensation nuclei

Warm Cloud Processes. Some definitions. Two ways to make big drops: Effects of cloud condensation nuclei Warm Cloud Processes Dr. Christopher M. Godfrey University of North Carolina at Asheville Warm clouds lie completely below the 0 isotherm 0 o C Some definitions Liquid water content (LWC) Amount of liquid

More information

Temp 54 Dew Point 41 Relative Humidity 63%

Temp 54 Dew Point 41 Relative Humidity 63% Temp 54 Dew Point 41 Relative Humidity 63% Water in the Atmosphere Evaporation Water molecules change from the liquid to gas phase Molecules in liquids move slowly Heat energy makes them move faster When

More information

Chapter 8 cont. Clouds and Storms. Spring 2018

Chapter 8 cont. Clouds and Storms. Spring 2018 Chapter 8 cont. Clouds and Storms Spring 2018 Clouds and Storms Clouds cover ~ 50% of earth at any time. Clouds are linked to a number of condensation processes. Cloud morphology, cloud types, associated

More information

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM

ISSUED BY KENDRIYA VIDYALAYA - DOWNLOADED FROM CHAPTER -11 WATER IN THE ATMOSPHERE This chapter deals with Humidity, types of humidity, relative humidity, absolute humidity, specific humidity, dew point, condensation, saturated air, types of precipitation

More information

Thursday, June 5, Chapter 5: Condensation & Precipitation

Thursday, June 5, Chapter 5: Condensation & Precipitation Thursday, June 5, 2014 Chapter 5: Condensation & Precipitation Chapter 5: Condensation and Precipitation Formation of Condensation Saturated Air Condensation Nuclei Results of Condensation Clouds Fog Dew

More information

Effect of Mixed Icing Conditions on Thermal Ice Protection Systems

Effect of Mixed Icing Conditions on Thermal Ice Protection Systems Effect of Mixed Icing Conditions on Thermal Ice Protection Systems By Kamel Al-Khalil, Ph.D. Manager, LeClerc Icing Research Laboratory New York, NY 114 FAA Specialists Workshop I. INTRODUCTION The purpose

More information

Meteorology. Review Extreme Weather a. cold front. b. warm front. What type of weather is associated with a:

Meteorology. Review Extreme Weather a. cold front. b. warm front. What type of weather is associated with a: Meteorology 5.08 Extreme Weather References: FTGU pages 132, 144, 145, 148-155 Air Command Weather Manual Chapters 9 and 15 Review What type of weather is associated with a: a. cold front b. warm front

More information

TOPICS: What are Thunderstorms? Ingredients Stages Types Lightning Downburst and Microburst

TOPICS: What are Thunderstorms? Ingredients Stages Types Lightning Downburst and Microburst THUNDERSTORMS TOPICS: What are Thunderstorms? Ingredients Stages Types Lightning Downburst and Microburst What are Thunderstorms? A storm produced by a cumulonimbus cloud that contains lightning and thunder

More information

WATER IN THE ATMOSPHERE

WATER IN THE ATMOSPHERE CHAPTER Y ou have already learnt that the air contains water vapour. It varies from zero to four per cent by volume of the atmosphere and plays an important role in the weather phenomena. Water is present

More information

π (r 1 + r 2 ) 2 πr 2 1 v T1 v T2 v T1

π (r 1 + r 2 ) 2 πr 2 1 v T1 v T2 v T1 How do we get rain? So far we ve discussed droplet growth by vapor diffusion, but this is not the process that by itself is primarily responsible for precipitation in warm clouds. The primary production

More information

Introduction. Effect of aerosols on precipitation: - challenging problem - no agreement between the results (quantitative and qualitative)

Introduction. Effect of aerosols on precipitation: - challenging problem - no agreement between the results (quantitative and qualitative) Introduction Atmospheric aerosols affect the cloud mycrophysical structure & formation (observations, numerical studies) An increase of the aerosol particles: - increases CCN concentrations - decreases

More information

Diffusional Growth of Liquid Phase Hydrometeros.

Diffusional Growth of Liquid Phase Hydrometeros. Diffusional Growth of Liquid Phase Hydrometeros. I. Diffusional Growth of Liquid Phase Hydrometeors A. Basic concepts of diffusional growth. 1. To understand the diffusional growth of a droplet, we must

More information

Introduction to Cloud Microphysics

Introduction to Cloud Microphysics Introduction to Cloud Microphysics Mountain Weather and Climate ATM 619: Atmospheric Science Seminar Series Department of Earth and Atmospheric Sciences University at Albany W. James Steenburgh Department

More information

Identify and describe clouds in the low, middle, and upper levels of the atmosphere. Relate these to specific types of weather.

Identify and describe clouds in the low, middle, and upper levels of the atmosphere. Relate these to specific types of weather. 5. Cloud Types. Identify and describe clouds in the low, middle, and upper levels of the atmosphere. Relate these to specific types of weather. Clouds and Preciipitation CIRRUS 32.800 FEET CIRROCUMULUS

More information

Chapter 8 cont. Clouds and Storms

Chapter 8 cont. Clouds and Storms Chapter 8 cont. Clouds and Storms Spring 2007 Clouds and Storms Clouds cover ~ 50% of earth at any time. Clouds are linked to a number of condensation processes. Cloud morphology, cloud types, associated

More information

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each.

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each. Exam : Cloud Physics April, 8 Physical Meteorology 344 Name Questions - are worth 5 points each. Questions -5 are worth points each.. Rank the concentrations of the following from lowest () to highest

More information

A Description of Convective Weather Containing Ice Crystals Associated with Engine Powerloss and Damage

A Description of Convective Weather Containing Ice Crystals Associated with Engine Powerloss and Damage A Description of Convective Weather Containing Ice Crystals Associated with Engine Powerloss and Damage The Boeing Company 1 Photo: courtesy of Ian McPherson The Boeing Company acknowledges the contributions

More information

Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning

Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning Thunderstorm: a cumulonimbus cloud or collection of cumulonimbus clouds featuring vigorous updrafts, precipitation and lightning Thunderstorms are responsible for most of what we refer to as severe weather,

More information

Lecture Outlines PowerPoint. Chapter 17 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 17 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 17 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Copyright 2015 Edmentum All rights reserved.

Copyright 2015 Edmentum All rights reserved. Copyright 2015 Edmentum All rights reserved. weather 1 1. Sharon woke up on a sunny morning and ate breakfast. Then she looked outside and saw tall, quickly forming clouds. The clouds looked ready to rain.

More information

Terminal velocity. 1. The collision cross-sectional area is. π (r 1 + r 2 ) 2 πr The relative collection velocity is.

Terminal velocity. 1. The collision cross-sectional area is. π (r 1 + r 2 ) 2 πr The relative collection velocity is. How do we get rain? So far we ve discussed droplet growth by vapor diffusion, but this is not the process that by itself is primarily responsible for precipitation in warm clouds. The primary production

More information

Weather - is the state of the atmosphere at a specific time & place

Weather - is the state of the atmosphere at a specific time & place Weather Section 1 Weather - is the state of the atmosphere at a specific time & place Includes such conditions as air pressure, wind, temperature, and moisture in the air The Sun s heat evaporates water

More information

Thunderstorm. Thunderstorms result from the rapid upward movement of warm, moist air.

Thunderstorm. Thunderstorms result from the rapid upward movement of warm, moist air. Severe Weather Thunderstorm A thunderstorm (aka an electrical storm, a lightning storm, or a thundershower) is a type of storm characterized by the presence of lightning and its acoustic effect, thunder.

More information

PHASE CHANGE. Freezing Sublimation

PHASE CHANGE. Freezing Sublimation Melting Graphic Organizer Deposition PHASE CHANGE Freezing Sublimation Boiling Evaporation Condensation PHASE CHANGE Phase change happens as the temperature changes. All matter can move from one state

More information

Water in the Air. Pages 38-45

Water in the Air. Pages 38-45 Water in the Air Pages 38-45 Quick Write What is the water cycle? Draw and label a diagram of the water cycle. Chapter 2, Section 1 Does this look familiar? Please open your text to page 38 and copy and

More information

Chapter The transition from water vapor to liquid water is called. a. condensation b. evaporation c. sublimation d.

Chapter The transition from water vapor to liquid water is called. a. condensation b. evaporation c. sublimation d. Chapter-6 Multiple Choice Questions 1. The transition from water vapor to liquid water is called. a. condensation b. evaporation c. sublimation d. deposition 2. The movement of water among the great global

More information

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc.

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc. NATS 1750 Lecture Wednesday 28 th November 2012 Processes that lift air Orographic lifting Elevated terrains act as barriers Result can be a rainshadow desert Frontal wedging Cool air acts as a barrier

More information

1. Base your answer to the following question on the weather map below, which shows a weather system that is affecting part of the United States.

1. Base your answer to the following question on the weather map below, which shows a weather system that is affecting part of the United States. 1. Base your answer to the following question on the weather map below, which shows a weather system that is affecting part of the United States. Which sequence of events forms the clouds associated with

More information

Reading. What meteorological conditions precede a thunderstorm? Thunderstorms: ordinary or single cell storms, multicell storms, supercell storms

Reading. What meteorological conditions precede a thunderstorm? Thunderstorms: ordinary or single cell storms, multicell storms, supercell storms Thunderstorms: ordinary or single cell storms, multicell storms, supercell storms Reading Ahrens, Chapter 14: Thunderstorms and Tornadoes This lecture + next (Lightning, tornadoes) will cover the topic.

More information

Meteorology. I. The Atmosphere - the thin envelope of gas that surrounds the earth.

Meteorology. I. The Atmosphere - the thin envelope of gas that surrounds the earth. Meteorology I. The Atmosphere - the thin envelope of gas that surrounds the earth. A. Atmospheric Structure - the atmosphere is divided into five distinct layers that are based on their unique characteristics.

More information

Weather Systems. The air around high-pressure weather systems tends to swirl in a clockwise direction, and usually brings clear skies.

Weather Systems. The air around high-pressure weather systems tends to swirl in a clockwise direction, and usually brings clear skies. Weather Systems A weather system is a set of temperature, wind, pressure, and moisture conditions for a certain region that moves as a unit for a period of several days. Low-pressure weather systems form

More information

Initiation of rain in nonfreezing clouds

Initiation of rain in nonfreezing clouds Collision-coalescence Topics: Initiation of rain in nonfreezing clouds ( warm rain process) Droplet terminal fall speed Collision efficiency Growth equations Initiation of rain in nonfreezing clouds We

More information

777 GROUNDSCHOOL Temperature, Stability, Fronts, & Thunderstorms

777 GROUNDSCHOOL Temperature, Stability, Fronts, & Thunderstorms 777 GROUNDSCHOOL 2018 Temperature, Stability, Fronts, & Thunderstorms The Atmosphere Heating Transfer of heat occurs thru Radiation Advection Convection Matter changes states due to the amount of heat

More information

Mr. P s Science Test!

Mr. P s Science Test! WEATHER- 2017 Mr. P s Science Test! # Name Date 1. Draw and label a weather station model. (10 pts) 2. The is the layer of the atmosphere with our weather. 3. Meteorologists classify clouds in about different

More information

Air Mass. 1. Air Mass : Large body of Air with similar temperature and humidity (or moisture) ; 4 types

Air Mass. 1. Air Mass : Large body of Air with similar temperature and humidity (or moisture) ; 4 types Air Mass 1. Air Mass : Large body of Air with similar temperature and humidity (or moisture) ; 4 types A. Continental-relatively dry air masses that form over land. B. Maritime: relatively humid air masses

More information

Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1

Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1 Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1 About Water on the Earth: The Hydrological Cycle Review 3-states of water, phase change and Latent Heat Indices of Water Vapor Content in the

More information

WEATHER MODIFICATION ARTIFICIAL RAIN MAKING AND CLOUD SEEDING. Research done in this field goes back to as far as the early 1940s when the US military

WEATHER MODIFICATION ARTIFICIAL RAIN MAKING AND CLOUD SEEDING. Research done in this field goes back to as far as the early 1940s when the US military WEATHER MODIFICATION ARTIFICIAL RAIN MAKING AND CLOUD SEEDING Weather modification refers to willful manipulation of the climate or local weather. Research done in this field goes back to as far as the

More information

Generating cloud drops from CCN. Wallace & Hobbs (1977)

Generating cloud drops from CCN. Wallace & Hobbs (1977) Generating cloud drops from CCN Wallace & Hobbs (1977) Cloud Drops and Equilibrium Considera3ons: review We discussed how to compute the equilibrium vapor pressure over a pure water drop, or a solu3on

More information

Weather Maps. Name:& & &&&&&Advisory:& & 1.! A&weather&map&is:& & & & 2.! Weather&fronts&are:& & & & & &

Weather Maps. Name:& & &&&&&Advisory:& & 1.! A&weather&map&is:& & & & 2.! Weather&fronts&are:& & & & & & Name: Advisory: Weather Maps 1. Aweathermapis: 2. Weatherfrontsare: a. Labelthefrontsbelow: 1. 2. 3. 4. 3. Clovercoversymbols 4. Precipitationsymbols 5. 6. 7. 8. 5. RadarEchoIntensityshows 6. Isobarsare

More information

1., annual precipitation is greater than annual evapotranspiration. a. On the ocean *b. On the continents

1., annual precipitation is greater than annual evapotranspiration. a. On the ocean *b. On the continents CHAPTER 6 HUMIDITY, SATURATION, AND STABILITY MULTIPLE CHOICE QUESTIONS 1., annual precipitation is greater than annual evapotranspiration. a. On the ocean *b. On the continents 2., annual precipitation

More information

Precipitation AOSC 200 Tim Canty. Cloud Development: Orographic Lifting

Precipitation AOSC 200 Tim Canty. Cloud Development: Orographic Lifting Precipitation AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Precipitation formation Rain Ice Lecture 14 Oct 11 2018 1 Cloud Development: Orographic Lifting

More information

5) The amount of heat needed to raise the temperature of 1 gram of a substance by 1 C is called: Page Ref: 69

5) The amount of heat needed to raise the temperature of 1 gram of a substance by 1 C is called: Page Ref: 69 Homework #2 Due 9/19/14 1) If the maximum temperature for a particular day is 26 C and the minimum temperature is 14 C, what would the daily mean temperature be? (Page Ref: 66) 2) How is the annual mean

More information

b) occurs before the anvil shape at the top of the cloud has formed. c) is marked by an absence of significant downdrafts.

b) occurs before the anvil shape at the top of the cloud has formed. c) is marked by an absence of significant downdrafts. Thunderstorms Question 1 The only requirement for a thunderstorm is: a) sinking air. b) upper level convergence. c) still air. d) rising air. Question 2 The mature stage of air-mass thunderstorms: a) is

More information

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Precipitation GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Last lecture! Atmospheric stability! Condensation! Cloud condensation nuclei (CCN)! Types of clouds Precipitation! Why clouds don t fall! Terminal

More information

6.2 Meteorology. A meteorologist is a person who uses scientific principles to explain, understand, observe, or forecast Earth s weather.

6.2 Meteorology. A meteorologist is a person who uses scientific principles to explain, understand, observe, or forecast Earth s weather. Water and Weather 6.2 Meteorology A meteorologist is a person who uses scientific principles to explain, understand, observe, or forecast Earth s weather. 6.2 Water in the Atmosphere Dew point is the temperature

More information

Chapter Introduction. Weather. Patterns. Forecasts Chapter Wrap-Up

Chapter Introduction. Weather. Patterns. Forecasts Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Describing Weather Weather Patterns Weather Forecasts Chapter Wrap-Up How do scientists describe and predict weather? What do you think? Before you begin,

More information

Rogers and Yau Chapter 10: Drop breakup, snow, precip rate, and bulk models

Rogers and Yau Chapter 10: Drop breakup, snow, precip rate, and bulk models Rogers and Yau Chapter 10: Drop breakup, snow, precip rate, and bulk models One explanation for the negative exponential (M-P) distribution of raindrops is drop breakup. Drop size is limited because increased

More information

Atmospheric Basics Atmospheric Composition

Atmospheric Basics Atmospheric Composition Atmospheric Basics Atmospheric Composition Air is a combination of many gases, each with its own unique characteristics. About 99 percent of the atmosphere is composed of nitrogen and oxygen, with the

More information

Atmospheric Moisture. Relative humidity Clouds Rain/Snow. Relates to atmosphere, hydrosphere, biosphere, exosphere, geosphere

Atmospheric Moisture. Relative humidity Clouds Rain/Snow. Relates to atmosphere, hydrosphere, biosphere, exosphere, geosphere Atmospheric Moisture Relative humidity Clouds Rain/Snow Relates to atmosphere, hydrosphere, biosphere, exosphere, geosphere Atmospheric moisture Water in the atmosphere Requires - vapor pressure- the amount

More information

Chapter 14 Thunderstorm Fundamentals

Chapter 14 Thunderstorm Fundamentals Chapter overview: Thunderstorm appearance Thunderstorm cells and evolution Thunderstorm types and organization o Single cell thunderstorms o Multicell thunderstorms o Orographic thunderstorms o Severe

More information

Precipitation - Chapter 8

Precipitation - Chapter 8 Precipitation - Chapter 8 A typical rain drop - 2000 μm diameter typical cloud droplet - 20 μm typical condensation nucleus - 0.2 μm How do rain drops grow? 1 Growing a Cloud Droplet Droplet formation

More information

A FROZEN DROP PRECIPITATION MECHANISM OVER AN OPEN OCEAN AND ITS EFFECT ON RAIN, CLOUD PATTERN, AND HEATING

A FROZEN DROP PRECIPITATION MECHANISM OVER AN OPEN OCEAN AND ITS EFFECT ON RAIN, CLOUD PATTERN, AND HEATING A FROZEN DROP PRECIPITATION MECHANISM OVER AN OPEN OCEAN AND ITS EFFECT ON RAIN, CLOUD PATTERN, AND HEATING 13.6 Tsutomu Takahashi* University of Hawaii, Honolulu, Hawaii Kazunori Shimura JFE Techno-Research

More information

Thunderstorms. Ordinary Cell Thunderstorms. Ordinary Cell Thunderstorms. Ordinary Cell Thunderstorms 5/2/11

Thunderstorms. Ordinary Cell Thunderstorms. Ordinary Cell Thunderstorms. Ordinary Cell Thunderstorms 5/2/11 A storm containing lightning and thunder; convective storms Chapter 14 Severe thunderstorms: At least one: large hail wind gusts greater than or equal to 50 kt Tornado 1 2 Ordinary Cell Ordinary Cell AKA

More information

Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations

Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations Wei-Kuo Tao,1 Xiaowen Li,1,2 Alexander Khain,3 Toshihisa Matsui,1,2 Stephen Lang,4 and Joanne

More information

24.2 Cloud Formation 2/3/2014. Orographic Lifting. Processes That Lift Air Frontal Wedging. Convergence and Localized Convective Lifting

24.2 Cloud Formation 2/3/2014. Orographic Lifting. Processes That Lift Air Frontal Wedging. Convergence and Localized Convective Lifting 2/3/2014 Orographic Lifting Processes That Lift Air Frontal Wedging A front is the boundary between two adjoining air masses having contrasting characteristics. Convergence and Localized Convective Lifting

More information

Warm Rain Precipitation Processes

Warm Rain Precipitation Processes Warm Rain Precipitation Processes Cloud and Precipitation Systems November 16, 2005 Jonathan Wolfe 1. Introduction Warm and cold precipitation formation processes are fundamentally different in a variety

More information

Weather. Describing Weather

Weather. Describing Weather Weather Describing Weather What is weather? Weather is the atmospheric conditions, along with short-term changes, of a certain place at a certain time. Have you ever been caught in a rainstorm on what

More information

Weather and Climate Review

Weather and Climate Review Weather and Climate Review STUFF YOU NEED TO KNOW and to UNDERSTAND! 1) Because water has a higher specific heat than land, water will warm and cool more slowly than the land will. Because of this: a)

More information

Advanced Spotter Training Lesson 4: The Nature of Thunderstorms

Advanced Spotter Training Lesson 4: The Nature of Thunderstorms Advanced Spotter Training 2009 Lesson 4: The Nature of Thunderstorms From Last Time We discussed the different ways to make air rise. We discussed convection, convergence, and the different kinds of fronts.

More information

1 of 7 Thunderstorm Notes by Paul Sirvatka College of DuPage Meteorology. Thunderstorms

1 of 7 Thunderstorm Notes by Paul Sirvatka College of DuPage Meteorology. Thunderstorms 1 of 7 Thunderstorm Notes by Paul Sirvatka College of DuPage Meteorology Thunderstorms There are three types of thunderstorms: single-cell (or air mass) multicell (cluster or squall line) supercell Although

More information

Chapter 5: Forms of Condensation and Precipitation. Copyright 2013 Pearson Education, Inc.

Chapter 5: Forms of Condensation and Precipitation. Copyright 2013 Pearson Education, Inc. Chapter 5: Forms of Condensation and Precipitation Water vapor's role in the Earth's weather is major. Its the product of evaporation. It is lifted up, condenses and forms clouds. It is also a greenhouse

More information

Storm charge structure

Storm charge structure Storm charge structure Dipole/tripole structure Vertically separated, oppositely charged regions/layers Typical charge pattern has negative charge sandwiched between upper and lower positive charge Exceptions

More information

NATS 101, Section 13, Fall 2010 Midterm Examination #2 October 22, 2010

NATS 101, Section 13, Fall 2010 Midterm Examination #2 October 22, 2010 EXAM NUMBER NATS 101, Section 13, Fall 2010 Midterm Examination #2 October 22, 2010 Name: KEY SID: Instructions: Write your name and student ID on ALL pages of the exam. In the multiple-choice/fill in

More information

Change in temperature of object of mass m kg. -T i. T= T f. Q mc

Change in temperature of object of mass m kg. -T i. T= T f. Q mc PHYS1001 Physics 1 REGULAR Module 2 Thermal Physics SPECIFIC HEAT CAPACITY PHASE CHANGES CALORIMETRY Energy Mechanical energy: kinetic and potential Thermal energy: internal energy, Σ(KE + PE) Chemical

More information

WATER IN THE ATMOSPHERE

WATER IN THE ATMOSPHERE WATER IN THE ATMOSPHERE I. Humidity A. Defined as water vapor or moisture in the air (from evaporation and condensation). B. The atmosphere gains moisture from the evaporation of water from oceans, lakes,

More information

A critical review of the design, execution and evaluation of cloud seeding experiments

A critical review of the design, execution and evaluation of cloud seeding experiments A critical review of the design, execution and evaluation of cloud seeding experiments Roelof T. Bruintjes WMA Meeting September 2013, Santiago Research Applications Program, National Center for Atmospheric

More information

The atmosphere s water

The atmosphere s water The atmosphere s water Atmospheric Moisture and Precipitation Properties of Water The Hydrosphere and the Hydrologic Cycle Humidity The Adiabatic Process Clouds Precipitation Air Quality Main points for

More information

9 Condensation. Learning Goals. After studying this chapter, students should be able to:

9 Condensation. Learning Goals. After studying this chapter, students should be able to: 9 Condensation Learning Goals After studying this chapter, students should be able to: 1. explain the microphysical processes that operate in clouds to influence the formation and growth of cloud droplets

More information

Snow Microphysics and the Top-Down Approach to Forecasting Winter Weather Precipitation Type

Snow Microphysics and the Top-Down Approach to Forecasting Winter Weather Precipitation Type Roger Vachalek Journey Forecaster National Weather Service Des Moines, Iowa www.snowcrystals.com Why is Snow Microphysics Important? Numerical Prediction Models better forecast areas of large scale forcing

More information

CLOUDS, PRECIPITATION, AND WEATHER RADAR

CLOUDS, PRECIPITATION, AND WEATHER RADAR CHAPTER 7 CLOUDS, PRECIPITATION, AND WEATHER RADAR MULTIPLE CHOICE QUESTIONS 1. The activation temperature of most ice-forming nuclei is 0 C. a. above b. about c. well below 2. Hygroscopic nuclei water

More information

Clouds and atmospheric convection

Clouds and atmospheric convection Clouds and atmospheric convection Caroline Muller CNRS/Laboratoire de Météorologie Dynamique (LMD) Département de Géosciences ENS M2 P7/ IPGP 1 What are clouds? Clouds and atmospheric convection 3 What

More information

The Earth System - Atmosphere III Convection

The Earth System - Atmosphere III Convection The Earth System - Atmosphere III Convection Thunderstorms 1. A thunderstorm is a storm that produces lightning (and therefore thunder) 2. Thunderstorms frequently produce gusty winds, heavy rain, and

More information

A laboratory study of the influence of ice crystal growth conditions on subsequent charge transfer in thunderstorm electrification

A laboratory study of the influence of ice crystal growth conditions on subsequent charge transfer in thunderstorm electrification Q. J. R. Meteorol. Soc. (2004), 130, pp. 1395 1406 doi: 10.1256/qj.03.126 A laboratory study of the influence of ice crystal growth conditions on subsequent charge transfer in thunderstorm electrification

More information