A critical review of the design, execution and evaluation of cloud seeding experiments

Size: px
Start display at page:

Download "A critical review of the design, execution and evaluation of cloud seeding experiments"

Transcription

1 A critical review of the design, execution and evaluation of cloud seeding experiments Roelof T. Bruintjes WMA Meeting September 2013, Santiago Research Applications Program, National Center for Atmospheric Research, P.O. Box 3000, Boulder, Colorado,

2 Fundamentals What are clouds made of?

3 Cloud droplets Condensation on hygroscopic particles (a specific kind of water-soluble aerosol) Droplet growth by condensation Condensation occurs through diffusion of water vapor Cloud droplets are typically in the size range of 5-25 µm (i.e., very small) They have a very small terminal velocity Result: No precipitation from only cloud droplets. The water stays in the cloud

4 Warm rain process Collision and coalescence of droplets falling at different terminal velocities leads to raindrop formation Raindrops are millimeters in size Cloud droplets are 100 times smaller in diameter

5 Ice crystals I Ice nuclei are a different kind of aerosol

6 The cold rain process Co-existence of ice crystals and supercooled droplets leads to rapid vapor growth of crystals, followed in suitable convective clouds by accretional growth (riming), fall-out, and melting as rain Graupel

7

8 Microphysical processes in precipitation development Deposition/Evaporation during melting Evaporation/Condensation Autoconversion CLOUD WATER Collection RAIN Condensation Freezing Collection AEROSOLS + WATER VAPOR Riming Melting Collection of ice by rain Riming Collection Evaporation during melting Initiation Deposition Splintering CLOUD ICE Conversion Collection SNOW Deposition Collection Shedding Melting GRAUPEL HAIL Collection Melting PRECIPITATION FALLOUT

9 Total aerosol, cloud condensation nuclei (CCN), and ice nuclei (IN) concentrations as a function of temperature. In order to enhance precipitation the concept of seeding is to seed with appropriate CCN or IN to make precipitation develop more efficiently.

10 Aerosol change: natural and anthropogenic Saharan dust Mexico 1998 Indonesian smoke from fires in 1997 Industries

11 General considerations for planning cloud seeding for rain enhancement Introduction Project Phases Problems to be considered Conclusion

12 Weather modification is: Multidisciplinary & complex technology Dealing with complex and a wide range and scales of meteorological phenomena Often unexpected final results Needs investment and resources

13 It should not be approached as a simple operation but rather a well planned and organized project including: A clearly and quantitatively specified objective Well defined Conceptual Model Appropriate technology and human resources A good evaluation scheme

14 PROJECT PHASES Start Stop Conceptual model Operational Interpretation of the results and conceptual model Design Evaluation Feasibility study Implementation

15 Need Water resources? Reservoirs, ground water CONCEPTION Domestic & Industrial use? Hydropower generation? Important studies Geographical information Conceptual model Literature Other experiences Preliminary investigations Climatological data Microphysical investigations Numerical model simulation

16 The Design Define the general plan for the project including: Objectives and goals Target area Project period Conceptual model and physical hypothesis Operational plan for seeding The data collection system The evaluation scheme

17 Feasibility study Determine the length of the project needed to achieve statistically significant results Statistical simulation Assess the benefit to cost ratio by Assessing the economic impact of any additional water on each use, assuming a given rate of rain increase: 5%, 10%, 15%, etc. Calculating the cost of the project

18 The implementation Perform the project based on an operational plan which includes: The selection criteria for seeding The seeding material and targeting and dispersion system The procedure for data collection Field data checks Monitor and control Equipment and operation Measurements and human resources

19 The evaluation The project evaluation should be considered as multiple aspects: Physical evaluation- as far as possible of the chain of events in the rain process Statistical evaluation of the rain on the ground and its subsequent influences on surface and underground water Economic impact of added water on different uses Post evaluation: Assess other side effects of the project

20 Exploratory Evaluation Assess the possible variation of the seeding response with respect to some physical, meteorological and geographical parameters Data stratification Analyze the rain increase using data subsets constructed after stratification Decision

21 Problems to be considered With respect to: Concept and Design Implementation Evaluation

22 Concept and design

23 Numerical model guidance for design, execution and evaluation of projects

24 Implementation Personnel availability and changes Data collection and quality control Meteorological conditions Drought Severe weather Technical problems Equipment maintenance, spares, etc.

25 Evaluation (1) Physical evaluation Difficulty to detect changes in the chain of events, need of: WHY?: Natural Variability; Limited understanding; etc Highly sophisticated tools, skilled operational crew and good scientists, Rigorous data collection and analysis procedures

26 Evaluation (2) Statistical evaluation Less possibility for good evaluation in case of strictly operational design Need for high density network in case of randomized experiment Radar versus raingauges

27 Evaluation (3) Economic evaluation: Impacts on reservoir and ground water levels Impacts on agricultural practices Annual variability

28 Evaluation Issues Spatial and temporal variability due to meteorological factors has a much greater influence than the enhancement factor (No random draw from the same distribution of potential values; (Beare et al., 2010). Identification of meteorological factors and use as covariates in the analyses (e.g. aerosol loading and thermodynamic profiles). Simple statistical tests insufficient in this environment and multivariate statistical process models that exhibit spatial and temporal dependence are more appropriate than a single test (e.g. aerosol loading).

29 Conclusion Cloud seeding should be planned, implemented and evaluated with the state of the art knowledge. Phasing the project gives a practical and controllable way to conduct a cloud seeding project, Regional scale effort for cloud seeding project is highly desired to share technology, facilities, knowledge, and databases.

30 PRELIMINARY STUDIES WHY? TEMPORAL AND SPATIAL VARIATIONS IN: Climatology of clouds and precipitation in a region Thermodynamic and wind structure of the atmosphere Aerosol and associated microphysical variations

31 Precipitation Processes: QLD Australia example (22 Jan. 2009) Continental cloud droplet spectra at cloud base Coalescence initiates before cloud top reaches 0 o C Drizzle/rain drops present as cloud rises through 0 o C level Temperature versus time 22 January 2009 Images of cloud droplets and drizzle/rain drops Cloud droplet size distributions at cloud base and 0 o C. Due to warm cloud bases (~20 o C) clouds initially develop warm rain process

32 Precipitation Processes: Mixed-phase/ice processes initiated by freezing of large drizzle/rain drops and subsequent initiation of natural seeding (ice splintering) process rapidly depleting cloud liquid water content Large drop freezing at ~-5 o C Initiation of ice splintering process Rapid conversion of LWC to ice Rapid depletion of LWC inhibiting lightning in these cases Temperature versus time 27 January 2009

33 MEXICO (based on Coahuila results) Costo por m 3 de agua adicional precipitado Escenario Volumen producido Volumen aprovechado Costo por m 3 Muy optimista 2,226,300 2,226,300 $ m 3 m 3 Optimista 1,815, ,100 $ m 3 m 3 Pesimista 340,700 m 3 68,140 m 3 $ Muy pesimista 340,700 13,628 $ m 3 m 3 Nota: costos en Mex.$ (2001)

34 New technologies and measurements Numerical models Dual polarization radar data providing new insights Satellite and remote sensor aerosol and cloud measurements providing real-time characterization of the characteristics. New airborne and in-situ measurements to better characterize cloud processes

35 Summary Variations in meteorological conditions can dominate the effects of seeding and are often times much larger than the effect of seeding ( times). These variations can occur in space and in time and can significantly affect the results from any randomized seeding experiments depending on a single statistical test assuming that the samples are randomly drawn from the same distribution of potential values (treatment application for these measurements was at random).

36 Summary cont. More statistically efficient means of analysis are required if we hope to gain significant results in realistic time frames such as multivariate statistical models by including covariates that influence the precipitation processes in a region to control for natural variations in rainfall. In contrast to pure randomization analysis, this type of analysis estimates the conditional contribution to rainfall by meteorological and for example aerosol effects.

37 THE END

A new look at statistical evaluations of cloud seeding experiments WMA Meeting 9-12 April 2013 San Antonio, Texas

A new look at statistical evaluations of cloud seeding experiments WMA Meeting 9-12 April 2013 San Antonio, Texas A new look at statistical evaluations of cloud seeding experiments WMA Meeting 9-12 April 2013 San Antonio, Texas Roelof Bruintjes, Dan Breed, Mike Dixon, Sarah Tessendorf, Courtney Weeks, DuncanAxisa,

More information

MICROPHYSICAL AND PRECIPITATION FORMATION PROCESSES AND RADAR SIGNATURES

MICROPHYSICAL AND PRECIPITATION FORMATION PROCESSES AND RADAR SIGNATURES MICROPHYSICAL AND PRECIPITATION FORMATION PROCESSES AND RADAR SIGNATURES 4 TH International Workshop on Weather Modification 3 rd Workshop on Cloud Physics 21-22 October 2010 Daegu, Korea Projects Current

More information

RAINFALL ENHANCEMENT PROGRAMS AND NEED FOR TRAINING. SAHEL Conference April 2007 CILSS Ouagadougou, Burkina Faso

RAINFALL ENHANCEMENT PROGRAMS AND NEED FOR TRAINING. SAHEL Conference April 2007 CILSS Ouagadougou, Burkina Faso RAINFALL ENHANCEMENT PROGRAMS AND NEED FOR TRAINING SAHEL Conference 2007 2-6 April 2007 CILSS Ouagadougou, Burkina Faso Fundamentals What are clouds made of? Cloud droplets Condensation on hygroscopic

More information

AEROSOL-CLOUD INTERACTIONS AND PRECIPITATION IN A GLOBAL SCALE. SAHEL Conference April 2007 CILSS Ouagadougou, Burkina Faso

AEROSOL-CLOUD INTERACTIONS AND PRECIPITATION IN A GLOBAL SCALE. SAHEL Conference April 2007 CILSS Ouagadougou, Burkina Faso AEROSOL-CLOUD INTERACTIONS AND PRECIPITATION IN A GLOBAL SCALE SAHEL Conference 2007 2-6 April 2007 CILSS Ouagadougou, Burkina Faso The aerosol/precipitation connection Aerosol environment has changed

More information

Chapter 7: Precipitation Processes. ESS5 Prof. Jin-Yi Yu

Chapter 7: Precipitation Processes. ESS5 Prof. Jin-Yi Yu Chapter 7: Precipitation Processes From: Introduction to Tropical Meteorology, 1st Edition, Version 1.1.2, Produced by the COMET Program Copyright 2007-2008, 2008, University Corporation for Atmospheric

More information

Chapter 7 Precipitation Processes

Chapter 7 Precipitation Processes Chapter 7 Precipitation Processes Chapter overview: Supersaturation and water availability Nucleation of liquid droplets and ice crystals Liquid droplet and ice growth by diffusion Collision and collection

More information

Precipitations. Terminal Velocity. Chapter 7: Precipitation Processes. Growth of Cloud Droplet Forms of Precipitations Cloud Seeding

Precipitations. Terminal Velocity. Chapter 7: Precipitation Processes. Growth of Cloud Droplet Forms of Precipitations Cloud Seeding Chapter 7: Precipitation Processes Precipitations Water Vapor Saturated Need cloud nuclei Cloud Droplet formed around Cloud Nuclei Growth of Cloud Droplet Forms of Precipitations Cloud Seeding Precipitation

More information

Modeling of cloud microphysics: from simple concepts to sophisticated parameterizations. Part I: warm-rain microphysics

Modeling of cloud microphysics: from simple concepts to sophisticated parameterizations. Part I: warm-rain microphysics Modeling of cloud microphysics: from simple concepts to sophisticated parameterizations. Part I: warm-rain microphysics Wojciech Grabowski National Center for Atmospheric Research, Boulder, Colorado parameterization

More information

WEATHER MODIFICATION ARTIFICIAL RAIN MAKING AND CLOUD SEEDING. Research done in this field goes back to as far as the early 1940s when the US military

WEATHER MODIFICATION ARTIFICIAL RAIN MAKING AND CLOUD SEEDING. Research done in this field goes back to as far as the early 1940s when the US military WEATHER MODIFICATION ARTIFICIAL RAIN MAKING AND CLOUD SEEDING Weather modification refers to willful manipulation of the climate or local weather. Research done in this field goes back to as far as the

More information

Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations

Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations Wei-Kuo Tao,1 Xiaowen Li,1,2 Alexander Khain,3 Toshihisa Matsui,1,2 Stephen Lang,4 and Joanne

More information

Aircraft Icing Icing Physics

Aircraft Icing Icing Physics Aircraft Icing Icing Physics Prof. Dr. Dept. Aerospace Engineering, METU Fall 2015 Outline Formation of ice in the atmosphere Supercooled water droplets Mechanism of aircraft icing Icing variations Ice

More information

Chapter 8 - Precipitation. Rain Drops, Cloud Droplets, and CCN

Chapter 8 - Precipitation. Rain Drops, Cloud Droplets, and CCN Chapter 8 - Precipitation Rain Drops, Cloud Droplets, and CCN Recall the relative sizes of rain drops, cloud drops, and CCN: raindrops - 2000 μ m = 2 mm fall at a speed of 4-5 ms -1 cloud drops - 20 μ

More information

THE EFFECTS OF GIANT CCN ON CLOUDS AND PRECIPITATION: A CASE STUDY FROM THE SAUDI ARABIA PROGRAM FOR THE ASSESSMENT OF RAINFALL AUGMENTATION

THE EFFECTS OF GIANT CCN ON CLOUDS AND PRECIPITATION: A CASE STUDY FROM THE SAUDI ARABIA PROGRAM FOR THE ASSESSMENT OF RAINFALL AUGMENTATION J12.2 THE EFFECTS OF GIANT CCN ON CLOUDS AND PRECIPITATION: A CASE STUDY FROM THE SAUDI ARABIA PROGRAM FOR THE ASSESSMENT OF RAINFALL AUGMENTATION Amit Teller*, Duncan Axisa, Daniel Breed, and Roelof Bruintjes

More information

Chapter 5: Forms of Condensation and Precipitation. Copyright 2013 Pearson Education, Inc.

Chapter 5: Forms of Condensation and Precipitation. Copyright 2013 Pearson Education, Inc. Chapter 5: Forms of Condensation and Precipitation Water vapor's role in the Earth's weather is major. Its the product of evaporation. It is lifted up, condenses and forms clouds. It is also a greenhouse

More information

Precipitation Processes. Precipitation Processes 2/24/11. Two Mechanisms that produce raindrops:

Precipitation Processes. Precipitation Processes 2/24/11. Two Mechanisms that produce raindrops: Precipitation is any form of water that falls from a cloud and reaches the ground. How do cloud drops grow? Chapter 7 When air is saturated with respect to a flat surface it is unsaturated with respect

More information

1. describe the two methods by which cloud droplets can grow to produce precipitation (pp );

1. describe the two methods by which cloud droplets can grow to produce precipitation (pp ); 10 Precipitation Learning Goals After studying this chapter, students should be able to: 1. describe the two methods by which cloud droplets can grow to produce precipitation (pp. 232 236); 2. distinguish

More information

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air Precipitation Processes METR 2011 Introduction In order to grow things on earth, they need water. The way that the earth naturally irrigates is through snowfall and rainfall. Therefore, it is important

More information

Air stability. About. Precipitation. air in unstable equilibrium will move--up/down Fig. 5-1, p.112. Adiabatic = w/ no exchange of heat from outside!

Air stability. About. Precipitation. air in unstable equilibrium will move--up/down Fig. 5-1, p.112. Adiabatic = w/ no exchange of heat from outside! Air stability About clouds Precipitation A mass of moist, stable air gliding up and over these mountains condenses into lenticular clouds. Fig. 5-CO, p.110 air in unstable equilibrium will move--up/down

More information

Precipitation AOSC 200 Tim Canty. Cloud Development: Orographic Lifting

Precipitation AOSC 200 Tim Canty. Cloud Development: Orographic Lifting Precipitation AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Precipitation formation Rain Ice Lecture 14 Oct 11 2018 1 Cloud Development: Orographic Lifting

More information

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Precipitation GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Last lecture! Atmospheric stability! Condensation! Cloud condensation nuclei (CCN)! Types of clouds Precipitation! Why clouds don t fall! Terminal

More information

Trade wind inversion. is a highly stable layer (~2 km high) that caps the moist surface layer (often cloudy) from the dry atmosphere above.

Trade wind inversion. is a highly stable layer (~2 km high) that caps the moist surface layer (often cloudy) from the dry atmosphere above. Hilo 9/19/06 2:00 am HST Td T Trade wind inversion is a highly stable layer (~2 km high) that caps the moist surface layer (often cloudy) from the dry atmosphere above. 1 Mountain/lee waves in a stable

More information

Thursday, June 5, Chapter 5: Condensation & Precipitation

Thursday, June 5, Chapter 5: Condensation & Precipitation Thursday, June 5, 2014 Chapter 5: Condensation & Precipitation Chapter 5: Condensation and Precipitation Formation of Condensation Saturated Air Condensation Nuclei Results of Condensation Clouds Fog Dew

More information

Collision and Coalescence 3/3/2010. ATS 351 Lab 7 Precipitation. Droplet Growth by Collision and Coalescence. March 7, 2006

Collision and Coalescence 3/3/2010. ATS 351 Lab 7 Precipitation. Droplet Growth by Collision and Coalescence. March 7, 2006 ATS 351 Lab 7 Precipitation March 7, 2006 Droplet Growth by Collision and Coalescence Growth by condensation alone takes too long ( 15 C -) Occurs in clouds with tops warmer than 5 F Greater the speed

More information

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc.

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc. NATS 1750 Lecture Wednesday 28 th November 2012 Processes that lift air Orographic lifting Elevated terrains act as barriers Result can be a rainshadow desert Frontal wedging Cool air acts as a barrier

More information

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each.

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each. Exam : Cloud Physics April, 8 Physical Meteorology 344 Name Questions - are worth 5 points each. Questions -5 are worth points each.. Rank the concentrations of the following from lowest () to highest

More information

An Introduction to Weather Modification in West Texas

An Introduction to Weather Modification in West Texas An Introduction to Weather Modification in West Texas JONATHAN A. JENNINGS West Texas Weather Modification Association, San Angelo, TX Sonora Water Conference, 18 April 2013 Sonora, Texas What to expect:

More information

Precipitation. AT350: Ahrens Chapter 8

Precipitation. AT350: Ahrens Chapter 8 Precipitation AT350: Ahrens Chapter 8 Precipitation Formation How does precipitation form from tiny cloud drops? Warm rain process The Bergeron (ice crystal) process Most important at mid and northern

More information

PRECIPITATION PROCESSES

PRECIPITATION PROCESSES PRECIPITATION PROCESSES Loknath Adhikari This summary deals with the mechanisms of warm rain processes and tries to summarize the factors affecting the rapid growth of hydrometeors in clouds from (sub)

More information

Preliminary Observations of Cloud and Precipitation Characteristics in the Brisbane, Australia Region

Preliminary Observations of Cloud and Precipitation Characteristics in the Brisbane, Australia Region Preliminary Observations of Cloud and Precipitation Characteristics in the Brisbane, Australia Region Sarah Tessendorf April 23, 2008 R. Bruintjes,, J. Wilson, R. Roberts, E. Brandes,, P. May, J. Peter,

More information

Warm Rain Precipitation Processes

Warm Rain Precipitation Processes Warm Rain Precipitation Processes Cloud and Precipitation Systems November 16, 2005 Jonathan Wolfe 1. Introduction Warm and cold precipitation formation processes are fundamentally different in a variety

More information

EARTH SCIENCE. Prentice Hall Water in the Atmosphere Water in the Atmosphere Water in the Atmosphere.

EARTH SCIENCE. Prentice Hall Water in the Atmosphere Water in the Atmosphere Water in the Atmosphere. Prentice Hall EARTH SCIENCE Tarbuck Lutgens Water s Changes of State 1. Precipitation is any form of water that falls from a cloud. a. Examples: Snow, rain, hail, sleet 3 States of matter of water: 1.

More information

Introduction. Effect of aerosols on precipitation: - challenging problem - no agreement between the results (quantitative and qualitative)

Introduction. Effect of aerosols on precipitation: - challenging problem - no agreement between the results (quantitative and qualitative) Introduction Atmospheric aerosols affect the cloud mycrophysical structure & formation (observations, numerical studies) An increase of the aerosol particles: - increases CCN concentrations - decreases

More information

Precipitation Formation, and RADAR Equation by Dario B. Giaiotti and Fulvio Stel (1)

Precipitation Formation, and RADAR Equation by Dario B. Giaiotti and Fulvio Stel (1) PhD Environmental Fluid Mechanics Physics of the Atmosphere University of Trieste International Center for Theoretical Physics Precipitation Formation, and RADAR Equation by Dario B. Giaiotti and Fulvio

More information

9/22/14. Chapter 5: Forms of Condensation and Precipitation. The Atmosphere: An Introduction to Meteorology, 12 th.

9/22/14. Chapter 5: Forms of Condensation and Precipitation. The Atmosphere: An Introduction to Meteorology, 12 th. Chapter 5: Forms of Condensation and Precipitation The Atmosphere: An Introduction to Meteorology, 12 th Lutgens Tarbuck Lectures by: Heather Gallacher, Cleveland State University! A cloud is a visible

More information

Temp 54 Dew Point 41 Relative Humidity 63%

Temp 54 Dew Point 41 Relative Humidity 63% Temp 54 Dew Point 41 Relative Humidity 63% Water in the Atmosphere Evaporation Water molecules change from the liquid to gas phase Molecules in liquids move slowly Heat energy makes them move faster When

More information

Graupel and Hail Growth

Graupel and Hail Growth Graupel and Hail Growth I. Growth of large ice particles In this section we look at some basics of graupeln and hail growth. Important components of graupeln and hail growth models include production of

More information

Name Class Date. 3. In what part of the water cycle do clouds form? a. precipitation b. evaporation c. condensation d. runoff

Name Class Date. 3. In what part of the water cycle do clouds form? a. precipitation b. evaporation c. condensation d. runoff Skills Worksheet Directed Reading B Section: Water in the Air 1. What do we call the condition of the atmosphere at a certain time and place? a. the water cycle b. weather c. climate d. precipitation THE

More information

Parametrizing cloud and precipitation in today s NWP and climate models. Richard Forbes

Parametrizing cloud and precipitation in today s NWP and climate models. Richard Forbes Parametrizing cloud and precipitation in today s NWP and climate models Richard Forbes (ECMWF) with thanks to Peter Bechtold and Martin Köhler RMetS National Meeting on Clouds and Precipitation, 16 Nov

More information

Introduction to Cloud Microphysics

Introduction to Cloud Microphysics Introduction to Cloud Microphysics Mountain Weather and Climate ATM 619: Atmospheric Science Seminar Series Department of Earth and Atmospheric Sciences University at Albany W. James Steenburgh Department

More information

The Purdue Lin Microphysics Scheme in WRF. Russ Schumacher AT 730 Final Project 26 April 2006

The Purdue Lin Microphysics Scheme in WRF. Russ Schumacher AT 730 Final Project 26 April 2006 The Purdue Lin Microphysics Scheme in WRF Russ Schumacher AT 730 Final Project 26 April 2006 Overview Introduction to microphysics schemes Introduction to the Purdue Lin scheme Tunable coefficients, inputs

More information

APPLICATION OF WEATHER MODIFICTION TECHNOLOGY FOR FLOOD PREVENTION IN JAKARTA 2013

APPLICATION OF WEATHER MODIFICTION TECHNOLOGY FOR FLOOD PREVENTION IN JAKARTA 2013 APPLICATION OF WEATHER MODIFICTION TECHNOLOGY FOR FLOOD PREVENTION IN JAKARTA 2013 Tri Handoko SETO and Heru WIDODO Weather Modification Technology Center, Agency for the Asessment and Application of Technology

More information

A REVIEW OF OUR UNDERSTANDING OF THE AEROSOL CLOUD INTERACTION FROM THE PERSPECTIVE OF A BIN RESOLVED CLOUD SCALE MODELLING

A REVIEW OF OUR UNDERSTANDING OF THE AEROSOL CLOUD INTERACTION FROM THE PERSPECTIVE OF A BIN RESOLVED CLOUD SCALE MODELLING JP3.4 A REVIEW OF OUR UNDERSTANDING OF THE AEROSOL CLOUD INTERACTION FROM THE PERSPECTIVE OF A BIN RESOLVED CLOUD SCALE MODELLING Andrea I. Flossmann and W. Wobrock Clermont University, Aubière, France

More information

FREEZING CONTAMINATION : AIRCRAFT ICING

FREEZING CONTAMINATION : AIRCRAFT ICING FREEZING CONTAMINATION : AIRCRAFT ICING FORECASTING METHODS Extrapolation of observational icing data Looking for icing scenarios Using numerical model outputs Crossing observations with model outputs

More information

The History of Cloud Seeding in Arizona

The History of Cloud Seeding in Arizona The History of Cloud Seeding in Arizona VIII Winter Watershed Conference Show Low, AZ January 29, 2015 James Walter Water Resource Operations Salt River Project Clouds - Cloud condensation nuclei (CCN)

More information

Mountain Snowpacks, Climate Change and the Silver Solution

Mountain Snowpacks, Climate Change and the Silver Solution Mountain Snowpacks, Climate Change and the Silver Solution Climate Change Seminar Series University of Nevada Las Vegas 11 July 2012 Arlen Huggins Desert Research Institute Reno, Nevada Climate, snow and

More information

Seeding Convective Clouds with Hygroscopic Flares: Numerical Simulations Using a Cloud Model with Detailed Microphysics

Seeding Convective Clouds with Hygroscopic Flares: Numerical Simulations Using a Cloud Model with Detailed Microphysics 1460 JOURNAL OF APPLIED METEOROLOGY Seeding Convective Clouds with Hygroscopic Flares: Numerical Simulations Using a Cloud Model with Detailed Microphysics YAN YIN, ZEV LEVIN, TAMIR REISIN, AND SHALVA

More information

Precipitation - Chapter 8

Precipitation - Chapter 8 Precipitation - Chapter 8 A typical rain drop - 2000 μm diameter typical cloud droplet - 20 μm typical condensation nucleus - 0.2 μm How do rain drops grow? 1 Growing a Cloud Droplet Droplet formation

More information

In this chapter we explain the processes by which nonprecipitating cloud droplets and ice crystals grow large enough to fall as precipitation

In this chapter we explain the processes by which nonprecipitating cloud droplets and ice crystals grow large enough to fall as precipitation Goals for today: 19 Oct., 2011 Ch 7, Precipitation Processes In this chapter we explain the processes by which nonprecipitating cloud droplets and ice crystals grow large enough to fall as precipitation

More information

WEATHER MODIFICATION ASSOCIATION ANNUAL MEETING APRIL 21-25, 2009 ANAHEIM, CALIFORNIA

WEATHER MODIFICATION ASSOCIATION ANNUAL MEETING APRIL 21-25, 2009 ANAHEIM, CALIFORNIA WEATHER MODIFICATION ASSOCIATION ANNUAL MEETING APRIL 21-25, 2009 ANAHEIM, CALIFORNIA WEATHER MODIFICATION ASSOCIATION ANNUAL MEETING ANAHEIM, CALIFORNIA 8:30-8:40 Opening Remarks WEDNESDAY, APRIL 22

More information

Why Cloud Droplets Don t Fall

Why Cloud Droplets Don t Fall Introduction to Climatology GEOGRAPHY 300 Tom Giambelluca University of Hawai i at Mānoa Precipitation Processes Why Cloud Droplets Don t Fall Cloud droplets are too small to fall to the ground: Low terminal

More information

Arizona Cloud Seeding Efforts: A Salt River Project Perspective. James Walter SRP Surface Water Resources CPWAC/CPWP Joint Meeting March 30, 2018

Arizona Cloud Seeding Efforts: A Salt River Project Perspective. James Walter SRP Surface Water Resources CPWAC/CPWP Joint Meeting March 30, 2018 Arizona Cloud Seeding Efforts: A Salt River Project Perspective James Walter SRP Surface Water Resources Importance of Winter Precipitation Winter Cloud Seeding 101 Early Cloud Seeding Projects Questions

More information

Mystery of ice multiplication in warm based precipitating shallow cumulus clouds

Mystery of ice multiplication in warm based precipitating shallow cumulus clouds Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl042440, 2010 Mystery of ice multiplication in warm based precipitating shallow cumulus clouds Jiming Sun, 1,2 Parisa

More information

Ch. 6 Cloud/precipitation Formation and Process: Reading: Text, ch , p

Ch. 6 Cloud/precipitation Formation and Process: Reading: Text, ch , p Ch. 6 Cloud/precipitation Formation and Process: Reading: Text, ch. 6.1-6.6, p209-245 Reference: Ch.3 of Cloud Dynamics by Houze Topics: Cloud microphysics: cloud droplet nucleation and growth, precipitation

More information

Chapter Introduction. Weather. Patterns. Forecasts Chapter Wrap-Up

Chapter Introduction. Weather. Patterns. Forecasts Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Describing Weather Weather Patterns Weather Forecasts Chapter Wrap-Up How do scientists describe and predict weather? What do you think? Before you begin,

More information

24.2 Cloud Formation 2/3/2014. Orographic Lifting. Processes That Lift Air Frontal Wedging. Convergence and Localized Convective Lifting

24.2 Cloud Formation 2/3/2014. Orographic Lifting. Processes That Lift Air Frontal Wedging. Convergence and Localized Convective Lifting 2/3/2014 Orographic Lifting Processes That Lift Air Frontal Wedging A front is the boundary between two adjoining air masses having contrasting characteristics. Convergence and Localized Convective Lifting

More information

Explain the parts of the water cycle that are directly connected to weather.

Explain the parts of the water cycle that are directly connected to weather. Name: Pd: Date: Page # Describing Weather -- Lesson 1 Study Guide Rating Before Learning Goals Rating After 1 2 3 4 Describe weather. 1 2 3 4 1 2 3 4 List and define the variables used to describe weather.

More information

Weather. Describing Weather

Weather. Describing Weather Weather Describing Weather What is weather? Weather is the atmospheric conditions, along with short-term changes, of a certain place at a certain time. Have you ever been caught in a rainstorm on what

More information

Answer each section in a separate booklet.

Answer each section in a separate booklet. DURATION: 3 HOURS TOTAL MARKS: 150 Internal Examiners: Dr S Pillay & Mr J Lutchmiah External Examiner: Dr J Odindi NOTE: This paper consists of 8 pages and an MCQ answer sheet. Please ensure that you have

More information

Warm Cloud Processes. Some definitions. Two ways to make big drops: Effects of cloud condensation nuclei

Warm Cloud Processes. Some definitions. Two ways to make big drops: Effects of cloud condensation nuclei Warm Cloud Processes Dr. Christopher M. Godfrey University of North Carolina at Asheville Warm clouds lie completely below the 0 isotherm 0 o C Some definitions Liquid water content (LWC) Amount of liquid

More information

Summary of riming onset conditions for different crystal habits. Semi-dimension: width / lateral dimension (perpendicular to c-axis)

Summary of riming onset conditions for different crystal habits. Semi-dimension: width / lateral dimension (perpendicular to c-axis) Summary of riming onset conditions for different crystal habits Semi-dimension: width / lateral dimension (perpendicular to c-axis) HEAT BALANCE FOR GRAUPEL PARTICLES Consider a graupel particle growing

More information

Do aerosols affect lightning?: A global study of a relation between aerosol optical depth and cloud to ground lightning

Do aerosols affect lightning?: A global study of a relation between aerosol optical depth and cloud to ground lightning Do aerosols affect lightning?: A global study of a relation between aerosol optical depth and cloud to ground lightning Beata Kucienska 1,*, G. B. Raga 1, Ilan Koren 2, Orit Altaratz 2 1. Centro de Ciencias

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Atmosphere SECTION 11.1 Atmospheric Basics In your textbook, read about the composition of the atmosphere. Circle the letter of the choice that best completes the statement. 1. Most of Earth s atmosphere

More information

Precipitation. Prof. M.M.M. Najim

Precipitation. Prof. M.M.M. Najim Precipitation Prof. M.M.M. Najim Learning Outcome At the end of this section students will be able to Explain different forms of precipitation Identify different types of rain gauges Measure rainfall using

More information

J12.4 SIGNIFICANT IMPACT OF AEROSOLS ON MULTI-YEAR RAIN FREQUENCY AND CLOUD THICKNESS

J12.4 SIGNIFICANT IMPACT OF AEROSOLS ON MULTI-YEAR RAIN FREQUENCY AND CLOUD THICKNESS J12.4 SIGNIFICANT IMPACT OF AEROSOLS ON MULTI-YEAR RAIN FREQUENCY AND CLOUD THICKNESS Zhanqing Li and F. Niu* University of Maryland College park 1. INTRODUCTION Many observational studies of aerosol indirect

More information

What are clouds? How Do Clouds Form? By NASA, adapted by Newsela staff on Word Count 550

What are clouds? How Do Clouds Form? By NASA, adapted by Newsela staff on Word Count 550 What are clouds? By NASA, adapted by Newsela staff on 01.27.17 Word Count 550 This image, a photograph taken from an F-15C, shows a much closer view of a developing pyrocumulus cloud, or fire cloud, a

More information

Short Course Challenges in Understanding Cloud and Precipitation Processes and Their Impact on Weather and Climate

Short Course Challenges in Understanding Cloud and Precipitation Processes and Their Impact on Weather and Climate Short Course Challenges in Understanding Cloud and Precipitation Processes and Their Impact on Weather and Climate Darrel Baumgardner PhD. Droplet Measurement Technologies February 18-22 3:30-4:30 pm break

More information

Ice multiplication in clouds: modeling new processes

Ice multiplication in clouds: modeling new processes Ice multiplication in clouds: modeling new processes VAUGHAN PHILLIPS DEPT OF PHYSICAL GEOGRAPHY AND ECO. SCIENCE, LUND UNIVERSITY, 25 OCT 2017 Acknowledgements: E. WILLIAMS MIT, USA M. FORMENTON, I. KUDZOTSA

More information

Chapter 5 Forms of Condensation and Precipitation

Chapter 5 Forms of Condensation and Precipitation Chapter 5 Forms of Condensation and Precipitation Cloud Formation visible aggregate of water droplets, ice crystals, or both adiabatic cooling Classifying and Naming of clouds Processes responsible for

More information

Microphysics. Improving QPF and much more. Greg Thompson. Research Applications Laboratory Nat l Center for Atmospheric Research

Microphysics. Improving QPF and much more. Greg Thompson. Research Applications Laboratory Nat l Center for Atmospheric Research Microphysics Improving QPF and much more Greg Thompson Research Applications Laboratory Nat l Center for Atmospheric Research Outline Background Tests Results Applications Future Goals: NCAR-RAL microphysics

More information

Clouds on Mars Cloud Classification

Clouds on Mars Cloud Classification Lecture Ch. 8 Cloud Classification Descriptive approach to clouds Drop Growth and Precipitation Processes Microphysical characterization of clouds Complex (i.e. Real) Clouds Examples Curry and Webster,

More information

Moisture, Clouds, and Precipitation Earth Science, 13e Chapter 17

Moisture, Clouds, and Precipitation Earth Science, 13e Chapter 17 Moisture, Clouds, and Precipitation Earth Science, 13e Chapter 17 Stanley C. Hatfield Southwestern Illinois College Changes of state of water, H 2 O Water is the only substance in atmosphere that exists

More information

78% : component of atmosphere! 21% : 1% : Changes depending on origin of air: - originated over - originated over Ozone = O 3 Definition:

78% : component of atmosphere! 21% : 1% : Changes depending on origin of air: - originated over - originated over Ozone = O 3 Definition: Unit 6 Part 1 Meteorology Name: Composition and Structure of the Atmosphere SWBAT: Describe the composition of the atmosphere. Diagram/describe the layers of the earth s atmosphere. Weather Climate Atmospheric

More information

Water in the Atmosphere

Water in the Atmosphere Water in the Atmosphere Characteristics of Water solid state at 0 o C or below (appearing as ice, snow, hail and ice crystals) liquid state between 0 o C and 100 o C (appearing as rain and cloud droplets)

More information

A hierarchy of one- and two-moment microphysical parameterizations in the COSMO model

A hierarchy of one- and two-moment microphysical parameterizations in the COSMO model Deutscher Wetterdienst GB Forschung und Entwicklung A hierarchy of one- and two-moment microphysical parameterizations in the COSMO model Axel Seifert German Weather Service Offenbach, Germany Ulrich Blahak

More information

Research Article Direct Evidence of Reduction of Cloud Water after Spreading Diatomite Particles in Stratus Clouds in Beijing, China

Research Article Direct Evidence of Reduction of Cloud Water after Spreading Diatomite Particles in Stratus Clouds in Beijing, China Meteorology Volume 2010, Article ID 412024, 4 pages doi:10.1155/2010/412024 Research Article Direct Evidence of Reduction of Cloud Water after Spreading Diatomite Particles in Stratus Clouds in Beijing,

More information

Multi Radar Multi Sensor NextGen Weather Program. Presentation materials sourced from: Ken Howard HydroMet Research Group NSSL Warning R&D Division

Multi Radar Multi Sensor NextGen Weather Program. Presentation materials sourced from: Ken Howard HydroMet Research Group NSSL Warning R&D Division Multi Radar Multi Sensor NextGen Weather Program Presentation materials sourced from: Ken Howard HydroMet Research Group NSSL Warning R&D Division What is Multiple Radar Multi Sensor System () is the world

More information

Remote Sensing of Precipitation

Remote Sensing of Precipitation Lecture Notes Prepared by Prof. J. Francis Spring 2003 Remote Sensing of Precipitation Primary reference: Chapter 9 of KVH I. Motivation -- why do we need to measure precipitation with remote sensing instruments?

More information

6.2 Meteorology. A meteorologist is a person who uses scientific principles to explain, understand, observe, or forecast Earth s weather.

6.2 Meteorology. A meteorologist is a person who uses scientific principles to explain, understand, observe, or forecast Earth s weather. Water and Weather 6.2 Meteorology A meteorologist is a person who uses scientific principles to explain, understand, observe, or forecast Earth s weather. 6.2 Water in the Atmosphere Dew point is the temperature

More information

Lecture Outlines PowerPoint. Chapter 17 Earth Science 11e Tarbuck/Lutgens

Lecture Outlines PowerPoint. Chapter 17 Earth Science 11e Tarbuck/Lutgens Lecture Outlines PowerPoint Chapter 17 Earth Science 11e Tarbuck/Lutgens 2006 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

9 Condensation. Learning Goals. After studying this chapter, students should be able to:

9 Condensation. Learning Goals. After studying this chapter, students should be able to: 9 Condensation Learning Goals After studying this chapter, students should be able to: 1. explain the microphysical processes that operate in clouds to influence the formation and growth of cloud droplets

More information

Snow Microphysics and the Top-Down Approach to Forecasting Winter Weather Precipitation Type

Snow Microphysics and the Top-Down Approach to Forecasting Winter Weather Precipitation Type Roger Vachalek Journey Forecaster National Weather Service Des Moines, Iowa www.snowcrystals.com Why is Snow Microphysics Important? Numerical Prediction Models better forecast areas of large scale forcing

More information

Water in the Air. Pages 38-45

Water in the Air. Pages 38-45 Water in the Air Pages 38-45 Quick Write What is the water cycle? Draw and label a diagram of the water cycle. Chapter 2, Section 1 Does this look familiar? Please open your text to page 38 and copy and

More information

ON LINE ARCHIVE OF STORM PENETRATING DATA

ON LINE ARCHIVE OF STORM PENETRATING DATA ON LINE ARCHIVE OF STORM PENETRATING DATA Matthew Beals, Donna V. Kliche, and Andrew G. Detwiler Institute of Atmospheric Sciences, South Dakota School of Mines and Technology, Rapid City, SD Steve Williams

More information

Mr. P s Science Test!

Mr. P s Science Test! WEATHER- 2017 Mr. P s Science Test! # Name Date 1. Draw and label a weather station model. (10 pts) 2. The is the layer of the atmosphere with our weather. 3. Meteorologists classify clouds in about different

More information

A FROZEN DROP PRECIPITATION MECHANISM OVER AN OPEN OCEAN AND ITS EFFECT ON RAIN, CLOUD PATTERN, AND HEATING

A FROZEN DROP PRECIPITATION MECHANISM OVER AN OPEN OCEAN AND ITS EFFECT ON RAIN, CLOUD PATTERN, AND HEATING A FROZEN DROP PRECIPITATION MECHANISM OVER AN OPEN OCEAN AND ITS EFFECT ON RAIN, CLOUD PATTERN, AND HEATING 13.6 Tsutomu Takahashi* University of Hawaii, Honolulu, Hawaii Kazunori Shimura JFE Techno-Research

More information

Idaho Power Company s Cloud Seeding Program May 6, 2016

Idaho Power Company s Cloud Seeding Program May 6, 2016 Idaho Power Company s Cloud Seeding Program May 6, 2016 Shaun Parkinson, PhD, P.E. Overview What is cloud seeding & how is it done Idaho Power s history with cloud seeding Idaho Power s cloud seeding projects

More information

PHASE CHANGE. Freezing Sublimation

PHASE CHANGE. Freezing Sublimation Melting Graphic Organizer Deposition PHASE CHANGE Freezing Sublimation Boiling Evaporation Condensation PHASE CHANGE Phase change happens as the temperature changes. All matter can move from one state

More information

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model

Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model Incorporation of 3D Shortwave Radiative Effects within the Weather Research and Forecasting Model W. O Hirok and P. Ricchiazzi Institute for Computational Earth System Science University of California

More information

Pd: Date: Page # Describing Weather -- Lesson 1 Study Guide

Pd: Date: Page # Describing Weather -- Lesson 1 Study Guide Name: Pd: Date: Page # Describing Weather -- Lesson 1 Study Guide Rating Before Learning Goals Rating After 1 2 3 4 Describe weather. 1 2 3 4 1 2 3 4 List and define the variables used to describe weather.

More information

MICROPHYSICAL ANALYSIS OF SNOWFALL EPISODES THROUGH THE DISPERSION PROFILES

MICROPHYSICAL ANALYSIS OF SNOWFALL EPISODES THROUGH THE DISPERSION PROFILES MICROPHYSICAL ANALYSIS OF SNOWFALL EPISODES THROUGH THE DISPERSION PROFILES Laura López (1), José Prieto (2), J.L. Sánchez (1), E. García-Ortega (1), Rafael Posada (1) (1) Group for Atmospheric Physics,

More information

Weather, Atmosphere and Meteorology

Weather, Atmosphere and Meteorology S c i e n c e s Weather, Atmosphere and Meteorology Key words: Atmosphere, Ozone, Water vapor, solar radiation, Condensation, Evaporation, Humidity, Dew-Point Temperature, Cirrus Clouds, Stratus Clouds,

More information

Chapter The transition from water vapor to liquid water is called. a. condensation b. evaporation c. sublimation d.

Chapter The transition from water vapor to liquid water is called. a. condensation b. evaporation c. sublimation d. Chapter-6 Multiple Choice Questions 1. The transition from water vapor to liquid water is called. a. condensation b. evaporation c. sublimation d. deposition 2. The movement of water among the great global

More information

Aerosol effects on cloud dynamics, microphysics and precipitation: numerical simulations with WRF with spectral (bin) microphysics

Aerosol effects on cloud dynamics, microphysics and precipitation: numerical simulations with WRF with spectral (bin) microphysics Aerosol effects on cloud dynamics, microphysics and precipitation: numerical simulations with WRF with spectral (bin) microphysics Barry H. Lynn 1,2 and Alexander Khain 2 1 Columbia University, Center

More information

Chapter 7. Water and Atmospheric Moisture. Water on Earth Unique Properties of Water Humidity Atmospheric Stability Clouds and Fog

Chapter 7. Water and Atmospheric Moisture. Water on Earth Unique Properties of Water Humidity Atmospheric Stability Clouds and Fog Chapter 7 Water and Atmospheric Moisture Robert W. Christopherson Charlie Thomsen Water kept both the terrestrial and marine ecosystems closely linked with the atmosphere. (1) Air carries water vapor and

More information

A Description of Convective Weather Containing Ice Crystals Associated with Engine Powerloss and Damage

A Description of Convective Weather Containing Ice Crystals Associated with Engine Powerloss and Damage A Description of Convective Weather Containing Ice Crystals Associated with Engine Powerloss and Damage The Boeing Company 1 Photo: courtesy of Ian McPherson The Boeing Company acknowledges the contributions

More information

General Physical Science

General Physical Science General Physical Science Chapter 20 Atmospheric Effects Condensation and Precipitation Supercooled (supersaturated) air Cooled below dewpoint without condensation Condensation will occur rapidly in the

More information

Effects of aerosols on precipitation from orographic clouds

Effects of aerosols on precipitation from orographic clouds JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jd007537, 2007 Effects of aerosols on precipitation from orographic clouds Barry Lynn, 1,2 Alexander Khain, 1 Daniel Rosenfeld, 1 and William

More information

The role of dust on cloud-precipitation cycle

The role of dust on cloud-precipitation cycle UNIVERSITY OF ATHENS SCHOOL OF PHYSICS, DIVISION OF ENVIRONMENT AND METEOROLOGY ATMOSPHERIC MODELING AND WEATHER FORECASTING GROUP The role of dust on cloud-precipitation cycle Stavros Solomos, George

More information

EOC Study Guide Honors

EOC Study Guide Honors Name Date Science. SC.912.E.5.1 Cite evidence used to develop and verify the scientific theory of the Big Bang (also known as the Big Bang Theory) of the origin of the universe. 1. What is the approximate

More information

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 04 Lecture 07. Peter Lynch VIS WATER IN THE ATMOSPHERE MAPH 10050

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 04 Lecture 07. Peter Lynch VIS WATER IN THE ATMOSPHERE MAPH 10050 Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information