Short Course Challenges in Understanding Cloud and Precipitation Processes and Their Impact on Weather and Climate

Size: px
Start display at page:

Download "Short Course Challenges in Understanding Cloud and Precipitation Processes and Their Impact on Weather and Climate"

Transcription

1 Short Course Challenges in Understanding Cloud and Precipitation Processes and Their Impact on Weather and Climate Darrel Baumgardner PhD. Droplet Measurement Technologies February :30-4:30 pm break 4:45-5:30 pm

2 Class II

3 Your Instructor. UNAM (2006) NCAR (1986)

4 I am the daughter of Earth and Water And the nursling of the Sky; I pass through the pores of the ocean and shores; I change, but I cannot die. For after the rain when with never a stain The pavilion of Heaven is bare, And the winds and sunbeams with their convex gleams Build up the blue dome of air, I silently laugh at my own cenotaph, And out of the caverns of rain, Like a child from the womb, like a ghost from the tomb, I arise and unbuild it again. The Cloud Percy Bysshe Shelley In memory of Peter V. Hobbs ( ) Wallace, J.M. and P.V. Hobbs, 2006: Atmospheric Science: An Introductory Survey, Second Edition, Elsevier, Oxford, England 484 pp.

5 1.0 Overview of Clouds and Precipitation 1.1 Clouds and Climate 1.2 Clouds and the Hydrological Cycle 1.3 Some Issues Related to Cloud and Precipitation Physics 2.0 Microphysical Properties of Clouds and Precipitation 2.1 Bulk properties Number, area and mass concentrations Scattering, absorption and extinction coefficients, optical depth, effective diameter wavelength dependent Chemical composition (inorganic and organic ions, elemental carbon, bioaerosols Electrical fields 2.2 Size dependent properties (Size distributions) Mass, density and morphology Optical cross section and phase function as function of wavelength Area surface and projected Fall velocity Electric charge

6 3.0 Review of Fundamental Processes 3.1. Thermodynamic structure of the atmosphere and its relationship to cloud formation and evolution Vertical profile of temperature and humidity Adiabatic temperature and water content, supersaturation Maximum vertical velocities and relationship to droplet activation 3.2. Particle Formation Droplet activation Koehler theory and droplet nucleation Crystal nucleation homogeneous freezing, deposition, immersion freezing, contact nucleation 3.3 Particle Growth Diffusional growth-condensation and deposition, Werner- Bergeron Collision growth -coalescence, aggregation,riming and multiplication 3.4 Particle lifetime Entrainment and mixing Radiation cooling and evaporation Raindrop and ice crystal break-up

7 4.0 In Situ Measurement Techniques 4.1 Nuclei properties CCN Parallel plate and continuous flow counters IN CFDC, PINC, ZINC, SPIN 4.2 Impaction and Replication Historical Measurement Principles and Implementation Measurement Issues 4.3 Single Particle Size and Morphology Measurements Single Particle Light Scattering Single Particle Imaging Imaging of Particle Ensembles Holography Measurement Issues

8 4.0 In Situ Measurement Techniques (continued) 4.4 Integral Properties of an Ensemble of Particles Thermal Techniques for Cloud LWC and IWC: Measurement principles and implementation Optical Techniques for the Measurement of Cloud Water Measurement Issues 4.5 Emerging Technologies Backscatter Cloud Probe with Polarization (BCPOL) The Cloud Particle Spectrometer with Polarization Detection(CPSPD) 4.6 Data Analysis Quality assurance detecting spurious particles, sample size, coincident problems, measurements of temperature and humidity in cloud, etc Image analysis from optical array probe measurements Interpretation of measurements Correlation versus causation, size distributions, etc.

9 1.0 Overview of Clouds and Precipitation 1.1 Clouds and Climate 1.2 Clouds and the Hydrological Cycle 1.3 Some Issues Related to Cloud and Precipitation Physics 2.0 Microphysical Properties of Clouds and Precipitation 2.1 Bulk properties Number, area and mass concentrations Scattering, absorption and extinction coefficients, optical depth, effective diameter wavelength dependent Chemical composition (inorganic and organic ions, elemental carbon, bioaerosols Electrical fields 2.2 Size dependent properties (Size distributions) Mass, density and morphology Optical cross section and phase function as function of wavelength Area surface and projected Fall velocity Electric charge

10 Interaction between radiation and particles (aerosol and cloud) Two processes can occur, depending on the incident wavelength (solar or terrestrial) : Scattering: the incident radiation is re-radiated by the particles but with a different intensity and direction. Absorption: the incident radiation is transformed into radiation at different wavelength (like heat).

11 x y z partícula ),, ( ),, ( r ó z y x Incident plane electromagnetic wave Interaction between radiation and particles (aerosol and cloud) The energy that is produced from the interaction between a particle and incident light is described by: I 0 d d r I sin ) / (2 ),, ( r F I I ),, ( F = scattering function

12 Interaction between radiation and particles (aerosol and cloud) The total scattered energy by the particle in all directions is expressed as a function of the scattering cross section. C scat 1 1 I o (2r / ) I r 2 sin d d F(,, ) sin d d And the scattering efficiency Q scat C scat Area

13 Interaction between radiation and particles (aerosol and cloud) Similarly the absorption cross section, C a, is defined as the fraction of incident energy that is absorbed per unit area of the particle and the absorption efficiency, Q abs, is the efficiency divided by particle area. The extinction efficiency is a measure of how much of the incident radiation is removed by the particle through scattering and absorption, expressed as: Q ext Q scat Q abs

14 Interaction between radiation and particles (aerosol and cloud) Particles small with respect to the wavelength of the incident radiation (Rayleigh scattering): Qdisp 8 3 x 4 m Re m Q abs m Im m 2 4x x d p / Size parameter << 1 m=n - in : Refractive index Examples: air molecules and visible radiation cloud particles and radar wavelengths

15 Interaction between radiation and particles (aerosol and cloud) Particles that are large with respect to the wavelength, i.e. x d p / 1 Q disp 2 The scattering efficiency is TWICE the actual cross sectional area (remember Q disp = C disp /area). This is the geometrical scattering region where diffraction is an important component of scattering (more on this later).

16 Interaction between radiation and particles (aerosol and cloud) Particles with sizes close to the wavelength (x ~ 1) Mie region Mie (1908), solved the Maxwell equations for the special case of spheres when wavelength of the incident light and referective index is known.

17 Interaction between radiation and particles (aerosol and cloud)

18 Interaction between radiation and particles (aerosol and cloud) For multiple particles, the extinction coefficient is defined as : 0 b d 4) Q ( x, m) n ) d( d 2 ( p / ext d ( d p p where: n d (d p ) is the concentration of particles with diameter d p b( ) b scat ( ) b ( ) abs )

19 Climate forcing: General concepts Climate is a result of radiative processes in the atmosphere, oceans, surface and biosphere. Changes in the incoming solar radiation or outgoing terrestrial radiation creates a new energy equillibrium.

20 Climate forcing: General concepts Atmospheric aerosols can have a direct forcing and an indirect forcing on climate. I partícula nube I partículas

21 Natural and human forcing of climate change

22 Direct Forcing Direct refers to the interaction between solar and terrestrial infrared radiation with aerosol particles before they become cloud particles. This magnitude of the interaction depends on the particle concentration, size, shape, and composition of the particles. This produces a net cooling effect due to the solar radiation that is scattered back to space. However, aerosol particles like black carbon can produce net warming

23 Direct effect example: Eruption of Mt. Pinatubo Optical depth measurements with SAGE II

24 The Indirect Effect of Aerosol Particles The concentration of water droplets depends directly on the concentration of aerosol particles that can form these droplet, cloud condensation nuclei (CCN) and the vapor pressure of water with respect to the equilibrium saturation vapor pressure. Natural and anthropogenic aerosol particles can serve as CCN, depending on their size and composition (hygroscopicity).

25 The Indirect Effect of Aerosol Particles An increase in anthropogenic sources of CCN can increase the reflection (albedo) of clouds, by increasing the droplet concentration while decreasing the average diameter. This effect was named the indirect effect of aerosols by Twomey (1974)

26 Evidence for the indirect Twomy effect in this satellite image of clouds off the coast of California. The ship tracks are a result of high reflectivity regions in the marine stratus clouds formed by increased concentrations of small droplets formed on the sulfate particles from emissions by ships.

27 The Indirect Effect of Aerosol Particles A larger concentration of droplets with smaller size implies a reduction in the precipitation efficiency with an associated increase in cloud lifetime, affecting the hydrological cycle. It is the impact on the albedo that we usually associate with the indirect effect; however, the impact on the lifetime is referred as the second indirect effect.

28 Why adding more CCN decreases average droplet size and increases cloud lifetime Low concentration of CCN Form cloud droplets in supersaturated environment That grow until environment is no longer supersaturated Some grow to raindrops that fall out and cloud dissipates

29 Why adding more CCN decreases average droplet size and increases cloud lifetime High concentration of CCN Form cloud droplets in supersaturated environment That grow much slower as they compete for available vapor No rain forms, cloud lasts longer

30 Direct effect vs indirect effect I 0 I ref = AI 1, A=albedo I 1 = e - 1 Aerosol layer = Optical depth = B ext dz B ext ~ ND 2 I 2 = e - 2 N a = 10 4 cm -3 D a = 0.05 m

31 I 0 A cloud >> A aerosol Cloud layer N n = 100 cm -3 D n = 10 m n / a =(N n /N a )(D n /D a ) 2 = (.01)(200) 2 = 400 Aerosol layer B ext ~ ND 2 N = 10 4 cm -3 D = 0.05 m

32 We can t understand clouds without understanding aerosols! Homogeneous nucleation (droplet formation from only water molecules). Droplets form by the simultaneous collisions of water molecules. Cluster The nucleation rate (J) vs supersaturation (S v,w ) S v,w (%) 200% 600% J 1.9 x x 10 3 (cm - 3 s -1 ) S v,w de las nubes nunca excede 5% - las nubes no se pueden formar a través de este mecanismo!! Embriones

33 Definitions of Saturated, Subsaturated and Supersaturated Subsaturated is when more water molecules are escaping the droplet (evaporation) than are diffusing to it (condensing) Saturated is when the rate of water molecules diffusing to the water droplet is equal to the rate of molecules leaving. This is also call a state of equilibrium/ Supersaturated is when more water molecules are diffusing to the droplet (condensation) than are escaping (evaporation)

34 Heterogenous nuclation The activation (formation of a water droplet) from an aerosol particle as a CCN depends on the size and chemistry (hygroscopicity) of the particle and the water vapor pressure with respect to the saturation vapor pressure. Φ σ n a, n b n x Φ = contact angle = f(diameter) σ = surface tension = f(chemistry) n a, n b n x = chemical potential

35 1.0 Overview of Clouds and Precipitation 1.1 Clouds and Climate 1.2 Clouds and the Hydrological Cycle 1.3 Some Issues Related to Cloud and Precipitation Physics 2.0 Microphysical Properties of Clouds and Precipitation 2.1 Bulk properties Number, area and mass concentrations Scattering, absorption and extinction coefficients, optical depth, effective diameter wavelength dependent Chemical composition (inorganic and organic ions, elemental carbon, bioaerosols Electrical fields 2.2 Size dependent properties (Size distributions) Mass, density and morphology Optical cross section and phase function as function of wavelength Area surface and projected Fall velocity Electric charge

36

37 1.0 Overview of Clouds and Precipitation 1.1 Clouds and Climate 1.2 Clouds and the Hydrological Cycle 1.3 Some Issues Related to Cloud and Precipitation Physics 2.0 Microphysical Properties of Clouds and Precipitation 2.1 Bulk properties Number, area and mass concentrations Scattering, absorption and extinction coefficients, optical depth, effective diameter wavelength dependent Chemical composition (inorganic and organic ions, elemental carbon, bioaerosols Electrical fields 2.2 Size dependent properties (Size distributions) Mass, density and morphology Optical cross section and phase function as function of wavelength Area surface and projected Fall velocity Electric charge

38 Some Outstanding Problems in Cloud Microphysics I. Warm Clouds a) Stratiform i) Drizzle formation ii) Geoengineering b) Cumulus i) Spectra broadening ii) Rain formation II. III. Cold Clouds a) Ice formation processes i) Homogeneous and heterogeneous nucleation ii) Ice multiplication b) Cirrus and Contrails i) Impact on climate ii) Cirrus evolving from contrails iii) Lightning generation All Clouds a) Aerosol/Cloud Interactions b) Inadvertent weather modification do anthropogenic emissions increase or decrease precipitation?

39 Some Outstanding Problems in Cloud Microphysics I. Warm Clouds a) Stratiform i) Drizzle formation ii) Geoengineering b) Cumulus i) Spectra broadening ii) Rain formation II. III. Cold Clouds a) Ice formation processes i) Homogeneous and heterogeneous nucleation ii) Ice multiplication b) Cirrus and Contrails i) Impact on climate ii) Cirrus evolving from contrails iii) Lightning generation All Clouds a) Aerosol/Cloud Interactions b) Inadvertent weather modification do anthropogenic emissions increase or decrease precipitation?

40 How do marine stratus clouds form drizzle and precipitation? Marine stratus are shallow with low concentrations of small droplets Observations show presence of drizzle droplets m diameter Questions: How does drizzle form without coalescence (low concentrations and small droplets inhibit)? Sometimes preferentially at cloud tops. What role does mixing and entrainment play? Can radiative cooling at the cloud tops enhance condensational growth?

41 Some Outstanding Problems in Cloud Microphysics I. Warm Clouds a) Stratiform i) Drizzle formation ii) Geoengineering b) Cumulus i) Spectra broadening ii) Rain formation II. III. Cold Clouds a) Ice formation processes i) Homogeneous and heterogeneous nucleation ii) Ice multiplication b) Cirrus and Contrails i) Impact on climate ii) Cirrus evolving from contrails iii) Lightning generation All Clouds a) Aerosol/Cloud Interactions b) Inadvertent weather modification do anthropogenic emissions increase or decrease precipitation?

42 Do we understand marine stratus cloud formation processes well enough to generate them artificially?

43 Official Statement from the International Commission on Clouds and Precipitation * That further research is pursued to better understand the fundamental science and possible efficacy of radiation management climate engineering schemes. That climate engineering research be conducted in an open and independent manner that engages public participation, and is used to properly assess the potential risks involved. That research activities must include studies of the human impacts, ethics, legal and political impacts of climate engineering Given the poor state of the current knowledge on clouds, aerosols, precipitation and their interactions, the ICCP does not support the implementation of climate engineering and does not expect that climate engineering can solve the global warming problem. * Thara and I are members of the ICCP commission.

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 04 Lecture 07. Peter Lynch VIS WATER IN THE ATMOSPHERE MAPH 10050

Climate & Earth System Science. Introduction to Meteorology & Climate. Chapter 04 Lecture 07. Peter Lynch VIS WATER IN THE ATMOSPHERE MAPH 10050 Climate & Earth System Science Introduction to Meteorology & Climate MAPH 10050 Peter Lynch Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Meteorology

More information

9 Condensation. Learning Goals. After studying this chapter, students should be able to:

9 Condensation. Learning Goals. After studying this chapter, students should be able to: 9 Condensation Learning Goals After studying this chapter, students should be able to: 1. explain the microphysical processes that operate in clouds to influence the formation and growth of cloud droplets

More information

Chapter 7 Precipitation Processes

Chapter 7 Precipitation Processes Chapter 7 Precipitation Processes Chapter overview: Supersaturation and water availability Nucleation of liquid droplets and ice crystals Liquid droplet and ice growth by diffusion Collision and collection

More information

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS

CHAPTER 8. AEROSOLS 8.1 SOURCES AND SINKS OF AEROSOLS 1 CHAPTER 8 AEROSOLS Aerosols in the atmosphere have several important environmental effects They are a respiratory health hazard at the high concentrations found in urban environments They scatter and

More information

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to

What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to What are Aerosols? Suspension of very small solid particles or liquid droplets Radii typically in the range of 10nm to 10µm Concentrations decrease exponentially with height N(z) = N(0)exp(-z/H) Long-lived

More information

Precipitation Formation, and RADAR Equation by Dario B. Giaiotti and Fulvio Stel (1)

Precipitation Formation, and RADAR Equation by Dario B. Giaiotti and Fulvio Stel (1) PhD Environmental Fluid Mechanics Physics of the Atmosphere University of Trieste International Center for Theoretical Physics Precipitation Formation, and RADAR Equation by Dario B. Giaiotti and Fulvio

More information

Climate Dynamics (PCC 587): Feedbacks & Clouds

Climate Dynamics (PCC 587): Feedbacks & Clouds Climate Dynamics (PCC 587): Feedbacks & Clouds DARGAN M. W. FRIERSON UNIVERSITY OF WASHINGTON, DEPARTMENT OF ATMOSPHERIC SCIENCES DAY 6: 10-14-13 Feedbacks Climate forcings change global temperatures directly

More information

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each.

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each. Exam : Cloud Physics April, 8 Physical Meteorology 344 Name Questions - are worth 5 points each. Questions -5 are worth points each.. Rank the concentrations of the following from lowest () to highest

More information

Climate Dynamics (PCC 587): Clouds and Feedbacks

Climate Dynamics (PCC 587): Clouds and Feedbacks Climate Dynamics (PCC 587): Clouds and Feedbacks D A R G A N M. W. F R I E R S O N U N I V E R S I T Y O F W A S H I N G T O N, D E P A R T M E N T O F A T M O S P H E R I C S C I E N C E S D A Y 7 : 1

More information

AEROSOL-CLOUD INTERACTIONS AND PRECIPITATION IN A GLOBAL SCALE. SAHEL Conference April 2007 CILSS Ouagadougou, Burkina Faso

AEROSOL-CLOUD INTERACTIONS AND PRECIPITATION IN A GLOBAL SCALE. SAHEL Conference April 2007 CILSS Ouagadougou, Burkina Faso AEROSOL-CLOUD INTERACTIONS AND PRECIPITATION IN A GLOBAL SCALE SAHEL Conference 2007 2-6 April 2007 CILSS Ouagadougou, Burkina Faso The aerosol/precipitation connection Aerosol environment has changed

More information

Clouds, Haze, and Climate Change

Clouds, Haze, and Climate Change Clouds, Haze, and Climate Change Jim Coakley College of Oceanic and Atmospheric Sciences Earth s Energy Budget and Global Temperature Incident Sunlight 340 Wm -2 Reflected Sunlight 100 Wm -2 Emitted Terrestrial

More information

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Name Class Date STUDY GUIDE FOR CONTENT MASTERY Atmosphere SECTION 11.1 Atmospheric Basics In your textbook, read about the composition of the atmosphere. Circle the letter of the choice that best completes the statement. 1. Most of Earth s atmosphere

More information

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature

Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Energy Balance and Temperature

Energy Balance and Temperature Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net

More information

Mid High Latitude Cirrus Precipitation Processes. Jon Sauer, Dan Crocker, Yanice Benitez

Mid High Latitude Cirrus Precipitation Processes. Jon Sauer, Dan Crocker, Yanice Benitez Mid High Latitude Cirrus Precipitation Processes Jon Sauer, Dan Crocker, Yanice Benitez Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA *To whom correspondence

More information

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7

Precipitation. GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Precipitation GEOG/ENST 2331 Lecture 12 Ahrens: Chapter 7 Last lecture! Atmospheric stability! Condensation! Cloud condensation nuclei (CCN)! Types of clouds Precipitation! Why clouds don t fall! Terminal

More information

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air Precipitation Processes METR 2011 Introduction In order to grow things on earth, they need water. The way that the earth naturally irrigates is through snowfall and rainfall. Therefore, it is important

More information

The mathematics of scattering and absorption and emission

The mathematics of scattering and absorption and emission The mathematics of scattering and absorption and emission The transmittance of an layer depends on its optical depth, which in turn depends on how much of the substance the radiation has to pass through,

More information

Aerosols AP sizes AP types Sources Sinks Amount and lifetime Aerosol radiative effects. Aerosols. Trude Storelvmo Aerosols 1 / 21

Aerosols AP sizes AP types Sources Sinks Amount and lifetime Aerosol radiative effects. Aerosols. Trude Storelvmo Aerosols 1 / 21 Aerosols Trude Storelvmo Aerosols 1 / 21 Aerosols: Definition Definition of an aerosol: disperse system with air as carrier gas and a solid or liquid or a mixture of both as disperse phases. Aerosol particles

More information

climate change Contents CO 2 (ppm)

climate change Contents CO 2 (ppm) climate change CO 2 (ppm) 2007 Joachim Curtius Institut für Physik der Atmosphäre Universität Mainz Contents 1. Summary 2. Background 3. Climate change: observations 4. CO 2 5. OtherGreenhouse Gases (GHGs):

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition Contents Preface to the Second Edition Preface to the First Edition iii v 1 Introduction 1 1.1 Relevance for Climate and Weather........... 1 1.1.1 Solar Radiation.................. 2 1.1.2 Thermal Infrared

More information

Observing Climate - Upper Air

Observing Climate - Upper Air Observing Climate - Upper Air 3-1 Water (Con t) Clouds Types - Classification Base height Coverage Science Concepts Definition The Earth System (Kump, Kastin & Crane) Chap. 3 (pp. 48-49) 3-2 What do we

More information

7. Aerosols and Climate

7. Aerosols and Climate 7. Aerosols and Climate I. Scattering 1. When radiation impinges on a medium of small particles, scattering of some of the radiation occurs in all directions. The portion scattered backward is called the

More information

MICROPHYSICAL AND PRECIPITATION FORMATION PROCESSES AND RADAR SIGNATURES

MICROPHYSICAL AND PRECIPITATION FORMATION PROCESSES AND RADAR SIGNATURES MICROPHYSICAL AND PRECIPITATION FORMATION PROCESSES AND RADAR SIGNATURES 4 TH International Workshop on Weather Modification 3 rd Workshop on Cloud Physics 21-22 October 2010 Daegu, Korea Projects Current

More information

Chapter 5: Forms of Condensation and Precipitation. Copyright 2013 Pearson Education, Inc.

Chapter 5: Forms of Condensation and Precipitation. Copyright 2013 Pearson Education, Inc. Chapter 5: Forms of Condensation and Precipitation Water vapor's role in the Earth's weather is major. Its the product of evaporation. It is lifted up, condenses and forms clouds. It is also a greenhouse

More information

PRECIPITATION PROCESSES

PRECIPITATION PROCESSES PRECIPITATION PROCESSES Loknath Adhikari This summary deals with the mechanisms of warm rain processes and tries to summarize the factors affecting the rapid growth of hydrometeors in clouds from (sub)

More information

Radiation in the atmosphere

Radiation in the atmosphere Radiation in the atmosphere Flux and intensity Blackbody radiation in a nutshell Solar constant Interaction of radiation with matter Absorption of solar radiation Scattering Radiative transfer Irradiance

More information

Clouds associated with cold and warm fronts. Whiteman (2000)

Clouds associated with cold and warm fronts. Whiteman (2000) Clouds associated with cold and warm fronts Whiteman (2000) Dalton s law of partial pressures! The total pressure exerted by a mixture of gases equals the sum of the partial pressure of the gases! Partial

More information

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation

Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Lecture # 04 January 27, 2010, Wednesday Energy & Radiation Kinds of energy Energy transfer mechanisms Radiation: electromagnetic spectrum, properties & principles Solar constant Atmospheric influence

More information

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing

Outline. December 14, Applications Scattering. Chemical components. Forward model Radiometry Data retrieval. Applications in remote sensing in in December 4, 27 Outline in 2 : RTE Consider plane parallel Propagation of a signal with intensity (radiance) I ν from the top of the to a receiver on Earth Take a layer of thickness dz Layer will

More information

8. Clouds and Climate

8. Clouds and Climate 8. Clouds and Climate 1. Clouds (along with rain, snow, fog, haze, etc.) are wet atmospheric aerosols. They are made up of tiny spheres of water from 2-100 m which fall with terminal velocities of a few

More information

Aerosol Effects on Water and Ice Clouds

Aerosol Effects on Water and Ice Clouds Aerosol Effects on Water and Ice Clouds Ulrike Lohmann Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N. S., Canada Contributions from Johann Feichter, Johannes Hendricks,

More information

Chapter 5 Forms of Condensation and Precipitation

Chapter 5 Forms of Condensation and Precipitation Chapter 5 Forms of Condensation and Precipitation Cloud Formation visible aggregate of water droplets, ice crystals, or both adiabatic cooling Classifying and Naming of clouds Processes responsible for

More information

Warm Rain Precipitation Processes

Warm Rain Precipitation Processes Warm Rain Precipitation Processes Cloud and Precipitation Systems November 16, 2005 Jonathan Wolfe 1. Introduction Warm and cold precipitation formation processes are fundamentally different in a variety

More information

Unit 4 Lesson 2 Clouds and Cloud Formation. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 4 Lesson 2 Clouds and Cloud Formation. Copyright Houghton Mifflin Harcourt Publishing Company Head in the Clouds What are clouds? A cloud is a collection of small water droplets or ice crystals that are suspended in the air. Clouds are visible because water droplets and ice crystals reflect light.

More information

Collision and Coalescence 3/3/2010. ATS 351 Lab 7 Precipitation. Droplet Growth by Collision and Coalescence. March 7, 2006

Collision and Coalescence 3/3/2010. ATS 351 Lab 7 Precipitation. Droplet Growth by Collision and Coalescence. March 7, 2006 ATS 351 Lab 7 Precipitation March 7, 2006 Droplet Growth by Collision and Coalescence Growth by condensation alone takes too long ( 15 C -) Occurs in clouds with tops warmer than 5 F Greater the speed

More information

Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Earth s Energy Budget: How Is the Temperature of Earth Controlled? 1 NAME Investigation 2 Earth s Energy Budget: How Is the Temperature of Earth Controlled? Introduction As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

Temp 54 Dew Point 41 Relative Humidity 63%

Temp 54 Dew Point 41 Relative Humidity 63% Temp 54 Dew Point 41 Relative Humidity 63% Water in the Atmosphere Evaporation Water molecules change from the liquid to gas phase Molecules in liquids move slowly Heat energy makes them move faster When

More information

Physical Processes & Issues

Physical Processes & Issues Physical Processes & Issues Radiative Transfer Climate VIS IR Cloud Drops & Ice Aerosol Processing Air quality Condensation Droplets & Xtals Cloud Dynamics Collection Aerosol Activation Hydrological Cycle

More information

Aerosol & Climate. Direct and Indirect Effects

Aerosol & Climate. Direct and Indirect Effects Aerosol & Climate Direct and Indirect Effects Embedded cooling Observed warming during 20 th century, Tapio Schneider, J. Climate, 2001 1 Many Sources / Lifetimes 2 Aerosols are liquid or solid particles

More information

Chapter 8 - Precipitation. Rain Drops, Cloud Droplets, and CCN

Chapter 8 - Precipitation. Rain Drops, Cloud Droplets, and CCN Chapter 8 - Precipitation Rain Drops, Cloud Droplets, and CCN Recall the relative sizes of rain drops, cloud drops, and CCN: raindrops - 2000 μ m = 2 mm fall at a speed of 4-5 ms -1 cloud drops - 20 μ

More information

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site: Lecture 27 Dec

Weather Forecasts and Climate AOSC 200 Tim Canty. Class Web Site:   Lecture 27 Dec Weather Forecasts and Climate AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Climate Natural Variations Feedback Mechanisms Lecture 27 Dec 4 2018 1 Climate

More information

PHYSICAL GEOGRAPHY. By Brett Lucas

PHYSICAL GEOGRAPHY. By Brett Lucas PHYSICAL GEOGRAPHY By Brett Lucas INTRODUCTION TO ATMOSPHERIC MOISTURE Atmospheric Moisture The Nature of Water The Hydrologic Cycle Evaporation Measures of Humidity Condensation The Buoyancy of Air Precipitation

More information

Lecture 8: Climate Modeling

Lecture 8: Climate Modeling Lecture 8: Climate Modeling How to Build a Climate Model The climate is governed by many complex physical, chemical, and biological processes and their interactions. Building a climate model needs to consider

More information

Parametrizing cloud and precipitation in today s NWP and climate models. Richard Forbes

Parametrizing cloud and precipitation in today s NWP and climate models. Richard Forbes Parametrizing cloud and precipitation in today s NWP and climate models Richard Forbes (ECMWF) with thanks to Peter Bechtold and Martin Köhler RMetS National Meeting on Clouds and Precipitation, 16 Nov

More information

EARTH SCIENCE. Prentice Hall Water in the Atmosphere Water in the Atmosphere Water in the Atmosphere.

EARTH SCIENCE. Prentice Hall Water in the Atmosphere Water in the Atmosphere Water in the Atmosphere. Prentice Hall EARTH SCIENCE Tarbuck Lutgens Water s Changes of State 1. Precipitation is any form of water that falls from a cloud. a. Examples: Snow, rain, hail, sleet 3 States of matter of water: 1.

More information

Absorption and scattering

Absorption and scattering Absorption and scattering When a beam of radiation goes through the atmosphere, it encounters gas molecules, aerosols, cloud droplets, and ice crystals. These objects perturb the radiation field. Part

More information

Thermodynamics of Atmospheres and Oceans

Thermodynamics of Atmospheres and Oceans Thermodynamics of Atmospheres and Oceans Judith A. Curry and Peter J. Webster PROGRAM IN ATMOSPHERIC AND OCEANIC SCIENCES DEPARTMENT OF AEROSPACE ENGINEERING UNIVERSITY OF COLORADO BOULDER, COLORADO USA

More information

24.2 Cloud Formation 2/3/2014. Orographic Lifting. Processes That Lift Air Frontal Wedging. Convergence and Localized Convective Lifting

24.2 Cloud Formation 2/3/2014. Orographic Lifting. Processes That Lift Air Frontal Wedging. Convergence and Localized Convective Lifting 2/3/2014 Orographic Lifting Processes That Lift Air Frontal Wedging A front is the boundary between two adjoining air masses having contrasting characteristics. Convergence and Localized Convective Lifting

More information

Radiation and the atmosphere

Radiation and the atmosphere Radiation and the atmosphere Of great importance is the difference between how the atmosphere transmits, absorbs, and scatters solar and terrestrial radiation streams. The most important statement that

More information

A critical review of the design, execution and evaluation of cloud seeding experiments

A critical review of the design, execution and evaluation of cloud seeding experiments A critical review of the design, execution and evaluation of cloud seeding experiments Roelof T. Bruintjes WMA Meeting September 2013, Santiago Research Applications Program, National Center for Atmospheric

More information

Chapter 6 Clouds. Cloud Development

Chapter 6 Clouds. Cloud Development Chapter 6 Clouds Chapter overview Processes causing saturation o Cooling, moisturizing, mixing Cloud identification and classification Cloud Observations Fog Why do we care about clouds in the atmosphere?

More information

Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1

Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1 Lecture 07 February 10, 2010 Water in the Atmosphere: Part 1 About Water on the Earth: The Hydrological Cycle Review 3-states of water, phase change and Latent Heat Indices of Water Vapor Content in the

More information

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled?

Name(s) Period Date. Earth s Energy Budget: How Is the Temperature of Earth Controlled? Name(s) Period Date 1 Introduction Earth s Energy Budget: How Is the Temperature of Earth Controlled? As you learned from the reading, the balance between incoming energy from the sun and outgoing energy

More information

References: Cloud Formation. ESCI Cloud Physics and Precipitation Processes Lesson 1 - Cloud Types and Properties Dr.

References: Cloud Formation. ESCI Cloud Physics and Precipitation Processes Lesson 1 - Cloud Types and Properties Dr. ESCI 34 - Cloud Physics and Precipitation Processes Lesson 1 - Cloud Types and Properties Dr. DeCaria References: Glossary of Meteorology, 2nd ed., American Meteorological Society A Short Course in Cloud

More information

Thursday, June 5, Chapter 5: Condensation & Precipitation

Thursday, June 5, Chapter 5: Condensation & Precipitation Thursday, June 5, 2014 Chapter 5: Condensation & Precipitation Chapter 5: Condensation and Precipitation Formation of Condensation Saturated Air Condensation Nuclei Results of Condensation Clouds Fog Dew

More information

Cloud Brightening and Climate Change

Cloud Brightening and Climate Change Cloud Brightening and Climate Change 89 Hannele Korhonen and Antti-Ilari Partanen Contents Definitions... 778 Aerosols and Cloud Albedo... 778 Cloud Brightening with Sea-Salt Aerosol... 779 Climate Effects

More information

Polar regions Temperate Regions Tropics High ( cirro ) 3-8 km 5-13 km 6-18 km Middle ( alto ) 2-4 km 2-7 km 2-8 km Low ( strato ) 0-2 km 0-2 km 0-2 km

Polar regions Temperate Regions Tropics High ( cirro ) 3-8 km 5-13 km 6-18 km Middle ( alto ) 2-4 km 2-7 km 2-8 km Low ( strato ) 0-2 km 0-2 km 0-2 km Clouds and Climate Clouds (along with rain, snow, fog, haze, etc.) are wet atmospheric aerosols. They are made up of tiny spheres of water from 2-100 m which fall with terminal velocities of a few cm/sec.

More information

INTRODUCTION TO METEOROLOGY PART ONE SC 213 MAY 21, 2014 JOHN BUSH

INTRODUCTION TO METEOROLOGY PART ONE SC 213 MAY 21, 2014 JOHN BUSH INTRODUCTION TO METEOROLOGY PART ONE SC 213 MAY 21, 2014 JOHN BUSH WEATHER PATTERNS Extratropical cyclones (low pressure core) and anticyclones (high pressure core) Cold fronts and warm fronts Jet stream

More information

Lecture 7: The Monash Simple Climate

Lecture 7: The Monash Simple Climate Climate of the Ocean Lecture 7: The Monash Simple Climate Model Dr. Claudia Frauen Leibniz Institute for Baltic Sea Research Warnemünde (IOW) claudia.frauen@io-warnemuende.de Outline: Motivation The GREB

More information

The Structure and Motion of the Atmosphere OCEA 101

The Structure and Motion of the Atmosphere OCEA 101 The Structure and Motion of the Atmosphere OCEA 101 Why should you care? - the atmosphere is the primary driving force for the ocean circulation. - the atmosphere controls geographical variations in ocean

More information

Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations

Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations Role of atmospheric aerosol concentration on deep convective precipitation: Cloud-resolving model simulations Wei-Kuo Tao,1 Xiaowen Li,1,2 Alexander Khain,3 Toshihisa Matsui,1,2 Stephen Lang,4 and Joanne

More information

Dust Climate Interactions

Dust Climate Interactions School of Earth and Environment INSTITUTE FOR CLIMATE AND ATMOSPHERIC SCIENCE Dust Climate Interactions Kerstin Schepanski k. schepanski@leeds.ac.uk Dust Impacts Direct and indirect climate forcing Regional

More information

Implications of Sulfate Aerosols on Clouds, Precipitation and Hydrological Cycle

Implications of Sulfate Aerosols on Clouds, Precipitation and Hydrological Cycle Implications of Sulfate Aerosols on Clouds, Precipitation and Hydrological Cycle Source: Sulfate aerosols are produced by chemical reactions in the atmosphere from gaseous precursors (with the exception

More information

Clouds on Mars Cloud Classification

Clouds on Mars Cloud Classification Lecture Ch. 8 Cloud Classification Descriptive approach to clouds Drop Growth and Precipitation Processes Microphysical characterization of clouds Complex (i.e. Real) Clouds Examples Curry and Webster,

More information

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc.

NATS 1750 Lecture. Wednesday 28 th November Pearson Education, Inc. NATS 1750 Lecture Wednesday 28 th November 2012 Processes that lift air Orographic lifting Elevated terrains act as barriers Result can be a rainshadow desert Frontal wedging Cool air acts as a barrier

More information

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy.

Fluid Circulation Review. Vocabulary. - Dark colored surfaces absorb more energy. Fluid Circulation Review Vocabulary Absorption - taking in energy as in radiation. For example, the ground will absorb the sun s radiation faster than the ocean water. Air pressure Albedo - Dark colored

More information

Lecture Notes Prepared by Mike Foster Spring 2007

Lecture Notes Prepared by Mike Foster Spring 2007 Lecture Notes Prepared by Mike Foster Spring 2007 Solar Radiation Sources: K. N. Liou (2002) An Introduction to Atmospheric Radiation, Chapter 1, 2 S. Q. Kidder & T. H. Vander Haar (1995) Satellite Meteorology:

More information

Remote Sensing C. Rank: Points: Science Olympiad North Regional Tournament at the University of Florida. Name(s): Team Name: School Name:

Remote Sensing C. Rank: Points: Science Olympiad North Regional Tournament at the University of Florida. Name(s): Team Name: School Name: Remote Sensing C Science Olympiad North Regional Tournament at the University of Florida Rank: Points: Name(s): Team Name: School Name: Team Number: Instructions: DO NOT BEGIN UNTIL GIVEN PERMISSION. DO

More information

Water in the Atmosphere

Water in the Atmosphere Water in the Atmosphere Characteristics of Water solid state at 0 o C or below (appearing as ice, snow, hail and ice crystals) liquid state between 0 o C and 100 o C (appearing as rain and cloud droplets)

More information

Hygroscopic Growth of Aerosols and their Optical Properties

Hygroscopic Growth of Aerosols and their Optical Properties Hygroscopic Growth of Aerosols and their Optical Properties Cynthia Randles Atmospheric & Oceanic Sciences Princeton University V. Ramaswamy and L. M. Russell ! Introduction Presentation Overview! Aerosol

More information

What does a raindrop look like as it is falling? A B C

What does a raindrop look like as it is falling? A B C What does a raindrop look like as it is falling? A B C As the raindrop falls, it bumps into air molecules, flattening out the bottom of the drop! Force or air resistance Force of gravity Water can be in

More information

1. Weather and climate.

1. Weather and climate. Lecture 31. Introduction to climate and climate change. Part 1. Objectives: 1. Weather and climate. 2. Earth s radiation budget. 3. Clouds and radiation field. Readings: Turco: p. 320-349; Brimblecombe:

More information

Condensation: Dew, Fog and Clouds AT350

Condensation: Dew, Fog and Clouds AT350 Condensation: Dew, Fog and Clouds AT350 T=30 C Water vapor pressure=12mb What is Td? What is the sat. water vapor T=30 C Water vapor pressure=12mb What is Td? What is the sat. water vapor ~12/42~29% POLAR

More information

Introduction to Cloud Microphysics

Introduction to Cloud Microphysics Introduction to Cloud Microphysics Mountain Weather and Climate ATM 619: Atmospheric Science Seminar Series Department of Earth and Atmospheric Sciences University at Albany W. James Steenburgh Department

More information

1. describe the two methods by which cloud droplets can grow to produce precipitation (pp );

1. describe the two methods by which cloud droplets can grow to produce precipitation (pp ); 10 Precipitation Learning Goals After studying this chapter, students should be able to: 1. describe the two methods by which cloud droplets can grow to produce precipitation (pp. 232 236); 2. distinguish

More information

Atmospheric Basics Atmospheric Composition

Atmospheric Basics Atmospheric Composition Atmospheric Basics Atmospheric Composition Air is a combination of many gases, each with its own unique characteristics. About 99 percent of the atmosphere is composed of nitrogen and oxygen, with the

More information

The atmosphere s water

The atmosphere s water The atmosphere s water Atmospheric Moisture and Precipitation Properties of Water The Hydrosphere and the Hydrologic Cycle Humidity The Adiabatic Process Clouds Precipitation Air Quality Main points for

More information

Explain the parts of the water cycle that are directly connected to weather.

Explain the parts of the water cycle that are directly connected to weather. Name: Pd: Date: Page # Describing Weather -- Lesson 1 Study Guide Rating Before Learning Goals Rating After 1 2 3 4 Describe weather. 1 2 3 4 1 2 3 4 List and define the variables used to describe weather.

More information

Precipitation Processes. Precipitation Processes 2/24/11. Two Mechanisms that produce raindrops:

Precipitation Processes. Precipitation Processes 2/24/11. Two Mechanisms that produce raindrops: Precipitation is any form of water that falls from a cloud and reaches the ground. How do cloud drops grow? Chapter 7 When air is saturated with respect to a flat surface it is unsaturated with respect

More information

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate

Spectrum of Radiation. Importance of Radiation Transfer. Radiation Intensity and Wavelength. Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Radiation Intensity and Wavelength frequency Planck s constant Solar and infrared radiation selective absorption and emission Selective absorption

More information

Aerosol. Challenge: Global Warming. Observed warming during 20 th century, Tapio. 1910s. 1950s. 1990s T [Kelvin]

Aerosol. Challenge: Global Warming. Observed warming during 20 th century, Tapio. 1910s. 1950s. 1990s T [Kelvin] Aerosol Challenge: Global Warming 1910s 1950s 1990s 2 1 0 +1 +2 T [Kelvin] Observed warming during 20 th century, Tapio Schneider, J. Climate, 2001 1 Aerosols are liquid or solid particles suspended in

More information

Lecture 3: Atmospheric Radiative Transfer and Climate

Lecture 3: Atmospheric Radiative Transfer and Climate Lecture 3: Atmospheric Radiative Transfer and Climate Solar and infrared radiation selective absorption and emission Selective absorption and emission Cloud and radiation Radiative-convective equilibrium

More information

J. Schneider & Chr. Voigt - Physics and Chemistry of Aerosols and Ice Clouds

J. Schneider & Chr. Voigt - Physics and Chemistry of Aerosols and Ice Clouds Chapter 8 Contrails and contrail cirrus 8.1 Introduction - Terminology 8.2 Contrail formation conditions 8.3 Heterogeneous nucleation on volatile aerosol and soot 8.4 Indirect effect of soot on cirrus

More information

Name Class Date. 3. In what part of the water cycle do clouds form? a. precipitation b. evaporation c. condensation d. runoff

Name Class Date. 3. In what part of the water cycle do clouds form? a. precipitation b. evaporation c. condensation d. runoff Skills Worksheet Directed Reading B Section: Water in the Air 1. What do we call the condition of the atmosphere at a certain time and place? a. the water cycle b. weather c. climate d. precipitation THE

More information

, analogous to an absorption coefficient k a

, analogous to an absorption coefficient k a Light Scattering When light passes through a medium some of it is directed away from its direction of travel. Any photons that are diverted from their direction of propagation are scattered. In the atmosphere

More information

Weather, Atmosphere and Meteorology

Weather, Atmosphere and Meteorology S c i e n c e s Weather, Atmosphere and Meteorology Key words: Atmosphere, Ozone, Water vapor, solar radiation, Condensation, Evaporation, Humidity, Dew-Point Temperature, Cirrus Clouds, Stratus Clouds,

More information

Chapter 4. Atmospheric Moisture, Condensation, and Clouds. 9/13/2012

Chapter 4. Atmospheric Moisture, Condensation, and Clouds. 9/13/2012 Chapter 4 Atmospheric Moisture, Condensation, and Clouds. The sun s electromagnetic spectrum and some of the descriptive names of each region. The numbers underneath the curve approximate the percent of

More information

9/13/2012. Chapter 4. Atmospheric Moisture, Condensation, and Clouds.

9/13/2012. Chapter 4. Atmospheric Moisture, Condensation, and Clouds. Chapter 2-3 review Chapter 2-3 review Chapter 4 Atmospheric Moisture, Condensation, and Clouds. The sun s electromagnetic spectrum and some of the descriptive names of each region. The numbers underneath

More information

Glaciology HEAT BUDGET AND RADIATION

Glaciology HEAT BUDGET AND RADIATION HEAT BUDGET AND RADIATION A Heat Budget 1 Black body radiation Definition. A perfect black body is defined as a body that absorbs all radiation that falls on it. The intensity of radiation emitted by a

More information

Atmosphere Weather and Climate

Atmosphere Weather and Climate Atmosphere Weather and Climate Weather and Climate Weather Atmospheric conditions at a particular time and place Climate Long-term average of weather conditions Often over decades or centuries Coastal

More information

The troposphere is the layer closest to Earth s surface. Extends from 9-16 km above Earth s Surface It contains most of the mass of the atmosphere.

The troposphere is the layer closest to Earth s surface. Extends from 9-16 km above Earth s Surface It contains most of the mass of the atmosphere. Chapter 11 The atmosphere is the blanket of gases surrounding Earth that contains about 78% nitrogen, 21% oxygen, and 1% other gases such as argon, carbon dioxide, and water vapor The atmosphere is classified

More information

Precipitation AOSC 200 Tim Canty. Cloud Development: Orographic Lifting

Precipitation AOSC 200 Tim Canty. Cloud Development: Orographic Lifting Precipitation AOSC 200 Tim Canty Class Web Site: http://www.atmos.umd.edu/~tcanty/aosc200 Topics for today: Precipitation formation Rain Ice Lecture 14 Oct 11 2018 1 Cloud Development: Orographic Lifting

More information

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility.

Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Lecture 26. Regional radiative effects due to anthropogenic aerosols. Part 2. Haze and visibility. Objectives: 1. Attenuation of atmospheric radiation by particulates. 2. Haze and Visibility. Readings:

More information

Chapter The transition from water vapor to liquid water is called. a. condensation b. evaporation c. sublimation d.

Chapter The transition from water vapor to liquid water is called. a. condensation b. evaporation c. sublimation d. Chapter-6 Multiple Choice Questions 1. The transition from water vapor to liquid water is called. a. condensation b. evaporation c. sublimation d. deposition 2. The movement of water among the great global

More information

Lecture 2: Global Energy Cycle

Lecture 2: Global Energy Cycle Lecture 2: Global Energy Cycle Planetary energy balance Greenhouse Effect Vertical energy balance Solar Flux and Flux Density Solar Luminosity (L) the constant flux of energy put out by the sun L = 3.9

More information

Mystery of ice multiplication in warm based precipitating shallow cumulus clouds

Mystery of ice multiplication in warm based precipitating shallow cumulus clouds Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl042440, 2010 Mystery of ice multiplication in warm based precipitating shallow cumulus clouds Jiming Sun, 1,2 Parisa

More information

Modeling of cloud microphysics: from simple concepts to sophisticated parameterizations. Part I: warm-rain microphysics

Modeling of cloud microphysics: from simple concepts to sophisticated parameterizations. Part I: warm-rain microphysics Modeling of cloud microphysics: from simple concepts to sophisticated parameterizations. Part I: warm-rain microphysics Wojciech Grabowski National Center for Atmospheric Research, Boulder, Colorado parameterization

More information

Climate 1: The Climate System

Climate 1: The Climate System Climate 1: The Climate System Prof. Franco Prodi Institute of Atmospheric Sciences and Climate National Research Council Via P. Gobetti, 101 40129 BOLOGNA SIF, School of Energy, Varenna, July 2014 CLIMATE

More information

Meteorology. I. The Atmosphere - the thin envelope of gas that surrounds the earth.

Meteorology. I. The Atmosphere - the thin envelope of gas that surrounds the earth. Meteorology I. The Atmosphere - the thin envelope of gas that surrounds the earth. A. Atmospheric Structure - the atmosphere is divided into five distinct layers that are based on their unique characteristics.

More information