Diffusional Growth of Liquid Phase Hydrometeros.

Size: px
Start display at page:

Download "Diffusional Growth of Liquid Phase Hydrometeros."

Transcription

1 Diffusional Growth of Liquid Phase Hydrometeros. I. Diffusional Growth of Liquid Phase Hydrometeors A. Basic concepts of diffusional growth. 1. To understand the diffusional growth of a droplet, we must consider two important processes a. Water vapor is transferred to the droplet by vapor diffusion i. A gradient of vapor develops around a drop that is growing or evaporating - the droplet is not in equilibrium b. Condensation (evaporation) results in latent heat release (absorption) i. The net effect is that the droplet is warmed (cooled) ii. The warming (cooling) slows the growth (evaporation ) of the droplet as the saturation vapor density is directly related to the temperature iii. If the drop is to grow, the excess heat must be removed. This can occur by conduction with the environment. B. In summary, we must be concerned with 1. The mass flux of water molecules toward/away from the droplet 2. The conduction of heat away/toward the droplet 3. We will solve these individually as well as simultaneously with the help of the Clausius - Clapeyron equation. a. Alternative methods are also possible; however, we will not look at these. C. Assumptions: 1. Initial work will be based on the following assumptions a. Critical radius droplet b. Stationary droplet c. Isolated droplet d. Spherical (symmetric) Area = 4πa 2, where a is droplet radius D. Mass flux of vapor Now the flux of vapor molecules to / from the surface of a droplet is 1. The mass rate of change a. The mass flux toward the drop through radius r from the drop is proportional to i. the gradient of vapor density through any radial ii. diffusivity of water vapor iii. area of a shell with radius r b. with ρ = mn dm / dt = 4π D a[ρ v, - ρ v,a ] i. The droplet mass change is a function of i. radius a ii. diffusivity iii. [ρ v, - ρ v,a ] if [ρ v, - ρ v,a ] > 1; dm/dt > 0 if [ρ v, - ρ v,a ] < 1; dm/dt < 0 2. Growth due to mass flux in terms of radius 1

2 M = ρ w V = ρ w π 4/3 a 3 (ρ w is density of water) dm / dt = 4π D a [ρ v, - ρ v,a ] ρ w 4/3 π da 3 / dt = 4π D a [ρ v, - ρ v,a ] ρ w (4/3) π 3a 2 da / dt = 4π D a [ρ v, - ρ v,a ] ρ w 4π a 2 da / dt = 4π D a [ρ v, - ρ v,a ] ρ w a da / dt = D [ρ v, - ρ v,a ] a da / dt = D [ρ v, - ρ v,a ] / ρ w a. We can integrate this to get a as a function of time t for mass flux of water vapor... [a 2 (t1) - a 2 (t0)]/ 2 = D [ρ v, - ρ v,a ] (t1-t0) / ρ w t1 = t0 + ρ w [a 2 (t1) - a 2 (t0)] {2 D [ρ v, - ρ v,a ] } b. The time for a droplet to grow by vapor diffusion given SS, T, and initial radius i. Initial conditions D = 2.11x10-5 m 2 /s ρ w = 1000 kg / m 3 SS = 1.01 ρ v, = 4.895x10-3 kg/m 3 T = K p = Pa r(t0) = 5x10-6 m radius dt t+dt (m) (sec) (accumulated) 5x10-6 m x10-6 m 20x10-6 m 30x10-6 m 40x10-6 m 50x10-6 m 100x10-6 m 400x10-6 m 1000x10-6 m 5000x10-6 m E. The conduction of heat away / toward the droplet As a droplet grows, the droplet heats. This increases its saturation vapor pressure for equilibrium over the drop surface. For a steady state drop growth, we find the steady state droplet temperature. 1. This derivation is analogous to that for mass flux of water vapor 2. The heat flux equation necessary to keep droplet T constant a. The conduction (diffusion) of heat toward the droplet at radius r from the drop is proportional to i. the gradient of temperature through any radial 2

3 ii. thermal conductivity iii. area of a shell with radius r (see picture from before) -dq / dt = 4π a 2 K {a[t a - T ]/r + T }/ r (r=a) d. T / r = 0, so -dq / dt = 4π a 2 K {a[t a - T ]/r}/ r (r=a) e. or, noting (1/r)/ r = -1/r 2 r/ r -dq / dt = 4π a 2 K {-a[t a - T ]/r 2 r/ r} (r=a) f. thus, with r = a (droplet surface) -dq / dt = 4π a 2 K {-a[t a - T ]/a 2 } -dq / dt = 4π K a[t - T a ] g. The droplet heat change is a function of i. radius a ii. conductivity iii. Thermal gradient if [T - T a ]< 1; -dq/dt > 0 if [T - T a ]> 1; -dq/dt < 0 3 This equation can be re-written in terms of mass change noting that -dq/dt = -L dm/dt where L is the latent heat of vaporization -L dm / dt = 4π K a[t - T a ] F. Now we need to discuss the balance conditions for the heats associated with condensation and conduction. 1. We have an equation for mass flux of vapor (which multiplied by L yields heat released during condensation) a. dm / dt = 4π D a [ρ v, - ρ v,a ] 2. We also have an equation for the heat conduction a. -dq / dt = 4π K a [T - T a ] 3. The rate of change of surface temperature of the droplet is a. 4/3 π r 3 ρ w C dt r / dt = L dm/dt - dq/dt i. C is the specific heat capacity ii. L dm/dt is the mass flux of vapor times L iii. dq/dt is the heat conduction rate iv. Steady state growth; so dt r / dt = 0 4. The latent heat owing to mass flux and the heat conduction terms oppose each other. While latent heating warms it reduces the vapor density gradient, which reduces the vapor flux. To solve for the true mass growth, these need to be balanced (iterate) 4. Begin by assuming steady state growth, L dm/dt - dq/dt = 0 5. From this we can state (the particle wet bulb relationship) 4π L D a [ρ v, - ρ v,a ] = -4π K a [T - T a ] 6. Or, L D [ρ v, - ρ v,a ] = -K [T - T a ] 7. Thus, the following must be balanced by the thermal and vapor fields [ρ v, - ρ v,a ] / [T - T a ] = -K / (L D) 8. This equation can be solved by iterating as the vapor density at the droplet surface is a function of T at the surface. a. Others, such as Young (1974: JAS pg 1735) suggest that we can linearize the saturation vapor density relation to get ρ v,a = s T a + b (where s and b are constant)to derive T a 3

4 T a = [D L (ρ v, -b) + KT ] / [D L s + K] 9. Upon arriving at the equilibrium T and vapor density, we can solve the above mass flux equation for the mass growth. 10. An estimate of the influence of the of heating can be made as follows. a. Re-compute the drop temperature from 7 above. b. From this compute a new vapor density. c. The time for a droplet to grow based on the heat conduction equation can be computed given the following information: Compare this rate to that fromthe mass flux equation. i. Initial conditions D = 2.11x10-5 m 2 /s ρ w = 1000 kg / m 3 SS = 1.01 ρ v, = 4.895x10-3 kg/m 3 T = K p = Pa r(t0) = 5x10-6 m radius dt t+dt (m) (sec) (accumulated) 5x10-6 m x10-6 m 20x10-6 m 30x10-6 m 40x10-6 m 50x10-6 m 100x10-6 m 400x10-6 m 1000x10-6 m 5000x10-6 m G. The previous equations are tedious to solve. It is possible to solve simultaneously for the growth rate in terms of mass flux and heat conduction using the Clausius-Clapeyron equation. This is what is shown next (There are a number of ways of proceeding. I will choose that presented by Byers.) 1. We begin by writing the mass flux and thermal conduction equations a. L dm / dt = 4π L D a [ρ v, - ρ v,a ] b. -dq / dt = 4π K a [T - T a ] 2. Now from the particle wet-bulb relation, and the equation of state a. [ρ v, - ρ v,a ] / [T - T a ] = -K / (L D) b. ρ v = e v / (R w T) (R w is the gas constant for water vapor) 3. We get, approximately (assuming T T a in the equation of state; also note I moved a minus sign) [e v, - e v,a ] / {T [T a - T ]} = K R w / (L D) a. When the ambient vapor is at supersaturation with respect to the drop, e v, > e v,a, then T a > T 4. Or, we get the following equation a da / dt = (S-1) / {ρ w L 2 / (K R w T 2 )] + ρw R w T / (e sv, D) } 5. Using dm/dt = ρ w 4 π a 2 da/dt 4

5 a da/dt = [1/(ρ w 4 π a)] dm/dt 6. We get dm/dt = 4 π a (S-1) / {L 2 / (K R w T 2 )] + Rw T / (e sv, D) } 7. Notes a. This equation is entirely in terms of the ambient conditions b. It is very accurate for S near 1 (RH = 101%) c. It can be in error for S-1 > 0.1 H. The influence of radius and solutions on diffusional growth. 1. In the previous section we computed the growth rate of a spherical liquid hydrometeor by steady state diffusion of water vapor and temperature assuming a balance between latent heat release and heat conduction. 2. We neglected the influence of radius and solutions. These can be easily included by using the principles discussed in deriving the Kohler equation. a. The Kohler equation is given as e r=a,w,aw = e s {1 + c a -1 - b (a 3 - a x 3 ) -1 } or e r=a,w,aw / e s = {1 + c a -1 - b (a 3 - a x 3 ) -1 } i. e r=a,w,aw is the equilibrium vapor pressure over a solution droplet with activity a w and radius a. ii. e s is the saturation vapor pressure for a plane, pure water surface. iii. The c a -1 term takes into account the influence of radius a via the Kelvin equation iv. The b (a 3 - a x 3 ) -1 term takes into account the influence of solutions and solid particulate matter v. constants b and c are described in Section 4 3. Our diffusional growth equation is a. In terms of radius growth rate a da / dt = (S-1) / {ρ w L 2 / (K R w T 2 )] + ρw R w T / (e sv, D) } i. which is often written (S-1) G(T,p) where G(T,P) is given as 1 / (A+B) or 1 / {ρ w L 2 / (K R w T 2 )] + ρw R w T / (e sv, D) } b. In terms of mass growth rate dm/dt = 4 π a (S-1) / {L 2 / (K R w T 2 )] + Rw T / (e sv, D) } 4. Now, (S-1) in this equation is just (e v, / e sv, - 1) I. Ventilation effects. 1. In deriving our vapor diffusion equation for droplet growth we assumed a spherically symmetric vapor and thermal gradient around the drop. a. This is accurate for a drop at rest: no relative flow. 2. For falling droplets (or droplets with a relative flow around them), the vapor and temperature fields are distorted 2. The vapor and thermal gradients will be enhanced ahead of the drop (upstream) and spread out behind the drop (downstream). 3. If the distortion is symmetric as shown in the attached figure, the effect will be to enhance growth or evaporation. Can you explain this 5

6 physically? a. During condensation, heat is convected away from the droplet, and the vapor supply (or rather gradient) is enhanced b. During evaporation, heat is convected toward the droplet, and vapor from evaporation is removed 4. These influences in our latent heat and conduction equations are included by multiplying by a correction factor called the ventilation coefficient. a. The latent heat equation becomes L dm / dt = 4π L D a fv [ρ v, - ρ v,a ] where fv is the vapor ventilation coefficient b. The conduction equation becomes -dq / dt = 4π K a fh [T - T a ] where fh is the heat ventilation coefficient 5. For a droplet at rest, we would expect these coefficients to be unity (1) 6. Relaxing the stationary constraint, we expect small droplets to fall slowly, and large droplets to fall relatively fast. Therefore, we expect that the ventilation coefficients would be near unity for small droplets and large for large droplets. 7. It is very difficult to compute these numbers analytically. Therefore, scientists resort to making estimates based on observations in terms of physical quantities important to the problem: They parameterize. a. One way to develop parameterizions of the ventilation coefficients is to measure the vapor diffusion mass growth rate and the heat conduction rate as a function of radius for stationary and falling droplets b. We define the vapor ventilation coefficient as fv = dm/dt / dmo/dt i. dm/dt is the rate for a moving drop ii. dmo/dt is the rate for a stationary drop 6

Generating cloud drops from CCN. Wallace & Hobbs (1977)

Generating cloud drops from CCN. Wallace & Hobbs (1977) Generating cloud drops from CCN Wallace & Hobbs (1977) Cloud Drops and Equilibrium Considera3ons: review We discussed how to compute the equilibrium vapor pressure over a pure water drop, or a solu3on

More information

Graupel and Hail Growth

Graupel and Hail Growth Graupel and Hail Growth I. Growth of large ice particles In this section we look at some basics of graupeln and hail growth. Important components of graupeln and hail growth models include production of

More information

1. Droplet Growth by Condensation

1. Droplet Growth by Condensation 1. Droplet Growth by Condensation It was shown before that a critical size r and saturation ratio S must be exceeded for a small solution droplet to become a cloud droplet. Before the droplet reaches the

More information

Summary of riming onset conditions for different crystal habits. Semi-dimension: width / lateral dimension (perpendicular to c-axis)

Summary of riming onset conditions for different crystal habits. Semi-dimension: width / lateral dimension (perpendicular to c-axis) Summary of riming onset conditions for different crystal habits Semi-dimension: width / lateral dimension (perpendicular to c-axis) HEAT BALANCE FOR GRAUPEL PARTICLES Consider a graupel particle growing

More information

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O

2σ e s (r,t) = e s (T)exp( rr v ρ l T ) = exp( ) 2σ R v ρ l Tln(e/e s (T)) e s (f H2 O,r,T) = f H2 O Formulas/Constants, Physics/Oceanography 4510/5510 B Atmospheric Physics II N A = 6.02 10 23 molecules/mole (Avogadro s number) 1 mb = 100 Pa 1 Pa = 1 N/m 2 Γ d = 9.8 o C/km (dry adiabatic lapse rate)

More information

Lecture Ch. 6. Condensed (Liquid) Water. Cloud in a Jar Demonstration. How does saturation occur? Saturation of Moist Air. Saturation of Moist Air

Lecture Ch. 6. Condensed (Liquid) Water. Cloud in a Jar Demonstration. How does saturation occur? Saturation of Moist Air. Saturation of Moist Air Lecture Ch. 6 Saturation of moist air Relationship between humidity and dewpoint Clausius-Clapeyron equation Dewpoint Temperature Depression Isobaric cooling Moist adiabatic ascent of air Equivalent temperature

More information

Kelvin Effect. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics

Kelvin Effect. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Kelvin Effect Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Vapor Pressure (e) e < e # e = e # Vapor Pressure e > e # Relative humidity RH =

More information

1. Water Vapor in Air

1. Water Vapor in Air 1. Water Vapor in Air Water appears in all three phases in the earth s atmosphere - solid, liquid and vapor - and it is one of the most important components, not only because it is essential to life, but

More information

Clouds associated with cold and warm fronts. Whiteman (2000)

Clouds associated with cold and warm fronts. Whiteman (2000) Clouds associated with cold and warm fronts Whiteman (2000) Dalton s law of partial pressures! The total pressure exerted by a mixture of gases equals the sum of the partial pressure of the gases! Partial

More information

Greenhouse Steady State Energy Balance Model

Greenhouse Steady State Energy Balance Model Greenhouse Steady State Energy Balance Model The energy balance for the greenhouse was obtained by applying energy conservation to the greenhouse system as a control volume and identifying the energy terms.

More information

Part I.

Part I. Part I bblee@unimp . Introduction to Mass Transfer and Diffusion 2. Molecular Diffusion in Gasses 3. Molecular Diffusion in Liquids Part I 4. Molecular Diffusion in Biological Solutions and Gels 5. Molecular

More information

Chapter 17. Fundamentals of Atmospheric Modeling

Chapter 17. Fundamentals of Atmospheric Modeling Overhead Slides for Chapter 17 of Fundamentals of Atmospheric Modeling by Mark Z. Jacobson Department of Civil & Environmental Engineering Stanford University Stanford, CA 94305-4020 August 21, 1998 Mass

More information

Chapter 4 Water Vapor

Chapter 4 Water Vapor Chapter 4 Water Vapor Chapter overview: Phases of water Vapor pressure at saturation Moisture variables o Mixing ratio, specific humidity, relative humidity, dew point temperature o Absolute vs. relative

More information

12.009/ Problem Set 2

12.009/ Problem Set 2 12.009/18.352 Problem Set 2 Due Thursday, 26 February 2015 100 points total Problem 1: 15 pts (a,b)=(10,5) Problem 2: 45 pts (a,b,c,d,e,f)=(5,5,5,10,10,10) Problem 3: 40 pts (a,b,c,d,e,f)=(5,5,5,5,10,10)

More information

Solutions to questions from chapter 8 in GEF Cloud Physics

Solutions to questions from chapter 8 in GEF Cloud Physics Solutions to questions from chapter 8 in GEF4310 - Cloud Physics i.h.h.karset@geo.uio.no Problem 1 a) What is expressed by the equation below? Answer: The left side is the time rate of change of the mass

More information

Parcel Model. Atmospheric Sciences September 30, 2012

Parcel Model. Atmospheric Sciences September 30, 2012 Parcel Model Atmospheric Sciences 6150 September 30, 2012 1 Governing Equations for Precipitating Convection For precipitating convection, we have the following set of equations for potential temperature,

More information

Chemical Potential. Combining the First and Second Laws for a closed system, Considering (extensive properties)

Chemical Potential. Combining the First and Second Laws for a closed system, Considering (extensive properties) Chemical Potential Combining the First and Second Laws for a closed system, Considering (extensive properties) du = TdS pdv Hence For an open system, that is, one that can gain or lose mass, U will also

More information

Combustion MATHEMATICAL MODEL FOR TRANSIENT. S. M. Frolov Λ,F.S.Frolov Λ, and B. Basara y

Combustion MATHEMATICAL MODEL FOR TRANSIENT. S. M. Frolov Λ,F.S.Frolov Λ, and B. Basara y Combustion MATHEMATICAL MODEL FOR TRANSIENT DROPLET VAPORIZATION S. M. Frolov Λ,F.S.Frolov Λ, and B. Basara y Λ N. N. Semenov Institute of Chemical Physics Russian Academy of Sciences Moscow, Russia y

More information

The Clausius-Clapeyron and the Kelvin Equations

The Clausius-Clapeyron and the Kelvin Equations PhD Environmental Fluid Mechanics Physics of the Atmosphere University of Trieste International Center for Theoretical Physics The Clausius-Clapeyron and the Kelvin Equations by Dario B. Giaiotti and Fulvio

More information

Convective Heat and Mass Transfer Prof. A.W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay

Convective Heat and Mass Transfer Prof. A.W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay Convective Heat and Mass Transfer Prof. A.W. Date Department of Mechanical Engineering Indian Institute of Technology, Bombay Module No. # 01 Lecture No. # 32 Stefan Flow Model We are now familiar with

More information

A droplet of colloidal solution is left to evaporate on a superhydrophobic surface. Avijit Baidya

A droplet of colloidal solution is left to evaporate on a superhydrophobic surface. Avijit Baidya A droplet of colloidal solution is left to evaporate on a superhydrophobic surface. Avijit Baidya 14.03.15 In this paper Evaporation-driven particle self-assembly can be used to generate three-dimensional

More information

Köhler Curve. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics

Köhler Curve. Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Köhler Curve Covers Reading Material in Chapter 10.3 Atmospheric Sciences 5200 Physical Meteorology III: Cloud Physics Review of Kelvin Effect Gibbs Energy for formation of a drop G = G &'()*+, G ).'+

More information

ATMO 551a Moist Adiabat Fall Change in internal energy: ΔU

ATMO 551a Moist Adiabat Fall Change in internal energy: ΔU Enthalpy and the Moist Adiabat We have described the dry adiabat where an air parcel is lifted rapidly causing the air parcel to expand as the environmental pressure decreases and the air parcel does work

More information

CAE 331/513 Building Science Fall 2017

CAE 331/513 Building Science Fall 2017 CAE 331/513 Building Science Fall 2017 October 5, 2017 Psychrometrics (equations) Advancing energy, environmental, and sustainability research within the built environment www.built-envi.com Twitter: @built_envi

More information

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer

Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 9210-221 Level 7 Post Graduate Diploma in Engineering Heat and mass transfer 0 You should have the following for this examination one answer book non programmable calculator pen, pencil, drawing instruments

More information

The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh

The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh z = The perturbation pressure, p, can be represented as the sum of a hydrostatic pressure perturbation p h and a nonhydrostatic pressure perturbation p nh, that is, p = p h + p nh. (.1) The former arises

More information

df dz = dp dt Essentially, this is just a statement of the first law in one of the forms we derived earlier (expressed here in W m 3 ) dq p dt dp

df dz = dp dt Essentially, this is just a statement of the first law in one of the forms we derived earlier (expressed here in W m 3 ) dq p dt dp A problem with using entropy as a variable is that it is not a particularly intuitive concept. The mechanics of using entropy for evaluating system evolution is well developed, but it sometimes feels a

More information

Properties of Vapors

Properties of Vapors Properties of Vapors Topics for Discussion The Pressure/Temperature Relationship Vaporization Condensation Enthalpy Properties of Vapors Topics for Discussion Entropy Properties of Substances Saturated

More information

Parcel Model. Meteorology September 3, 2008

Parcel Model. Meteorology September 3, 2008 Parcel Model Meteorology 5210 September 3, 2008 1 Governing Equations for Precipitating Convection For precipitating convection, we have the following set of equations for potential temperature, θ, mixing

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information

Weather & Atmospheric Variables Review

Weather & Atmospheric Variables Review Weather & Atmospheric Variables Review Words that are bold, italicized and/or underlined are vocabulary you must KNOW! A) Atmospheric variables: a) Temperature as it relates to: 1) duration of insolation...longer

More information

Differential equations of mass transfer

Differential equations of mass transfer Differential equations of mass transfer Definition: The differential equations of mass transfer are general equations describing mass transfer in all directions and at all conditions. How is the differential

More information

G109 Midterm Exam (Version A) October 10, 2006 Instructor: Dr C.M. Brown 1. Time allowed 50 mins. Total possible points: 40 number of pages: 5

G109 Midterm Exam (Version A) October 10, 2006 Instructor: Dr C.M. Brown 1. Time allowed 50 mins. Total possible points: 40 number of pages: 5 G109 Midterm Exam (Version A) October 10, 2006 Instructor: Dr C.M. Brown 1 Time allowed 50 mins. Total possible points: 40 number of pages: 5 Part A: Short Answer & Problems (12), Fill in the Blanks (6).

More information

P sat = A exp [B( 1/ /T)] B= 5308K. A=6.11 mbar=vapor press. 0C.

P sat = A exp [B( 1/ /T)] B= 5308K. A=6.11 mbar=vapor press. 0C. Lecture 5. Water and water vapor in the atmosphere 14 Feb 2008 Review of buoyancy, with an unusual demonstration of Archimedes principle. Water is a polar molecule that forms hydrogen bonds. Consequently

More information

Outline. Aim. Gas law. Pressure. Scale height Mixing Column density. Temperature Lapse rate Stability. Condensation Humidity.

Outline. Aim. Gas law. Pressure. Scale height Mixing Column density. Temperature Lapse rate Stability. Condensation Humidity. Institute of Applied Physics University of Bern Outline A planetary atmosphere consists of different gases hold to the planet by gravity The laws of thermodynamics hold structure as vertical coordinate

More information

Diabatic Processes. Diabatic processes are non-adiabatic processes such as. entrainment and mixing. radiative heating or cooling

Diabatic Processes. Diabatic processes are non-adiabatic processes such as. entrainment and mixing. radiative heating or cooling Diabatic Processes Diabatic processes are non-adiabatic processes such as precipitation fall-out entrainment and mixing radiative heating or cooling Parcel Model dθ dt dw dt dl dt dr dt = L c p π (C E

More information

Measuring State Parameters of the Atmosphere

Measuring State Parameters of the Atmosphere Measuring State Parameters of the Atmosphere Some Applications of Atmospheric Thermodynamics Earth Observing Laboratory, NCAR IDEAS-4 Tutorial Introduction Goals of This Presentation Present two complementary

More information

MT3230 Supplemental Data 4.2 Spring, 2018 Dr. Sam Miller COMPUTING THE LATENT HEAT OF VAPORIZATION OF WATER AS A FUNCTION OF TEMPERATURE.

MT3230 Supplemental Data 4.2 Spring, 2018 Dr. Sam Miller COMPUTING THE LATENT HEAT OF VAPORIZATION OF WATER AS A FUNCTION OF TEMPERATURE. MT3230 Supplemental Data 4.2 Spring, 2018 Dr. Sam Miller COMPUTING THE LATENT HEAT OF VAPORIZATION OF WATER AS A FUNCTION OF TEMPERATURE Abstract The latent heat of vaporization parameterizes the amount

More information

EXPERIMENT 1 DETERMINATION OF GAS DIFFUSION COEFFICIENT

EXPERIMENT 1 DETERMINATION OF GAS DIFFUSION COEFFICIENT EXPERIMENT 1 DETERMINATION OF GAS DIFFUSION COEFFICIENT Objective: The objective of this experiment is to calculate diffusion coefficient of a volatile organic compound in air by means of Chapman Enskog

More information

Lecture 9: Climate Sensitivity and Feedback Mechanisms

Lecture 9: Climate Sensitivity and Feedback Mechanisms Lecture 9: Climate Sensitivity and Feedback Mechanisms Basic radiative feedbacks (Plank, Water Vapor, Lapse-Rate Feedbacks) Ice albedo & Vegetation-Climate feedback Cloud feedback Biogeochemical feedbacks

More information

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121)

z g + F w (2.56) p(x, y, z, t) = p(z) + p (x, y, z, t) (2.120) ρ(x, y, z, t) = ρ(z) + ρ (x, y, z, t), (2.121) = + dw dt = 1 ρ p z g + F w (.56) Let us describe the total pressure p and density ρ as the sum of a horizontally homogeneous base state pressure and density, and a deviation from this base state, that

More information

Thermodynamics Introduction and Basic Concepts

Thermodynamics Introduction and Basic Concepts Thermodynamics Introduction and Basic Concepts by Asst. Prof. Channarong Asavatesanupap Mechanical Engineering Department Faculty of Engineering Thammasat University 2 What is Thermodynamics? Thermodynamics

More information

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model.

Lecture 4: Global Energy Balance. Global Energy Balance. Solar Flux and Flux Density. Blackbody Radiation Layer Model. Lecture : Global Energy Balance Global Energy Balance S/ * (1-A) terrestrial radiation cooling Solar radiation warming T S Global Temperature Blackbody Radiation ocean land Layer Model energy, water, and

More information

Lecture 4: Global Energy Balance

Lecture 4: Global Energy Balance Lecture : Global Energy Balance S/ * (1-A) T A T S T A Blackbody Radiation Layer Model Greenhouse Effect Global Energy Balance terrestrial radiation cooling Solar radiation warming Global Temperature atmosphere

More information

Entropy and the Second Law of Thermodynamics

Entropy and the Second Law of Thermodynamics Entropy and the Second Law of Thermodynamics Reading Problems 7-1 7-3 7-88, 7-131, 7-135 7-6 7-10 8-24, 8-44, 8-46, 8-60, 8-73, 8-99, 8-128, 8-132, 8-1 8-10, 8-13 8-135, 8-148, 8-152, 8-166, 8-168, 8-189

More information

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each.

Exam 2: Cloud Physics April 16, 2008 Physical Meteorology Questions 1-10 are worth 5 points each. Questions are worth 10 points each. Exam : Cloud Physics April, 8 Physical Meteorology 344 Name Questions - are worth 5 points each. Questions -5 are worth points each.. Rank the concentrations of the following from lowest () to highest

More information

Step 1. Step 2. g l = g v. dg = 0 We have shown that over a plane surface of water. g v g l = ρ v R v T ln e/e sat. this can be rewritten

Step 1. Step 2. g l = g v. dg = 0 We have shown that over a plane surface of water. g v g l = ρ v R v T ln e/e sat. this can be rewritten The basic question is what makes the existence of a droplet thermodynamically preferable to the existence only of water vapor. We have already derived an expression for the saturation vapor pressure over

More information

PHASE CHANGE. Freezing Sublimation

PHASE CHANGE. Freezing Sublimation Melting Graphic Organizer Deposition PHASE CHANGE Freezing Sublimation Boiling Evaporation Condensation PHASE CHANGE Phase change happens as the temperature changes. All matter can move from one state

More information

2 D. Terminal velocity can be solved for by equating Fd and Fg Fg = 1/6πd 3 g ρ LIQ = 1/8 Cd π d 2 ρ air u

2 D. Terminal velocity can be solved for by equating Fd and Fg Fg = 1/6πd 3 g ρ LIQ = 1/8 Cd π d 2 ρ air u ecture 8 Collection Growth of iquid Hydrometeors. I. Terminal velocity The terminal velocity of an object is the maximum speed an object will accelerate to by gravity. At terminal velocity, a balance of

More information

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is

Consider a volume Ω enclosing a mass M and bounded by a surface δω. d dt. q n ds. The Work done by the body on the surroundings is The Energy Balance Consider a volume enclosing a mass M and bounded by a surface δ. δ At a point x, the density is ρ, the local velocity is v, and the local Energy density is U. U v The rate of change

More information

The linear additivity of the forcings' responses in the energy and water cycles. Nathalie Schaller, Jan Cermak, Reto Knutti and Martin Wild

The linear additivity of the forcings' responses in the energy and water cycles. Nathalie Schaller, Jan Cermak, Reto Knutti and Martin Wild The linear additivity of the forcings' responses in the energy and water cycles Nathalie Schaller, Jan Cermak, Reto Knutti and Martin Wild WCRP OSP, Denver, 27th October 2011 1 Motivation How will precipitation

More information

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 4: Water Vapor Budget

Course , General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 4: Water Vapor Budget Course 12.812, General Circulation of the Earth's Atmosphere Prof. Peter Stone Section 4: Water Vapor Budget Water Vapor Distribution First let us look at the distribution of specific humidity, q. The

More information

Theory. Humidity h of an air-vapor mixture is defined as the mass ratio of water vapor and dry air,

Theory. Humidity h of an air-vapor mixture is defined as the mass ratio of water vapor and dry air, Theory Background In a cooling tower with open water circulation, heat is removed from water because of the material and heat exchange between the water and the ambient air. The cooling tower is a special

More information

Lecture notes: Interception and evapotranspiration

Lecture notes: Interception and evapotranspiration Lecture notes: Interception and evapotranspiration I. Vegetation canopy interception (I c ): Portion of incident precipitation (P) physically intercepted, stored and ultimately evaporated from vegetation

More information

ATMO 551a Homework 2 Solutions Fall r planet orbit

ATMO 551a Homework 2 Solutions Fall r planet orbit 1. Pluto s orbit is far more eccentric than those of the major planets orbits: Aphelion: 7,375,927,931 km Perihelion: 4,436,824,613 km a. Determine the solar flux (watts/m 2 ) at each of these distances.

More information

Radiation, Sensible Heat Flux and Evapotranspiration

Radiation, Sensible Heat Flux and Evapotranspiration Radiation, Sensible Heat Flux and Evapotranspiration Climatological and hydrological field work Figure 1: Estimate of the Earth s annual and global mean energy balance. Over the long term, the incoming

More information

Steady One-Dimensional Diffusion of One Species A through a Second Non-Transferring Species B. z y x. Liquid A

Steady One-Dimensional Diffusion of One Species A through a Second Non-Transferring Species B. z y x. Liquid A Steady One-Dimensional Diffusion of One Species through a Second on-transferring Species B R. Shankar Subramanian Department of Chemical and Biomolecular Engineering Clarkson University Consider a simple

More information

Løsningsforslag: oppgavesett kap. 9 (2 av 3) GEF2200

Løsningsforslag: oppgavesett kap. 9 (2 av 3) GEF2200 Løsningsforslag: oppgavesett kap. 9 (2 av 3) GEF2200 s.m.blichner@geo.uio.no Oppgave 1 a) The turbulent vertical flux of sensible heat (Q H ) in the atmospheric boundary layer often takes place through

More information

Lecture 10: Climate Sensitivity and Feedback

Lecture 10: Climate Sensitivity and Feedback Lecture 10: Climate Sensitivity and Feedback Human Activities Climate Sensitivity Climate Feedback 1 Climate Sensitivity and Feedback (from Earth s Climate: Past and Future) 2 Definition and Mathematic

More information

Mid High Latitude Cirrus Precipitation Processes. Jon Sauer, Dan Crocker, Yanice Benitez

Mid High Latitude Cirrus Precipitation Processes. Jon Sauer, Dan Crocker, Yanice Benitez Mid High Latitude Cirrus Precipitation Processes Jon Sauer, Dan Crocker, Yanice Benitez Department of Chemistry and Biochemistry, University of California, San Diego, CA 92093, USA *To whom correspondence

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Basic Principles Equations of Hydrostatic Equilibrium and Mass Conservation Central Pressure, Virial

More information

1/2/2016 WEATHER DEFINITION

1/2/2016 WEATHER DEFINITION WEATHER DEFINITION Weather state or condition of the variables of the atmosphere at a given time Weather variables temperature, air pressure, wind, moisture, cloud cover, precipitation, storms Weather

More information

First Law of Thermodynamics

First Law of Thermodynamics First Law of Thermodynamics E int = Q + W other state variables E int is a state variable, so only depends on condition (P, V, T, ) of system. Therefore, E int only depends on initial and final states

More information

12. Heat of melting and evaporation of water

12. Heat of melting and evaporation of water VS 12. Heat of melting and evaporation of water 12.1 Introduction The change of the physical state of a substance in general requires the absorption or release of heat. In this case, one speaks of a first

More information

Heat and Mass Transfer Unit-1 Conduction

Heat and Mass Transfer Unit-1 Conduction 1. State Fourier s Law of conduction. Heat and Mass Transfer Unit-1 Conduction Part-A The rate of heat conduction is proportional to the area measured normal to the direction of heat flow and to the temperature

More information

Modeling the Process of Drying Stationary Objects inside a Tumble Dryer Using COMSOL Multiphysics

Modeling the Process of Drying Stationary Objects inside a Tumble Dryer Using COMSOL Multiphysics Presented at the COMSOL Conference 2008 Hannover Modeling the Process of Drying Stationary Objects inside a Tumble Dryer Using COMSOL Multiphysics Tarek H.M. Zeineldin Outline Introduction - Drying processes

More information

2.1 Effects of a cumulus ensemble upon the large scale temperature and moisture fields by induced subsidence and detrainment

2.1 Effects of a cumulus ensemble upon the large scale temperature and moisture fields by induced subsidence and detrainment Atmospheric Sciences 6150 Cloud System Modeling 2.1 Effects of a cumulus ensemble upon the large scale temperature and moisture fields by induced subsidence and detrainment Arakawa (1969, 1972), W. Gray

More information

CHAPTER 8 ENTROPY. Blank

CHAPTER 8 ENTROPY. Blank CHAPER 8 ENROPY Blank SONNAG/BORGNAKKE SUDY PROBLEM 8-8. A heat engine efficiency from the inequality of Clausius Consider an actual heat engine with efficiency of η working between reservoirs at and L.

More information

Introduction to Mass Transfer

Introduction to Mass Transfer Introduction to Mass Transfer Introduction Three fundamental transfer processes: i) Momentum transfer ii) iii) Heat transfer Mass transfer Mass transfer may occur in a gas mixture, a liquid solution or

More information

Meteorology 6150 Cloud System Modeling

Meteorology 6150 Cloud System Modeling Meteorology 6150 Cloud System Modeling Steve Krueger Spring 2009 1 Fundamental Equations 1.1 The Basic Equations 1.1.1 Equation of motion The movement of air in the atmosphere is governed by Newton s Second

More information

R13 SET - 1 '' ''' '' ' '''' Code No RT21033

R13 SET - 1 '' ''' '' ' '''' Code No RT21033 SET - 1 II B. Tech I Semester Supplementary Examinations, June - 2015 THERMODYNAMICS (Com. to ME, AE, AME) Time: 3 hours Max. Marks: 70 Note: 1. Question Paper consists of two parts (Part-A and Part-B)

More information

1. Heterogeneous Systems and Chemical Equilibrium

1. Heterogeneous Systems and Chemical Equilibrium 1. Heterogeneous Systems and Chemical Equilibrium The preceding section involved only single phase systems. For it to be in thermodynamic equilibrium, a homogeneous system must be in thermal equilibrium

More information

Examination Heat Transfer

Examination Heat Transfer Examination Heat Transfer code: 4B680 date: 17 january 2006 time: 14.00-17.00 hours NOTE: There are 4 questions in total. The first one consists of independent sub-questions. If necessary, guide numbers

More information

Melting of ice particles:

Melting of ice particles: Melting of ice particles: When ice particles fall below 0 C they begin to melt, but the process takes some time since heat transfer needs to occur (heat from ambient environment has to supply the latent

More information

Temp 54 Dew Point 41 Relative Humidity 63%

Temp 54 Dew Point 41 Relative Humidity 63% Temp 54 Dew Point 41 Relative Humidity 63% Water in the Atmosphere Evaporation Water molecules change from the liquid to gas phase Molecules in liquids move slowly Heat energy makes them move faster When

More information

Atmospheric Composition הרכב האטמוספירה

Atmospheric Composition הרכב האטמוספירה Atmospheric Composition הרכב האטמוספירה N 2 O 2 Trace Gases Water Vapor (H 2 O) Argon (Ar) Carbon Dioxide (CO 2 ) Neon (Ne) Helium (He) Methane (CH 4 ) Nitrous Oxide (N 2 O) Ozone (O 3 ) Nitrogen and oxygen

More information

One-dimensional Spray Combustion Optimization with a Sequential Linear Quadratic Algorithm

One-dimensional Spray Combustion Optimization with a Sequential Linear Quadratic Algorithm One-dimensional Spray Combustion Optimization with a Sequential Linear Quadratic Algorithm Justin A. Sirignano, Luis Rodriguez, Athanasios Sideris, and William A. Sirignano Department of Mechanical and

More information

A CONVENIENT NUCLEUS PARAMETER FOR CONSIDERATIONS OF DROPLET GROWTH

A CONVENIENT NUCLEUS PARAMETER FOR CONSIDERATIONS OF DROPLET GROWTH A CONVENIENT NUCLEUS PARAMETER FOR CONSIDERATIONS OF DROPLET GROWTH by E. X BERRY Desert Research Institute, Reno, Nevada, U.S.A. RESUME La quantite r 0 est definie comme le rayon d'une gouttelette quand

More information

Radiative-Convective Models. The Hydrological Cycle Hadley Circulation. Manabe and Strickler (1964) Course Notes chapter 5.1

Radiative-Convective Models. The Hydrological Cycle Hadley Circulation. Manabe and Strickler (1964) Course Notes chapter 5.1 Climate Modeling Lecture 8 Radiative-Convective Models Manabe and Strickler (1964) Course Notes chapter 5.1 The Hydrological Cycle Hadley Circulation Prepare for Mid-Term (Friday 9 am) Review Course Notes

More information

3.1and 3.2 Thermal. Rise in temperature in deg C Final temperature in C A B C D

3.1and 3.2 Thermal. Rise in temperature in deg C Final temperature in C A B C D Name: Date: 3.1and 3.2 Thermal 1. During an experiment, a solid is heated from 285 K to 298 K. Which one of the following gives the rise in temperature, in deg C, and the final temperature, in C, of the

More information

WUFI Workshop at NTNU /SINTEF Fundamentals

WUFI Workshop at NTNU /SINTEF Fundamentals WUFI Workshop at NTNU /SINTEF 2008 Fundamentals Contents: From steady-state to transient Heat storage and -transport Moisture storage and -transport Calculation of coupled transport Model limitations 2

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 21 Psychometric Processes Good afternoon, yesterday we

More information

An alternative, less empirical approach (though still full of brazen assumptions) is the following:

An alternative, less empirical approach (though still full of brazen assumptions) is the following: ERTH 500: More Notes on Final Project: Dr. Dave Dempsey Earth Systems II Modeling the Dept. of (Spring 2016) Cenozoic Icehouse Earth Earth & Climate Sciences More notes on Upslope/Monsoon Precipitation

More information

PROBLEM 14.6 ( )( ) (b) Applying a species balance to a control volume about the hydrogen, dt 6 dt 6RAT dt 6RT dt

PROBLEM 14.6 ( )( ) (b) Applying a species balance to a control volume about the hydrogen, dt 6 dt 6RAT dt 6RT dt PROBLEM 14.6 KNOWN: Pressure and temperature of hydrogen stored in a spherical steel tank of prescribed diameter and thickness. FIND: (a) Initial rate of hydrogen mass loss from the tank, (b) Initial rate

More information

Quasi-equilibrium transitions

Quasi-equilibrium transitions Quasi-equilibrium transitions We have defined a two important equilibrium conditions. he first is one in which there is no heating, or the system is adiabatic, and dh/ =0, where h is the total enthalpy

More information

Module 8: BoiIing Lecture 34: Analysis of Bubble Formation on a Heated Wall. The Lecture Contains: Bubble Growth with Heat and Mass Transfer

Module 8: BoiIing Lecture 34: Analysis of Bubble Formation on a Heated Wall. The Lecture Contains: Bubble Growth with Heat and Mass Transfer The Lecture Contains: Bubble Growth with Heat and Mass Transfer Simple Analysis of Bubble Growth in a Uniform Temperature Field file:///d /Web%20Course%20(Ganesh%20Rana)/Dr.%20gautam%20biswas/Final/convective_heat_and_mass_transfer/lecture34/34_1.html[12/24/2014

More information

( ) = 1005 J kg 1 K 1 ;

( ) = 1005 J kg 1 K 1 ; Problem Set 3 1. A parcel of water is added to the ocean surface that is denser (heavier) than any of the waters in the ocean. Suppose the parcel sinks to the ocean bottom; estimate the change in temperature

More information

Warm Cloud Processes. Some definitions. Two ways to make big drops: Effects of cloud condensation nuclei

Warm Cloud Processes. Some definitions. Two ways to make big drops: Effects of cloud condensation nuclei Warm Cloud Processes Dr. Christopher M. Godfrey University of North Carolina at Asheville Warm clouds lie completely below the 0 isotherm 0 o C Some definitions Liquid water content (LWC) Amount of liquid

More information

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air Precipitation Processes METR 2011 Introduction In order to grow things on earth, they need water. The way that the earth naturally irrigates is through snowfall and rainfall. Therefore, it is important

More information

Aircraft Icing Icing Physics

Aircraft Icing Icing Physics Aircraft Icing Icing Physics Prof. Dr. Dept. Aerospace Engineering, METU Fall 2015 Outline Formation of ice in the atmosphere Supercooled water droplets Mechanism of aircraft icing Icing variations Ice

More information

Physics 5D PRACTICE FINAL EXAM Fall 2013

Physics 5D PRACTICE FINAL EXAM Fall 2013 Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =

More information

Introduction to Heat and Mass Transfer. Week 5

Introduction to Heat and Mass Transfer. Week 5 Introduction to Heat and Mass Transfer Week 5 Critical Resistance Thermal resistances due to conduction and convection in radial systems behave differently Depending on application, we want to either maximize

More information

New Methods for Measuring Water Desorption and Vapour Permeation Rates in Membranes

New Methods for Measuring Water Desorption and Vapour Permeation Rates in Membranes New Methods for Measuring Water Desorption and Vapour Permeation Rates in Membranes L. I. iortea, D. O Driscoll, E. P. Berg, P. Xiao, F.. Pascut and R. E. Imhof School of Engineering, South Bank University,

More information

Chapiter VII: Ionization chamber

Chapiter VII: Ionization chamber Chapiter VII: Ionization chamber 1 Types of ionization chambers Sensitive volume: gas (most often air direct measurement of exposure) ionization chamber Sensitive volume: semiconductor (silicon, germanium,

More information

SAIOH Tutorial Ventilation 1 pressures and basic air flow calculations

SAIOH Tutorial Ventilation 1 pressures and basic air flow calculations SAIOH Tutorial Ventilation 1 pressures and basic air flow calculations Acknowledgement This tutorial was provided by SAIOH as an assessment support aid for prospective candidates. The tutorial is free

More information

Measuring State Parameters of the Atmosphere

Measuring State Parameters of the Atmosphere Measuring State Parameters of the Atmosphere Some Applications of Atmospheric Thermodynamics Earth Observing Laboratory, NCAR IDEAS-4 Tutorial Introduction Goals of This Presentation Present two complementary

More information

5) The amount of heat needed to raise the temperature of 1 gram of a substance by 1 C is called: Page Ref: 69

5) The amount of heat needed to raise the temperature of 1 gram of a substance by 1 C is called: Page Ref: 69 Homework #2 Due 9/19/14 1) If the maximum temperature for a particular day is 26 C and the minimum temperature is 14 C, what would the daily mean temperature be? (Page Ref: 66) 2) How is the annual mean

More information

By ablation we mean the recession of a surface due to heating, usually by a hot gas. It is the key process for

By ablation we mean the recession of a surface due to heating, usually by a hot gas. It is the key process for 16.50 Lecture 15 Subject: Ablative cooling By ablation we mean the recession of a surface due to heating, usually by a hot gas. It is the key process for a) Re-entry heat shields b) Solid propellant nozzles

More information

Physics and Thermodynamics of Water and Ice. Ottmar Möhler

Physics and Thermodynamics of Water and Ice. Ottmar Möhler Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft Physics and Thermodynamics of Water and Ice Ottmar Möhler Institute for Meteorology and Climate Research (IMK-AAF) ESF workshop on Microbiological

More information

Simplified Microphysics. condensation evaporation. evaporation

Simplified Microphysics. condensation evaporation. evaporation Simplified Microphysics water vapor condensation evaporation cloud droplets evaporation condensation collection rain drops fall out (precipitation) = 0 (reversible) = (irreversible) Simplified Microphysics

More information