A Framework for Modeling Positive Class Expansion with Single Snapshot

Size: px
Start display at page:

Download "A Framework for Modeling Positive Class Expansion with Single Snapshot"

Transcription

1 A Framework for Modeling Positive Class Expansion with Single Snapshot Yang Yu and Zhi-Hua Zhou LAMDA Group National Key Laboratory for Novel Software Technology Nanjing University, China

2 Motivating task 1G evolution of mobile telecom network 2G 3G

3 Motivating task 1G evolution of mobile telecom network 2G we are at the moment of moving towards 3G 3G

4 Motivating task 1G evolution of mobile telecom network 2G we are at the moment of moving towards 3G 3G predict the 2G users that will turn to use 3G

5 Analysis of the task event: 2G starts 2G dominates 3G starts 3G dominates time line:

6 Analysis of the task event: 2G starts 2G dominates 3G starts 3G dominates time line: class distribution:

7 Analysis of the task event: 2G starts 2G dominates 3G starts 3G dominates time line: class distribution: when we train the model what we want to predict

8 Analysis of the task event: 2G starts 2G dominates 3G starts 3G dominates time line: class distribution: when we train the model what we want to predict positive class expansion with single snapshot (PCES) problem

9 Outline A new data mining problem: PCES Why we need the PCES problem A solution to the PCES problem Results Conclusion

10 Outline A new data mining problem: PCES Why we need the PCES problem A solution to the PCES problem Results Conclusion

11 Formulation of classical learning i.i.d. instances training set D { x } n i i fixed labeling function a learning algorithm outputs a function 1 drawn from a distribution py ( x) f ˆ(; D, p( y x)) to minimize: errˆ L(ˆ( f x; D, p( y x)), py ( x) ) f ( ; D, p( y x)) x~ can not model a changing labeling function

12 Formulation of PCES labeling function labeling function p ( y x ) tr p ( y x ) te at training time at testing time a learning algorithm outputs a function fˆ(; D, ptr ( y x )) to minimize: errˆ L ˆ(, ) ( ;, ( )) ~ ( f x ; Dp f D p, t ( y y r x )) pt e ( y x x x ) with a constraint: x ~ : p ( y y x) p ( y y x) te t tr t for convenience, we assume: y { 1, 1}, x ~ : p ( y 1 x) p ( y 1 x) te tr

13 Another example positive class: hot items negative class: not hot items

14 Another example positive class: hot items negative class: not hot items the positive class is expanding, only one snapshot the PCES problem

15 Further example positive class: hot items negative class: not hot items

16 Further example positive class: hot items negative class: not hot items the positive class is expanding, only one snapshot the PCES problem

17 Outline A new data mining problem: PCES Why we need the PCES problem A solution to the PCES problem Results Conclusion

18 Related learning frameworks PU-Learning (learning with positive and unlabeled data) Concept drift Covariance shift

19 PU-Learning Setting: only positive instances and unlabeled instances are in the training data Assumption: the positive instances are representatives of the positive class concept [Liu et al, ICML02][Yu et al, KDD02] PCES: positive class is in expansion PU-Learning could not catch expanded class concept

20 Concept Drift Setting: instances are coming sequentially batch by batch, the target concept may change in the coming batch Assumption: a series of data samples are available for drift detection [Klinkenberg & Joachims, ICDM00][Kolter & Maloof, ICML03] PCES: only a single snapshot is available concept drift approaches are disabled

21 Covariance Shift (or sample selection bias [Shimodaira, JSPI00]) Setting: training and test instances are drawn from different distributions, i.e., Assumption: the labeling function p( x) is in changing py ( x) is fixed p( x ) py ( x) PCES: is fixed but is in change covariance shift approaches are disabled

22 Outline A new data mining problem: PCES Why we need the PCES problem A solution to the PCES problem Results Conclusion

23 The proposed approach Learn from pure data Incorporate preference bias Combined objective Optimized by SGBDota

24 Learn from pure data Observation: a desired leaner ranks positive training instances higher than negative training instances exactly expressed by the AUC (area under ROC) criterion: 1 L () f 1 I( f( x ) f( x )) auc D D x D x D

25 Learn from pure data smoothed loss function: L a uc ( f ) 1 D 1 D x D x D (1 e ) ( f ( x ) f ( x )) 1 instance-wise loss function: L auc ( f, x) D 1 D x x D D (1 e ) ( f( x) f( x )) 1 (1 e ) ( f( x ) f( x)) 1 x x D D

26 Incorporate preference bias User can provide preferences by indicating preferences on randomly sampled instance pairs applying a priori rules that indicate the preferences In either way, we can have a preference function 1, x is prefered k( x, x ) 1, x is prefered a b a b 0, equal or unknown Loss function L pref ( f ) 1 1 D 2 x a D x b D I ( f ( x ) f ( x )) k( x, x ) a b a b

27 Incorporate preference bias smoothed loss function 1 L ( 1 1 p ref f e 2 D x D x ( f ( x ) f ( x )) k( x, x ) ) a b a b a b D 1 instance-wise loss function L pref ( f, x) 1 1 D x a D 1 e ( f( x) f( x )) k( x, x ) a a 1

28 Combine the two objectives the combined loss function L ( f ) L ( f ) L ( f ) auc pref the learning problem thus is fˆ arg minl ( f ) arg min L ( f ) L ( f) f f auc pref

29 Optimization Gradient Boosting [Friedman, AnnStat01, CSDA02] * f L f x y f x x arg min ( ( ), ) T F( x) h( x; ) t 0 t t ( t t L F (, ) t 1, ) arg min ( h(; )) t arg min h( x; ) Lf ( ( x)) f ( x) x D f( x) F ( x) t 1 2 arg min LF ( h(; )) t t 1 t

30 Optimization Gradient Boosting [Friedman, AnnStat01, CSDA02] * f L f x y f x x arg min ( ( ), ) T F( x) h( x; ) t 0 t t t arg min Gradient Boosting fits y, but we need to ( t t L F (, ) t 1 h( x; ), ) arg min ( h(; )) Lf ( ( x)) f ( x) x D f( x) F ( x) fit both y and k t 1 2 arg min LF ( h(; )) t t 1 t

31 Optimization with double targets SGBDota (Stochastic Gradient Boosting with DOuble TArgets) T * f arg m in L ( f) L ( f ) F x) h ( x; ) h ( x f auc pref t,1 1 t,1 t,2 2 t, 2 t 0 ( ( ; )) (, g min (; ) ( )),, ) ar L( F h h ; t,1 t,1 t,2 t, 2 (,,, ) t t,1 t,2 arg min h( x; ) x D arg min h( x; ) x D L L auc ( f( x)) f ( x) pref ( f( x)) f ( x) f( x) F ( x) t 1 f( x) F ( x) t (, ) t,1 t,2 arg min LF ( (, ) 1 2 h (; ) h (; )) t t,1 2 2 t,2

32 SGBDota Learn from pure data Incorporate preference bias Combined objective Optimize by SGBDota

33 Outline A new data mining problem: PCES Why we need the PCES problem A solution to the PCES problem Results Conclusion

34 Data Sets A synthetic data set + 4 UCI data sets postoperative segment veteran pbc Evaluation method 2/3 as the training data, 1/3 as test data repeated for 20 times random splits

35 Data Sets con t Dataset name: postoperative description: patient state after operation original classes: ICU, general hospital floor, prepare to go home Positive class for training ICU Positive class for testing ICU + general hospital floor some patients in general hospital floor will be sent to ICU

36 Data Sets con t Dataset name: segment description: outdoor images original classes: brickface, sky, cement, window, path, foliage, and grass Positive class for training grass Positive class for testing grass + foliage + path moving focus

37 Data Sets con t Dataset name: veteran description: lung cancer trial data original class: survival time Positive class for training survival time < 12 hours Positive class for testing survival time < 24 hours predict future victims

38 Data Sets con t Dataset name: pbc description: primary biliary cirrhosis trial data original class: living time Positive class for training living time < 365 days Positive class for testing living time < 1460 days predict future victims

39 Comparing Methods The only one approach for PCES GetEnsemble A classical learning approach Random Forests A PU-Learning approach PU-SVM A degenerate version: which does not use domain knowledge SGBAUC An easy approach Random guess

40 SGBDota Configuration for UCI datasets, we try three preferences the first two are reasonable for most tasks SGBDota-1: positive class expands from dense positive area to sparse positive area SGBDota-2: positive class expands from dense positive area to sparse positive area and sparse negative area SGBDota-3: positive class expands along with the neighborhoods linearly

41 Result on Synthetic Data

42 Result on Synthetic Data

43 Result on Synthetic Data Random Forests PU-SVM SGBAUC SGBDota-1

44 Result on Synthetic Data Random Forests PU-SVM SGBAUC SGBDota-1

45 Result on Synthetic Data Random Forests PU-SVM SGBAUC SGBDota-1

46 Results on UCI data sets using the first two preferences AUC values of SGBDota, Random forests (RF), PU-SVM, SGBAUC and Random Dataset SGBDota-1 SGBDota-2 GetEnsemble SGBAUC PU-SVM RF Random posto.470± ± ± ± ± ± ±.148 segment.821± ± ± ± ± ± ±.018 veteran.658± ± ± ± ± ± ±.069 pbc.721± ± ± ± ± ± ±.043 t-test results (win/tie/loss counts) GetEnsemble SGBAUC PU-SVM RF Random SGBDota-1 2/2/0 2/2/0 1/3/0 1/3/0 3/1/0 SGBDota-2 2/2/0 2/2/0 2/2/0 2/2/0 3/1/0 SGBDota with reasonable preference is better

47 Results on UCI data sets How about using a less reasonable preference? AUC values of SGBDota, Random forests (RF), PU-SVM, SGBAUC and Random Dataset SGBDota-3 GetEnsemble SGBAUC PU-SVM RF Random posto.459± ± ± ± ± ±.148 segment.744± ± ± ± ± ±.018 veteran.544± ± ± ± ± ±.069 pbc.638± ± ± ± ± ±.043 t-test results (win/tie/loss counts) GetEnsemble SGBAUC PU-SVM RF Random SGBDota-3 0/2/2 0/2/2 0/2/2 0/2/2 2/2/0 The preference must not be misleading

48 Outline A new data mining problem: PCES Why we need the PCES problem A solution to the PCES problem Results Conclusion

49 Conclusions Main contribution A new data mining problem: PCES exists in many real world applications not well handled by current techniques An initial solution Feature work better solutions real applications

50 THANK YOU

Online Manifold Regularization: A New Learning Setting and Empirical Study

Online Manifold Regularization: A New Learning Setting and Empirical Study Online Manifold Regularization: A New Learning Setting and Empirical Study Andrew B. Goldberg 1, Ming Li 2, Xiaojin Zhu 1 1 Computer Sciences, University of Wisconsin Madison, USA. {goldberg,jerryzhu}@cs.wisc.edu

More information

On Multi-Class Cost-Sensitive Learning

On Multi-Class Cost-Sensitive Learning On Multi-Class Cost-Sensitive Learning Zhi-Hua Zhou and Xu-Ying Liu National Laboratory for Novel Software Technology Nanjing University, Nanjing 210093, China {zhouzh, liuxy}@lamda.nju.edu.cn Abstract

More information

On Multi-Class Cost-Sensitive Learning

On Multi-Class Cost-Sensitive Learning On Multi-Class Cost-Sensitive Learning Zhi-Hua Zhou, Xu-Ying Liu National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China {zhouzh, liuxy}@lamda.nju.edu.cn Abstract

More information

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views

A Randomized Approach for Crowdsourcing in the Presence of Multiple Views A Randomized Approach for Crowdsourcing in the Presence of Multiple Views Presenter: Yao Zhou joint work with: Jingrui He - 1 - Roadmap Motivation Proposed framework: M2VW Experimental results Conclusion

More information

CS60021: Scalable Data Mining. Large Scale Machine Learning

CS60021: Scalable Data Mining. Large Scale Machine Learning J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org 1 CS60021: Scalable Data Mining Large Scale Machine Learning Sourangshu Bhattacharya Example: Spam filtering Instance

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 18, 2016 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Anomaly Detection for the CERN Large Hadron Collider injection magnets

Anomaly Detection for the CERN Large Hadron Collider injection magnets Anomaly Detection for the CERN Large Hadron Collider injection magnets Armin Halilovic KU Leuven - Department of Computer Science In cooperation with CERN 2018-07-27 0 Outline 1 Context 2 Data 3 Preprocessing

More information

Multi-Label Learning with Weak Label

Multi-Label Learning with Weak Label Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence (AAAI-10) Multi-Label Learning with Weak Label Yu-Yin Sun Yin Zhang Zhi-Hua Zhou National Key Laboratory for Novel Software Technology

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

Kernel Methods. Lecture 4: Maximum Mean Discrepancy Thanks to Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, Jiayuan Huang, Arthur Gretton

Kernel Methods. Lecture 4: Maximum Mean Discrepancy Thanks to Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, Jiayuan Huang, Arthur Gretton Kernel Methods Lecture 4: Maximum Mean Discrepancy Thanks to Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, Jiayuan Huang, Arthur Gretton Alexander J. Smola Statistical Machine Learning Program Canberra,

More information

Importance Reweighting Using Adversarial-Collaborative Training

Importance Reweighting Using Adversarial-Collaborative Training Importance Reweighting Using Adversarial-Collaborative Training Yifan Wu yw4@andrew.cmu.edu Tianshu Ren tren@andrew.cmu.edu Lidan Mu lmu@andrew.cmu.edu Abstract We consider the problem of reweighting a

More information

ECE521 week 3: 23/26 January 2017

ECE521 week 3: 23/26 January 2017 ECE521 week 3: 23/26 January 2017 Outline Probabilistic interpretation of linear regression - Maximum likelihood estimation (MLE) - Maximum a posteriori (MAP) estimation Bias-variance trade-off Linear

More information

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday!

Case Study 1: Estimating Click Probabilities. Kakade Announcements: Project Proposals: due this Friday! Case Study 1: Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD Machine Learning for Big Data CSE547/STAT548, University of Washington Sham Kakade April 4, 017 1 Announcements:

More information

Classification Ensemble That Maximizes the Area Under Receiver Operating Characteristic Curve (AUC)

Classification Ensemble That Maximizes the Area Under Receiver Operating Characteristic Curve (AUC) Classification Ensemble That Maximizes the Area Under Receiver Operating Characteristic Curve (AUC) Eunsik Park 1 and Y-c Ivan Chang 2 1 Chonnam National University, Gwangju, Korea 2 Academia Sinica, Taipei,

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 27, 2015 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Machine Learning Linear Classification. Prof. Matteo Matteucci

Machine Learning Linear Classification. Prof. Matteo Matteucci Machine Learning Linear Classification Prof. Matteo Matteucci Recall from the first lecture 2 X R p Regression Y R Continuous Output X R p Y {Ω 0, Ω 1,, Ω K } Classification Discrete Output X R p Y (X)

More information

Introduction to Logistic Regression

Introduction to Logistic Regression Introduction to Logistic Regression Guy Lebanon Binary Classification Binary classification is the most basic task in machine learning, and yet the most frequent. Binary classifiers often serve as the

More information

Machine Learning for NLP

Machine Learning for NLP Machine Learning for NLP Linear Models Joakim Nivre Uppsala University Department of Linguistics and Philology Slides adapted from Ryan McDonald, Google Research Machine Learning for NLP 1(26) Outline

More information

Ensemble Methods. Charles Sutton Data Mining and Exploration Spring Friday, 27 January 12

Ensemble Methods. Charles Sutton Data Mining and Exploration Spring Friday, 27 January 12 Ensemble Methods Charles Sutton Data Mining and Exploration Spring 2012 Bias and Variance Consider a regression problem Y = f(x)+ N(0, 2 ) With an estimate regression function ˆf, e.g., ˆf(x) =w > x Suppose

More information

GRADIENT DESCENT AND LOCAL MINIMA

GRADIENT DESCENT AND LOCAL MINIMA GRADIENT DESCENT AND LOCAL MINIMA 25 20 5 15 10 3 2 1 1 2 5 2 2 4 5 5 10 Suppose for both functions above, gradient descent is started at the point marked red. It will walk downhill as far as possible,

More information

RaRE: Social Rank Regulated Large-scale Network Embedding

RaRE: Social Rank Regulated Large-scale Network Embedding RaRE: Social Rank Regulated Large-scale Network Embedding Authors: Yupeng Gu 1, Yizhou Sun 1, Yanen Li 2, Yang Yang 3 04/26/2018 The Web Conference, 2018 1 University of California, Los Angeles 2 Snapchat

More information

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING

EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING EXAM IN STATISTICAL MACHINE LEARNING STATISTISK MASKININLÄRNING DATE AND TIME: June 9, 2018, 09.00 14.00 RESPONSIBLE TEACHER: Andreas Svensson NUMBER OF PROBLEMS: 5 AIDING MATERIAL: Calculator, mathematical

More information

Ad Placement Strategies

Ad Placement Strategies Case Study : Estimating Click Probabilities Intro Logistic Regression Gradient Descent + SGD AdaGrad Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox January 7 th, 04 Ad

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Example Regression Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict

More information

On Appropriate Assumptions to Mine Data Streams: Analysis and Practice

On Appropriate Assumptions to Mine Data Streams: Analysis and Practice On Appropriate Assumptions to Mine Data Streams: Analysis and Practice Jing Gao Wei Fan Jiawei Han University of Illinois at Urbana-Champaign IBM T. J. Watson Research Center jinggao3@uiuc.edu, weifan@us.ibm.com,

More information

Linear Models for Regression CS534

Linear Models for Regression CS534 Linear Models for Regression CS534 Prediction Problems Predict housing price based on House size, lot size, Location, # of rooms Predict stock price based on Price history of the past month Predict the

More information

Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection

Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection Sparse Gaussian Markov Random Field Mixtures for Anomaly Detection Tsuyoshi Idé ( Ide-san ), Ankush Khandelwal*, Jayant Kalagnanam IBM Research, T. J. Watson Research Center (*Currently with University

More information

Research Overview. Kristjan Greenewald. February 2, University of Michigan - Ann Arbor

Research Overview. Kristjan Greenewald. February 2, University of Michigan - Ann Arbor Research Overview Kristjan Greenewald University of Michigan - Ann Arbor February 2, 2016 2/17 Background and Motivation Want efficient statistical modeling of high-dimensional spatio-temporal data with

More information

On the Consistency of AUC Pairwise Optimization

On the Consistency of AUC Pairwise Optimization On the Consistency of AUC Pairwise Optimization Wei Gao and Zhi-Hua Zhou National Key Laboratory for Novel Software Technology, Nanjing University Collaborative Innovation Center of Novel Software Technology

More information

Top-k Parametrized Boost

Top-k Parametrized Boost Top-k Parametrized Boost Turki Turki 1,4, Muhammad Amimul Ihsan 2, Nouf Turki 3, Jie Zhang 4, Usman Roshan 4 1 King Abdulaziz University P.O. Box 80221, Jeddah 21589, Saudi Arabia tturki@kau.edu.sa 2 Department

More information

Instance-based Domain Adaptation

Instance-based Domain Adaptation Instance-based Domain Adaptation Rui Xia School of Computer Science and Engineering Nanjing University of Science and Technology 1 Problem Background Training data Test data Movie Domain Sentiment Classifier

More information

Regularization Algorithms for Learning

Regularization Algorithms for Learning DISI, UNIGE Texas, 10/19/07 plan motivation setting elastic net regularization - iterative thresholding algorithms - error estimates and parameter choice applications motivations starting point of many

More information

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines

CS6375: Machine Learning Gautam Kunapuli. Support Vector Machines Gautam Kunapuli Example: Text Categorization Example: Develop a model to classify news stories into various categories based on their content. sports politics Use the bag-of-words representation for this

More information

Incorporating Boosted Regression Trees into Ecological Latent Variable Models

Incorporating Boosted Regression Trees into Ecological Latent Variable Models Incorporating Boosted Regression Trees into Ecological Latent Variable Models Rebecca A. Hutchinson, Li-Ping Liu, Thomas G. Dietterich School of EECS, Oregon State University Motivation Species Distribution

More information

Gradient Boosting (Continued)

Gradient Boosting (Continued) Gradient Boosting (Continued) David Rosenberg New York University April 4, 2016 David Rosenberg (New York University) DS-GA 1003 April 4, 2016 1 / 31 Boosting Fits an Additive Model Boosting Fits an Additive

More information

Learning theory. Ensemble methods. Boosting. Boosting: history

Learning theory. Ensemble methods. Boosting. Boosting: history Learning theory Probability distribution P over X {0, 1}; let (X, Y ) P. We get S := {(x i, y i )} n i=1, an iid sample from P. Ensemble methods Goal: Fix ɛ, δ (0, 1). With probability at least 1 δ (over

More information

Statistical Machine Learning from Data

Statistical Machine Learning from Data Samy Bengio Statistical Machine Learning from Data 1 Statistical Machine Learning from Data Ensembles Samy Bengio IDIAP Research Institute, Martigny, Switzerland, and Ecole Polytechnique Fédérale de Lausanne

More information

Lecture 3: Introduction to Complexity Regularization

Lecture 3: Introduction to Complexity Regularization ECE90 Spring 2007 Statistical Learning Theory Instructor: R. Nowak Lecture 3: Introduction to Complexity Regularization We ended the previous lecture with a brief discussion of overfitting. Recall that,

More information

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College

Distributed Estimation, Information Loss and Exponential Families. Qiang Liu Department of Computer Science Dartmouth College Distributed Estimation, Information Loss and Exponential Families Qiang Liu Department of Computer Science Dartmouth College Statistical Learning / Estimation Learning generative models from data Topic

More information

Batch Mode Sparse Active Learning. Lixin Shi, Yuhang Zhao Tsinghua University

Batch Mode Sparse Active Learning. Lixin Shi, Yuhang Zhao Tsinghua University Batch Mode Sparse Active Learning Lixin Shi, Yuhang Zhao Tsinghua University Our work Propose an unified framework of batch mode active learning Instantiate the framework using classifiers based on sparse

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING. Non-linear regression techniques Part - II 1 Non-linear regression techniques Part - II Regression Algorithms in this Course Support Vector Machine Relevance Vector Machine Support vector regression Boosting random projections Relevance vector

More information

Empirical Risk Minimization, Model Selection, and Model Assessment

Empirical Risk Minimization, Model Selection, and Model Assessment Empirical Risk Minimization, Model Selection, and Model Assessment CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 5.7-5.7.2.4, 6.5-6.5.3.1 Dietterich,

More information

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices

A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices A Fast Augmented Lagrangian Algorithm for Learning Low-Rank Matrices Ryota Tomioka 1, Taiji Suzuki 1, Masashi Sugiyama 2, Hisashi Kashima 1 1 The University of Tokyo 2 Tokyo Institute of Technology 2010-06-22

More information

Sample Complexity of Learning Mahalanobis Distance Metrics. Nakul Verma Janelia, HHMI

Sample Complexity of Learning Mahalanobis Distance Metrics. Nakul Verma Janelia, HHMI Sample Complexity of Learning Mahalanobis Distance Metrics Nakul Verma Janelia, HHMI feature 2 Mahalanobis Metric Learning Comparing observations in feature space: x 1 [sq. Euclidean dist] x 2 (all features

More information

arxiv: v1 [cs.lg] 15 Aug 2017

arxiv: v1 [cs.lg] 15 Aug 2017 Theoretical Foundation of Co-Training and Disagreement-Based Algorithms arxiv:1708.04403v1 [cs.lg] 15 Aug 017 Abstract Wei Wang, Zhi-Hua Zhou National Key Laboratory for Novel Software Technology, Nanjing

More information

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm

Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm Qiang Liu and Dilin Wang NIPS 2016 Discussion by Yunchen Pu March 17, 2017 March 17, 2017 1 / 8 Introduction Let x R d

More information

Survival models and health sequences

Survival models and health sequences Survival models and health sequences Walter Dempsey University of Michigan July 27, 2015 Survival Data Problem Description Survival data is commonplace in medical studies, consisting of failure time information

More information

Electrical and Computer Engineering Department University of Waterloo Canada

Electrical and Computer Engineering Department University of Waterloo Canada Predicting a Biological Response of Molecules from Their Chemical Properties Using Diverse and Optimized Ensembles of Stochastic Gradient Boosting Machine By Tarek Abdunabi and Otman Basir Electrical and

More information

Cross Validation & Ensembling

Cross Validation & Ensembling Cross Validation & Ensembling Shan-Hung Wu shwu@cs.nthu.edu.tw Department of Computer Science, National Tsing Hua University, Taiwan Machine Learning Shan-Hung Wu (CS, NTHU) CV & Ensembling Machine Learning

More information

Midterm. Introduction to Machine Learning. CS 189 Spring Please do not open the exam before you are instructed to do so.

Midterm. Introduction to Machine Learning. CS 189 Spring Please do not open the exam before you are instructed to do so. CS 89 Spring 07 Introduction to Machine Learning Midterm Please do not open the exam before you are instructed to do so. The exam is closed book, closed notes except your one-page cheat sheet. Electronic

More information

Fundamentals of Machine Learning

Fundamentals of Machine Learning Fundamentals of Machine Learning Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://icapeople.epfl.ch/mekhan/ emtiyaz@gmail.com Jan 2, 27 Mohammad Emtiyaz Khan 27 Goals Understand (some) fundamentals of Machine

More information

Machine learning - HT Basis Expansion, Regularization, Validation

Machine learning - HT Basis Expansion, Regularization, Validation Machine learning - HT 016 4. Basis Expansion, Regularization, Validation Varun Kanade University of Oxford Feburary 03, 016 Outline Introduce basis function to go beyond linear regression Understanding

More information

Stochastic optimization in Hilbert spaces

Stochastic optimization in Hilbert spaces Stochastic optimization in Hilbert spaces Aymeric Dieuleveut Aymeric Dieuleveut Stochastic optimization Hilbert spaces 1 / 48 Outline Learning vs Statistics Aymeric Dieuleveut Stochastic optimization Hilbert

More information

Scaling Neighbourhood Methods

Scaling Neighbourhood Methods Quick Recap Scaling Neighbourhood Methods Collaborative Filtering m = #items n = #users Complexity : m * m * n Comparative Scale of Signals ~50 M users ~25 M items Explicit Ratings ~ O(1M) (1 per billion)

More information

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc.

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Harsha Veeramachaneni Thomson Reuter Research and Development April 1, 2010 Harsha Veeramachaneni (TR R&D) Logistic Regression April 1, 2010

More information

Large-scale Collaborative Ranking in Near-Linear Time

Large-scale Collaborative Ranking in Near-Linear Time Large-scale Collaborative Ranking in Near-Linear Time Liwei Wu Depts of Statistics and Computer Science UC Davis KDD 17, Halifax, Canada August 13-17, 2017 Joint work with Cho-Jui Hsieh and James Sharpnack

More information

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines

CS4495/6495 Introduction to Computer Vision. 8C-L3 Support Vector Machines CS4495/6495 Introduction to Computer Vision 8C-L3 Support Vector Machines Discriminative classifiers Discriminative classifiers find a division (surface) in feature space that separates the classes Several

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

Iterative Laplacian Score for Feature Selection

Iterative Laplacian Score for Feature Selection Iterative Laplacian Score for Feature Selection Linling Zhu, Linsong Miao, and Daoqiang Zhang College of Computer Science and echnology, Nanjing University of Aeronautics and Astronautics, Nanjing 2006,

More information

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2003, d-side publi., ISBN X, pp.

ESANN'2003 proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), April 2003, d-side publi., ISBN X, pp. On different ensembles of kernel machines Michiko Yamana, Hiroyuki Nakahara, Massimiliano Pontil, and Shun-ichi Amari Λ Abstract. We study some ensembles of kernel machines. Each machine is first trained

More information

New Class Adaptation via Instance Generation in One-Pass Class Incremental Learning

New Class Adaptation via Instance Generation in One-Pass Class Incremental Learning New Class Adaptation via Instance Generation in One-Pass Class Incremental Learning Yue Zhu 1, Kai-Ming Ting, Zhi-Hua Zhou 1 1 National Key Laboratory for Novel Software Technology, Nanjing University,

More information

What is semi-supervised learning?

What is semi-supervised learning? What is semi-supervised learning? In many practical learning domains, there is a large supply of unlabeled data but limited labeled data, which can be expensive to generate text processing, video-indexing,

More information

The Naïve Bayes Classifier. Machine Learning Fall 2017

The Naïve Bayes Classifier. Machine Learning Fall 2017 The Naïve Bayes Classifier Machine Learning Fall 2017 1 Today s lecture The naïve Bayes Classifier Learning the naïve Bayes Classifier Practical concerns 2 Today s lecture The naïve Bayes Classifier Learning

More information

WALD LECTURE II LOOKING INSIDE THE BLACK BOX. Leo Breiman UCB Statistics

WALD LECTURE II LOOKING INSIDE THE BLACK BOX. Leo Breiman UCB Statistics 1 WALD LECTURE II LOOKING INSIDE THE BLACK BOX Leo Breiman UCB Statistics leo@stat.berkeley.edu ORIGIN OF BLACK BOXES 2 Statistics uses data to explore problems. Think of the data as being generated by

More information

Maximum Mean Discrepancy

Maximum Mean Discrepancy Maximum Mean Discrepancy Thanks to Karsten Borgwardt, Malte Rasch, Bernhard Schölkopf, Jiayuan Huang, Arthur Gretton Alexander J. Smola Statistical Machine Learning Program Canberra, ACT 0200 Australia

More information

A Magiv CV Theory for Large-Margin Classifiers

A Magiv CV Theory for Large-Margin Classifiers A Magiv CV Theory for Large-Margin Classifiers Hui Zou School of Statistics, University of Minnesota June 30, 2018 Joint work with Boxiang Wang Outline 1 Background 2 Magic CV formula 3 Magic support vector

More information

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation

Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Properties of optimizations used in penalized Gaussian likelihood inverse covariance matrix estimation Adam J. Rothman School of Statistics University of Minnesota October 8, 2014, joint work with Liliana

More information

VC dimension, Model Selection and Performance Assessment for SVM and Other Machine Learning Algorithms

VC dimension, Model Selection and Performance Assessment for SVM and Other Machine Learning Algorithms 03/Feb/2010 VC dimension, Model Selection and Performance Assessment for SVM and Other Machine Learning Algorithms Presented by Andriy Temko Department of Electrical and Electronic Engineering Page 2 of

More information

Diagnostics. Gad Kimmel

Diagnostics. Gad Kimmel Diagnostics Gad Kimmel Outline Introduction. Bootstrap method. Cross validation. ROC plot. Introduction Motivation Estimating properties of an estimator. Given data samples say the average. x 1, x 2,...,

More information

9.520 Problem Set 2. Due April 25, 2011

9.520 Problem Set 2. Due April 25, 2011 9.50 Problem Set Due April 5, 011 Note: there are five problems in total in this set. Problem 1 In classification problems where the data are unbalanced (there are many more examples of one class than

More information

Item Recommendation for Emerging Online Businesses

Item Recommendation for Emerging Online Businesses Item Recommendation for Emerging Online Businesses Chun-Ta Lu Sihong Xie Weixiang Shao Lifang He Philip S. Yu University of Illinois at Chicago Presenter: Chun-Ta Lu New Online Businesses Emerge Rapidly

More information

Fundamentals of Machine Learning (Part I)

Fundamentals of Machine Learning (Part I) Fundamentals of Machine Learning (Part I) Mohammad Emtiyaz Khan AIP (RIKEN), Tokyo http://emtiyaz.github.io emtiyaz.khan@riken.jp April 12, 2018 Mohammad Emtiyaz Khan 2018 1 Goals Understand (some) fundamentals

More information

Machine Learning Lecture 7

Machine Learning Lecture 7 Course Outline Machine Learning Lecture 7 Fundamentals (2 weeks) Bayes Decision Theory Probability Density Estimation Statistical Learning Theory 23.05.2016 Discriminative Approaches (5 weeks) Linear Discriminant

More information

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers

Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers Erin Allwein, Robert Schapire and Yoram Singer Journal of Machine Learning Research, 1:113-141, 000 CSE 54: Seminar on Learning

More information

1 [15 points] Frequent Itemsets Generation With Map-Reduce

1 [15 points] Frequent Itemsets Generation With Map-Reduce Data Mining Learning from Large Data Sets Final Exam Date: 15 August 2013 Time limit: 120 minutes Number of pages: 11 Maximum score: 100 points You can use the back of the pages if you run out of space.

More information

Web Search and Text Mining. Learning from Preference Data

Web Search and Text Mining. Learning from Preference Data Web Search and Text Mining Learning from Preference Data Outline Two-stage algorithm, learning preference functions, and finding a total order that best agrees with a preference function Learning ranking

More information

Data Mining und Maschinelles Lernen

Data Mining und Maschinelles Lernen Data Mining und Maschinelles Lernen Ensemble Methods Bias-Variance Trade-off Basic Idea of Ensembles Bagging Basic Algorithm Bagging with Costs Randomization Random Forests Boosting Stacking Error-Correcting

More information

A graph based approach to semi-supervised learning

A graph based approach to semi-supervised learning A graph based approach to semi-supervised learning 1 Feb 2011 Two papers M. Belkin, P. Niyogi, and V Sindhwani. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples.

More information

The Application of Extreme Learning Machine based on Gaussian Kernel in Image Classification

The Application of Extreme Learning Machine based on Gaussian Kernel in Image Classification he Application of Extreme Learning Machine based on Gaussian Kernel in Image Classification Weijie LI, Yi LIN Postgraduate student in College of Survey and Geo-Informatics, tongji university Email: 1633289@tongji.edu.cn

More information

Instance-based Domain Adaptation via Multi-clustering Logistic Approximation

Instance-based Domain Adaptation via Multi-clustering Logistic Approximation Instance-based Domain Adaptation via Multi-clustering Logistic Approximation FENG U, Nanjing University of Science and Technology JIANFEI YU, Singapore Management University RUI IA, Nanjing University

More information

UNSUPERVISED LEARNING

UNSUPERVISED LEARNING UNSUPERVISED LEARNING Topics Layer-wise (unsupervised) pre-training Restricted Boltzmann Machines Auto-encoders LAYER-WISE (UNSUPERVISED) PRE-TRAINING Breakthrough in 2006 Layer-wise (unsupervised) pre-training

More information

Gradient Boosting, Continued

Gradient Boosting, Continued Gradient Boosting, Continued David Rosenberg New York University December 26, 2016 David Rosenberg (New York University) DS-GA 1003 December 26, 2016 1 / 16 Review: Gradient Boosting Review: Gradient Boosting

More information

Class 4: Classification. Quaid Morris February 11 th, 2011 ML4Bio

Class 4: Classification. Quaid Morris February 11 th, 2011 ML4Bio Class 4: Classification Quaid Morris February 11 th, 211 ML4Bio Overview Basic concepts in classification: overfitting, cross-validation, evaluation. Linear Discriminant Analysis and Quadratic Discriminant

More information

1162 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 5, SEPTEMBER The Evidence Framework Applied to Support Vector Machines

1162 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 5, SEPTEMBER The Evidence Framework Applied to Support Vector Machines 1162 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 5, SEPTEMBER 2000 Brief Papers The Evidence Framework Applied to Support Vector Machines James Tin-Yau Kwok Abstract In this paper, we show that

More information

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr.

Computer Science, Informatik 4 Communication and Distributed Systems. Simulation. Discrete-Event System Simulation. Dr. Simulation Discrete-Event System Simulation Chapter 0 Output Analysis for a Single Model Purpose Objective: Estimate system performance via simulation If θ is the system performance, the precision of the

More information

Bias Correction in Classification Tree Construction ICML 2001

Bias Correction in Classification Tree Construction ICML 2001 Bias Correction in Classification Tree Construction ICML 21 Alin Dobra Johannes Gehrke Department of Computer Science Cornell University December 15, 21 Classification Tree Construction Outlook Temp. Humidity

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Ad Placement Strategies

Ad Placement Strategies Case Study 1: Estimating Click Probabilities Tackling an Unknown Number of Features with Sketching Machine Learning for Big Data CSE547/STAT548, University of Washington Emily Fox 2014 Emily Fox January

More information

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center

Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center Distance Metric Learning in Data Mining (Part II) Fei Wang and Jimeng Sun IBM TJ Watson Research Center 1 Outline Part I - Applications Motivation and Introduction Patient similarity application Part II

More information

Name (NetID): (1 Point)

Name (NetID): (1 Point) CS446: Machine Learning (D) Spring 2017 March 16 th, 2017 This is a closed book exam. Everything you need in order to solve the problems is supplied in the body of this exam. This exam booklet contains

More information

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018 Data Mining CS57300 Purdue University Bruno Ribeiro February 8, 2018 Decision trees Why Trees? interpretable/intuitive, popular in medical applications because they mimic the way a doctor thinks model

More information

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University A Gentle Introduction to Gradient Boosting Cheng Li chengli@ccs.neu.edu College of Computer and Information Science Northeastern University Gradient Boosting a powerful machine learning algorithm it can

More information

An Empirical Study of Building Compact Ensembles

An Empirical Study of Building Compact Ensembles An Empirical Study of Building Compact Ensembles Huan Liu, Amit Mandvikar, and Jigar Mody Computer Science & Engineering Arizona State University Tempe, AZ 85281 {huan.liu,amitm,jigar.mody}@asu.edu Abstract.

More information

Methods and Criteria for Model Selection. CS57300 Data Mining Fall Instructor: Bruno Ribeiro

Methods and Criteria for Model Selection. CS57300 Data Mining Fall Instructor: Bruno Ribeiro Methods and Criteria for Model Selection CS57300 Data Mining Fall 2016 Instructor: Bruno Ribeiro Goal } Introduce classifier evaluation criteria } Introduce Bias x Variance duality } Model Assessment }

More information

Lecture 10: Logistic Regression

Lecture 10: Logistic Regression BIOINF 585: Machine Learning for Systems Biology & Clinical Informatics Lecture 10: Logistic Regression Jie Wang Department of Computational Medicine & Bioinformatics University of Michigan 1 Outline An

More information

Linear discriminant functions

Linear discriminant functions Andrea Passerini passerini@disi.unitn.it Machine Learning Discriminative learning Discriminative vs generative Generative learning assumes knowledge of the distribution governing the data Discriminative

More information

Assignment 3. Introduction to Machine Learning Prof. B. Ravindran

Assignment 3. Introduction to Machine Learning Prof. B. Ravindran Assignment 3 Introduction to Machine Learning Prof. B. Ravindran 1. In building a linear regression model for a particular data set, you observe the coefficient of one of the features having a relatively

More information

Decision Trees. CS57300 Data Mining Fall Instructor: Bruno Ribeiro

Decision Trees. CS57300 Data Mining Fall Instructor: Bruno Ribeiro Decision Trees CS57300 Data Mining Fall 2016 Instructor: Bruno Ribeiro Goal } Classification without Models Well, partially without a model } Today: Decision Trees 2015 Bruno Ribeiro 2 3 Why Trees? } interpretable/intuitive,

More information