What is semi-supervised learning?

Size: px
Start display at page:

Download "What is semi-supervised learning?"

Transcription

1 What is semi-supervised learning? In many practical learning domains, there is a large supply of unlabeled data but limited labeled data, which can be expensive to generate text processing, video-indexing, bioinformatics Semi-supervised Learning: learning from a combination of both labeled and unlabeled data

2 Comparing Supervised learning algorithms require enough labeled training data to learn reasonably accurate classifiers. Unsupervised learning methods are employed to discover structure in unlabeled data Semi-supervised learning allows taking advantage of the strengths of both

3 Why should it be useful? Unlabeled data can help in two different ways Identify data structure Find a meaningful representation of complicated high dimensional data through a first unsupervised learning step. Cluster assumption which can be stated in two equivalent ways: Two points which can be connected by a high density path (i.e. in the same cluster) are likely to be of the same label. Decision boundary should lie in a low density region.

4 A Toy Dataset (Two Moons)

5 Learning from Examples Input space X, and output space Y = {1, 1}. Training set S = {z 1 = (x 1, y 1 ),..., z l = (x l, y l )} in Z = X Y drawn i.i.d. from some unknown distribution. Classifier f : X Y. Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 2/31

6 Transductive Setting Input space X = {x 1,..., x n }, and output space Y = {1, 1}. Training set S = {z 1 = (x 1, y 1 ),..., z l = (x l, y l )}. Classifier f : X Y. Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 3/31

7 Intuition about classification: Manifold Local consistency. Nearby points are likely to have the same label. Global consistency. Points on the same structure (typically referred to as a cluster or manifold) are likely to have the same label. Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 4/31

8 Algorithm 1. Form the affinity matrix W defined by W ij = exp( x i x j 2 /2σ 2 ) if i j and W ii = Construct the matrix S = D 1/2 W D 1/2 in which D is a diagonal matrix with its (i, i)-element equal to the sum of the i-th row of W. 3. Iterate f(t + 1) = αsf(t) + (1 α)y until convergence, where α is a parameter in (0, 1). 4. Let f denote the limit of the sequence {f(t)}. Label each point x i as y i = sgn(f i ). Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 6/31

9 Convergence Theorem. The sequence {f(t)} converges to f = β(i αs) 1 y, where β = 1 α. Proof. Suppose F (0) = Y. By the iteration equation, we have t 1 f(t) = (αs) t 1 Y + (1 α) (αs) i Y. (1) i=0 Since 0 < α < 1 and the eigenvalues of S in [ 1, 1], lim t (αs)t 1 = 0, and lim t t 1 i=0 (αs) i = (I αs) 1. (2) Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 7/31

10 Regularization Framework Cost function Q(f) = 1 [ n 2 W ij ( 1 Dii f i 1 Djj f j ) 2 + µ n ( fi y i ) 2 ] i,j=1 i=1 Smoothness term. Measure the changes between nearby points. Fitting term. Measure the changes from the initial label assignments. Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 8/31

11 Regularization Framework Theorem. f = arg min f F Q(f). Proof. Differentiating Q(f) with respect to f, we have Q f = f Sf + µ(f y) = 0, (1) f=f which can be transformed into f µ Sf µ y = 0. (2) 1 + µ Let α = 1/(1 + µ) and β = µ/(1 + µ). Then (I αs)f = βy. (3) Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 9/31

12 Two Variants Substitute P = D 1 W for S in the iteration equation. Then f = (I αp ) 1 y. Replace S with P T, the transpose of P. Then f = (I αp T ) 1 y, which is equivalent to f = (D αw ) 1 y. Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 10/31

13 Toy Problem 1.5 (a) t = (b) t = (c) t = (d) t = Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 11/31

14 Toy Problem Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 12/31

15 Handwritten Digit Recognition (USPS) k NN (k = 1) SVM (RBF kernel) consistency variant (1) variant (2) 0.3 test error # labeled points Dimension: 16x16. Size: (α = 0.95) Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 13/31

16 Handwritten Digit Recognition (USPS) consistency variant (1) variant (2) test error values of parameter α Size of labeled data: l = 50. Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 14/31

17 Text Classification (20-newsgroups) k NN (k = 1) SVM (RBF kernel) consistency variant (1) variant (2) 0.6 test error # labeled points Dimension: Size: (α = 0.95) Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 15/31

18 Text Classification (20-newsgroups) consistency variant (1) variant (2) 0.4 test error values of parameter α Size of labeled data: l = 50. Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 16/31

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 1/31

Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking p. 1/31 Learning from Labeled and Unlabeled Data: Semi-supervised Learning and Ranking Dengyong Zhou zhou@tuebingen.mpg.de Dept. Schölkopf, Max Planck Institute for Biological Cybernetics, Germany Learning from

More information

How to learn from very few examples?

How to learn from very few examples? How to learn from very few examples? Dengyong Zhou Department of Empirical Inference Max Planck Institute for Biological Cybernetics Spemannstr. 38, 72076 Tuebingen, Germany Outline Introduction Part A

More information

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning

Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Beyond the Point Cloud: From Transductive to Semi-Supervised Learning Vikas Sindhwani, Partha Niyogi, Mikhail Belkin Andrew B. Goldberg goldberg@cs.wisc.edu Department of Computer Sciences University of

More information

Cluster Kernels for Semi-Supervised Learning

Cluster Kernels for Semi-Supervised Learning Cluster Kernels for Semi-Supervised Learning Olivier Chapelle, Jason Weston, Bernhard Scholkopf Max Planck Institute for Biological Cybernetics, 72076 Tiibingen, Germany {first. last} @tuebingen.mpg.de

More information

Discrete vs. Continuous: Two Sides of Machine Learning

Discrete vs. Continuous: Two Sides of Machine Learning Discrete vs. Continuous: Two Sides of Machine Learning Dengyong Zhou Department of Empirical Inference Max Planck Institute for Biological Cybernetics Spemannstr. 38, 72076 Tuebingen, Germany Oct. 18,

More information

Manifold Coarse Graining for Online Semi-supervised Learning

Manifold Coarse Graining for Online Semi-supervised Learning for Online Semi-supervised Learning Mehrdad Farajtabar, Amirreza Shaban, Hamid R. Rabiee, Mohammad H. Rohban Digital Media Lab, Department of Computer Engineering, Sharif University of Technology, Tehran,

More information

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1).

Classification. The goal: map from input X to a label Y. Y has a discrete set of possible values. We focused on binary Y (values 0 or 1). Regression and PCA Classification The goal: map from input X to a label Y. Y has a discrete set of possible values We focused on binary Y (values 0 or 1). But we also discussed larger number of classes

More information

Jeff Howbert Introduction to Machine Learning Winter

Jeff Howbert Introduction to Machine Learning Winter Classification / Regression Support Vector Machines Jeff Howbert Introduction to Machine Learning Winter 2012 1 Topics SVM classifiers for linearly separable classes SVM classifiers for non-linearly separable

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

9.520 Problem Set 2. Due April 25, 2011

9.520 Problem Set 2. Due April 25, 2011 9.50 Problem Set Due April 5, 011 Note: there are five problems in total in this set. Problem 1 In classification problems where the data are unbalanced (there are many more examples of one class than

More information

A graph based approach to semi-supervised learning

A graph based approach to semi-supervised learning A graph based approach to semi-supervised learning 1 Feb 2011 Two papers M. Belkin, P. Niyogi, and V Sindhwani. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples.

More information

Dimensionality Reduction

Dimensionality Reduction Dimensionality Reduction Le Song Machine Learning I CSE 674, Fall 23 Unsupervised learning Learning from raw (unlabeled, unannotated, etc) data, as opposed to supervised data where a classification of

More information

The role of dimensionality reduction in classification

The role of dimensionality reduction in classification The role of dimensionality reduction in classification Weiran Wang and Miguel Á. Carreira-Perpiñán Electrical Engineering and Computer Science University of California, Merced http://eecs.ucmerced.edu

More information

Manifold Regularization

Manifold Regularization 9.520: Statistical Learning Theory and Applications arch 3rd, 200 anifold Regularization Lecturer: Lorenzo Rosasco Scribe: Hooyoung Chung Introduction In this lecture we introduce a class of learning algorithms,

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko Inria Lille - Nord Europe, France TA: Pierre Perrault Partially based on material by: Mikhail Belkin, Jerry Zhu, Olivier Chapelle, Branislav Kveton October 30, 2017

More information

Discriminative Direction for Kernel Classifiers

Discriminative Direction for Kernel Classifiers Discriminative Direction for Kernel Classifiers Polina Golland Artificial Intelligence Lab Massachusetts Institute of Technology Cambridge, MA 02139 polina@ai.mit.edu Abstract In many scientific and engineering

More information

Hou, Ch. et al. IEEE Transactions on Neural Networks March 2011

Hou, Ch. et al. IEEE Transactions on Neural Networks March 2011 Hou, Ch. et al. IEEE Transactions on Neural Networks March 2011 Semi-supervised approach which attempts to incorporate partial information from unlabeled data points Semi-supervised approach which attempts

More information

Analysis of Spectral Kernel Design based Semi-supervised Learning

Analysis of Spectral Kernel Design based Semi-supervised Learning Analysis of Spectral Kernel Design based Semi-supervised Learning Tong Zhang IBM T. J. Watson Research Center Yorktown Heights, NY 10598 Rie Kubota Ando IBM T. J. Watson Research Center Yorktown Heights,

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/jv7vj9 Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Semi-Supervised Learning of Speech Sounds

Semi-Supervised Learning of Speech Sounds Aren Jansen Partha Niyogi Department of Computer Science Interspeech 2007 Objectives 1 Present a manifold learning algorithm based on locality preserving projections for semi-supervised phone classification

More information

Manifold Regularization

Manifold Regularization Manifold Regularization Vikas Sindhwani Department of Computer Science University of Chicago Joint Work with Mikhail Belkin and Partha Niyogi TTI-C Talk September 14, 24 p.1 The Problem of Learning is

More information

Semi-Supervised Learning

Semi-Supervised Learning Semi-Supervised Learning getting more for less in natural language processing and beyond Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University 1 Semi-supervised Learning many human

More information

Clustering and efficient use of unlabeled examples

Clustering and efficient use of unlabeled examples Clustering and efficient use of unlabeled examples Martin Szummer MIT AI Lab & CBCL Cambridge, MA 02139 szummer@ai.mit.edu Tommi Jaakkola MIT AI Lab Cambridge, MA 02139 tommi@ai.mit.edu Abstract Efficient

More information

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima.

Statistical Machine Learning Theory. From Multi-class Classification to Structured Output Prediction. Hisashi Kashima. http://goo.gl/xilnmn Course website KYOTO UNIVERSITY Statistical Machine Learning Theory From Multi-class Classification to Structured Output Prediction Hisashi Kashima kashima@i.kyoto-u.ac.jp DEPARTMENT

More information

Semi-Supervised Learning in Gigantic Image Collections. Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT)

Semi-Supervised Learning in Gigantic Image Collections. Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT) Semi-Supervised Learning in Gigantic Image Collections Rob Fergus (New York University) Yair Weiss (Hebrew University) Antonio Torralba (MIT) Gigantic Image Collections What does the world look like? High

More information

Classification Semi-supervised learning based on network. Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS Winter

Classification Semi-supervised learning based on network. Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS Winter Classification Semi-supervised learning based on network Speakers: Hanwen Wang, Xinxin Huang, and Zeyu Li CS 249-2 2017 Winter Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions Xiaojin

More information

Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine

Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine Classification of handwritten digits using supervised locally linear embedding algorithm and support vector machine Olga Kouropteva, Oleg Okun, Matti Pietikäinen Machine Vision Group, Infotech Oulu and

More information

Semi-Supervised Learning with Graphs. Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University

Semi-Supervised Learning with Graphs. Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University Semi-Supervised Learning with Graphs Xiaojin (Jerry) Zhu School of Computer Science Carnegie Mellon University 1 Semi-supervised Learning classification classifiers need labeled data to train labeled data

More information

Multiple Kernel Learning

Multiple Kernel Learning CS 678A Course Project Vivek Gupta, 1 Anurendra Kumar 2 Sup: Prof. Harish Karnick 1 1 Department of Computer Science and Engineering 2 Department of Electrical Engineering Indian Institute of Technology,

More information

SEMI-SUPERVISED classification, which estimates a decision

SEMI-SUPERVISED classification, which estimates a decision IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS Semi-Supervised Support Vector Machines with Tangent Space Intrinsic Manifold Regularization Shiliang Sun and Xijiong Xie Abstract Semi-supervised

More information

Online Manifold Regularization: A New Learning Setting and Empirical Study

Online Manifold Regularization: A New Learning Setting and Empirical Study Online Manifold Regularization: A New Learning Setting and Empirical Study Andrew B. Goldberg 1, Ming Li 2, Xiaojin Zhu 1 1 Computer Sciences, University of Wisconsin Madison, USA. {goldberg,jerryzhu}@cs.wisc.edu

More information

Similarity and kernels in machine learning

Similarity and kernels in machine learning 1/31 Similarity and kernels in machine learning Zalán Bodó Babeş Bolyai University, Cluj-Napoca/Kolozsvár Faculty of Mathematics and Computer Science MACS 2016 Eger, Hungary 2/31 Machine learning Overview

More information

Semi-Supervised Classification with Universum

Semi-Supervised Classification with Universum Semi-Supervised Classification with Universum Dan Zhang 1, Jingdong Wang 2, Fei Wang 3, Changshui Zhang 4 1,3,4 State Key Laboratory on Intelligent Technology and Systems, Tsinghua National Laboratory

More information

Does Unlabeled Data Help?

Does Unlabeled Data Help? Does Unlabeled Data Help? Worst-case Analysis of the Sample Complexity of Semi-supervised Learning. Ben-David, Lu and Pal; COLT, 2008. Presentation by Ashish Rastogi Courant Machine Learning Seminar. Outline

More information

A Regularization Framework for Learning from Graph Data

A Regularization Framework for Learning from Graph Data A Regularization Framework for Learning from Graph Data Dengyong Zhou Max Planck Institute for Biological Cybernetics Spemannstr. 38, 7076 Tuebingen, Germany Bernhard Schölkopf Max Planck Institute for

More information

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning

Kernel Machines. Pradeep Ravikumar Co-instructor: Manuela Veloso. Machine Learning Kernel Machines Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 SVM linearly separable case n training points (x 1,, x n ) d features x j is a d-dimensional vector Primal problem:

More information

Semi-supervised Learning

Semi-supervised Learning Semi-supervised Learning Introduction Supervised learning: x r, y r R r=1 E.g.x r : image, y r : class labels Semi-supervised learning: x r, y r r=1 R, x u R+U u=r A set of unlabeled data, usually U >>

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review CS 4980/6980: Introduction to Data Science c Spring 2018 Lecture 2: Linear Algebra Review Instructor: Daniel L. Pimentel-Alarcón Scribed by: Anh Nguyen and Kira Jordan This is preliminary work and has

More information

Large Scale Semi-supervised Linear SVMs. University of Chicago

Large Scale Semi-supervised Linear SVMs. University of Chicago Large Scale Semi-supervised Linear SVMs Vikas Sindhwani and Sathiya Keerthi University of Chicago SIGIR 2006 Semi-supervised Learning (SSL) Motivation Setting Categorize x-billion documents into commercial/non-commercial.

More information

LABELED data is expensive to obtain in terms of both. Laplacian Embedded Regression for Scalable Manifold Regularization

LABELED data is expensive to obtain in terms of both. Laplacian Embedded Regression for Scalable Manifold Regularization Laplacian Embedded Regression for Scalable Manifold Regularization Lin Chen, Ivor W. Tsang, Dong Xu Abstract Semi-supervised Learning (SSL), as a powerful tool to learn from a limited number of labeled

More information

Classifier Complexity and Support Vector Classifiers

Classifier Complexity and Support Vector Classifiers Classifier Complexity and Support Vector Classifiers Feature 2 6 4 2 0 2 4 6 8 RBF kernel 10 10 8 6 4 2 0 2 4 6 Feature 1 David M.J. Tax Pattern Recognition Laboratory Delft University of Technology D.M.J.Tax@tudelft.nl

More information

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi

Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Face Recognition Using Laplacianfaces He et al. (IEEE Trans PAMI, 2005) presented by Hassan A. Kingravi Overview Introduction Linear Methods for Dimensionality Reduction Nonlinear Methods and Manifold

More information

Radial Basis Function Networks. Ravi Kaushik Project 1 CSC Neural Networks and Pattern Recognition

Radial Basis Function Networks. Ravi Kaushik Project 1 CSC Neural Networks and Pattern Recognition Radial Basis Function Networks Ravi Kaushik Project 1 CSC 84010 Neural Networks and Pattern Recognition History Radial Basis Function (RBF) emerged in late 1980 s as a variant of artificial neural network.

More information

Presented by. Committee

Presented by. Committee Presented by Committee Learning from Ambiguous Examples K-Means, PCA Mixture- Models,... Semi- Supervised Clustering,... Semi-Supervised Learning, Transductive- Inference, Multiple-Instance Learning,

More information

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017

COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 COMS 4721: Machine Learning for Data Science Lecture 20, 4/11/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University SEQUENTIAL DATA So far, when thinking

More information

Notes on the framework of Ando and Zhang (2005) 1 Beyond learning good functions: learning good spaces

Notes on the framework of Ando and Zhang (2005) 1 Beyond learning good functions: learning good spaces Notes on the framework of Ando and Zhang (2005 Karl Stratos 1 Beyond learning good functions: learning good spaces 1.1 A single binary classification problem Let X denote the problem domain. Suppose we

More information

Semi-Supervised Learning with Graphs

Semi-Supervised Learning with Graphs Semi-Supervised Learning with Graphs Xiaojin (Jerry) Zhu LTI SCS CMU Thesis Committee John Lafferty (co-chair) Ronald Rosenfeld (co-chair) Zoubin Ghahramani Tommi Jaakkola 1 Semi-supervised Learning classifiers

More information

Batch Mode Sparse Active Learning. Lixin Shi, Yuhang Zhao Tsinghua University

Batch Mode Sparse Active Learning. Lixin Shi, Yuhang Zhao Tsinghua University Batch Mode Sparse Active Learning Lixin Shi, Yuhang Zhao Tsinghua University Our work Propose an unified framework of batch mode active learning Instantiate the framework using classifiers based on sparse

More information

Style-aware Mid-level Representation for Discovering Visual Connections in Space and Time

Style-aware Mid-level Representation for Discovering Visual Connections in Space and Time Style-aware Mid-level Representation for Discovering Visual Connections in Space and Time Experiment presentation for CS3710:Visual Recognition Presenter: Zitao Liu University of Pittsburgh ztliu@cs.pitt.edu

More information

Introduction to Machine Learning

Introduction to Machine Learning Introduction to Machine Learning CS4731 Dr. Mihail Fall 2017 Slide content based on books by Bishop and Barber. https://www.microsoft.com/en-us/research/people/cmbishop/ http://web4.cs.ucl.ac.uk/staff/d.barber/pmwiki/pmwiki.php?n=brml.homepage

More information

Foundations of Machine Learning

Foundations of Machine Learning Introduction to ML Mehryar Mohri Courant Institute and Google Research mohri@cims.nyu.edu page 1 Logistics Prerequisites: basics in linear algebra, probability, and analysis of algorithms. Workload: about

More information

1 Graph Kernels by Spectral Transforms

1 Graph Kernels by Spectral Transforms Graph Kernels by Spectral Transforms Xiaojin Zhu Jaz Kandola John Lafferty Zoubin Ghahramani Many graph-based semi-supervised learning methods can be viewed as imposing smoothness conditions on the target

More information

Active and Semi-supervised Kernel Classification

Active and Semi-supervised Kernel Classification Active and Semi-supervised Kernel Classification Zoubin Ghahramani Gatsby Computational Neuroscience Unit University College London Work done in collaboration with Xiaojin Zhu (CMU), John Lafferty (CMU),

More information

Partially labeled classification with Markov random walks

Partially labeled classification with Markov random walks Partially labeled classification with Markov random walks Martin Szummer MIT AI Lab & CBCL Cambridge, MA 0239 szummer@ai.mit.edu Tommi Jaakkola MIT AI Lab Cambridge, MA 0239 tommi@ai.mit.edu Abstract To

More information

Learning gradients: prescriptive models

Learning gradients: prescriptive models Department of Statistical Science Institute for Genome Sciences & Policy Department of Computer Science Duke University May 11, 2007 Relevant papers Learning Coordinate Covariances via Gradients. Sayan

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

ABC-LogitBoost for Multi-Class Classification

ABC-LogitBoost for Multi-Class Classification Ping Li, Cornell University ABC-Boost BTRY 6520 Fall 2012 1 ABC-LogitBoost for Multi-Class Classification Ping Li Department of Statistical Science Cornell University 2 4 6 8 10 12 14 16 2 4 6 8 10 12

More information

6.036 midterm review. Wednesday, March 18, 15

6.036 midterm review. Wednesday, March 18, 15 6.036 midterm review 1 Topics covered supervised learning labels available unsupervised learning no labels available semi-supervised learning some labels available - what algorithms have you learned that

More information

Semi-Supervised Learning through Principal Directions Estimation

Semi-Supervised Learning through Principal Directions Estimation Semi-Supervised Learning through Principal Directions Estimation Olivier Chapelle, Bernhard Schölkopf, Jason Weston Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany {first.last}@tuebingen.mpg.de

More information

Semi-Supervised Learning by Multi-Manifold Separation

Semi-Supervised Learning by Multi-Manifold Separation Semi-Supervised Learning by Multi-Manifold Separation Xiaojin (Jerry) Zhu Department of Computer Sciences University of Wisconsin Madison Joint work with Andrew Goldberg, Zhiting Xu, Aarti Singh, and Rob

More information

Efficient Iterative Semi-Supervised Classification on Manifold

Efficient Iterative Semi-Supervised Classification on Manifold Efficient Iterative Semi-Supervised Classification on Manifold Mehrdad Farajtabar, Hamid R. Rabiee, Amirreza Shaban, Ali Soltani-Farani Digital Media Lab, AICTC Research Center, Department of Computer

More information

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated

Overview of Statistical Tools. Statistical Inference. Bayesian Framework. Modeling. Very simple case. Things are usually more complicated Fall 3 Computer Vision Overview of Statistical Tools Statistical Inference Haibin Ling Observation inference Decision Prior knowledge http://www.dabi.temple.edu/~hbling/teaching/3f_5543/index.html Bayesian

More information

When Dictionary Learning Meets Classification

When Dictionary Learning Meets Classification When Dictionary Learning Meets Classification Bufford, Teresa 1 Chen, Yuxin 2 Horning, Mitchell 3 Shee, Liberty 1 Mentor: Professor Yohann Tendero 1 UCLA 2 Dalhousie University 3 Harvey Mudd College August

More information

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc.

Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Logistic Regression: Online, Lazy, Kernelized, Sequential, etc. Harsha Veeramachaneni Thomson Reuter Research and Development April 1, 2010 Harsha Veeramachaneni (TR R&D) Logistic Regression April 1, 2010

More information

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2

Nearest Neighbor. Machine Learning CSE546 Kevin Jamieson University of Washington. October 26, Kevin Jamieson 2 Nearest Neighbor Machine Learning CSE546 Kevin Jamieson University of Washington October 26, 2017 2017 Kevin Jamieson 2 Some data, Bayes Classifier Training data: True label: +1 True label: -1 Optimal

More information

CS798: Selected topics in Machine Learning

CS798: Selected topics in Machine Learning CS798: Selected topics in Machine Learning Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Jakramate Bootkrajang CS798: Selected topics in Machine Learning

More information

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26

Lecture 13. Principal Component Analysis. Brett Bernstein. April 25, CDS at NYU. Brett Bernstein (CDS at NYU) Lecture 13 April 25, / 26 Principal Component Analysis Brett Bernstein CDS at NYU April 25, 2017 Brett Bernstein (CDS at NYU) Lecture 13 April 25, 2017 1 / 26 Initial Question Intro Question Question Let S R n n be symmetric. 1

More information

Integrating Global and Local Structures: A Least Squares Framework for Dimensionality Reduction

Integrating Global and Local Structures: A Least Squares Framework for Dimensionality Reduction Integrating Global and Local Structures: A Least Squares Framework for Dimensionality Reduction Jianhui Chen, Jieping Ye Computer Science and Engineering Department Arizona State University {jianhui.chen,

More information

ECS289: Scalable Machine Learning

ECS289: Scalable Machine Learning ECS289: Scalable Machine Learning Cho-Jui Hsieh UC Davis Oct 27, 2015 Outline One versus all/one versus one Ranking loss for multiclass/multilabel classification Scaling to millions of labels Multiclass

More information

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines

Pattern Recognition and Machine Learning. Perceptrons and Support Vector machines Pattern Recognition and Machine Learning James L. Crowley ENSIMAG 3 - MMIS Fall Semester 2016 Lessons 6 10 Jan 2017 Outline Perceptrons and Support Vector machines Notation... 2 Perceptrons... 3 History...3

More information

Support Vector Machine (SVM) and Kernel Methods

Support Vector Machine (SVM) and Kernel Methods Support Vector Machine (SVM) and Kernel Methods CE-717: Machine Learning Sharif University of Technology Fall 2014 Soleymani Outline Margin concept Hard-Margin SVM Soft-Margin SVM Dual Problems of Hard-Margin

More information

A Least Squares Formulation for Canonical Correlation Analysis

A Least Squares Formulation for Canonical Correlation Analysis A Least Squares Formulation for Canonical Correlation Analysis Liang Sun, Shuiwang Ji, and Jieping Ye Department of Computer Science and Engineering Arizona State University Motivation Canonical Correlation

More information

LEC 3: Fisher Discriminant Analysis (FDA)

LEC 3: Fisher Discriminant Analysis (FDA) LEC 3: Fisher Discriminant Analysis (FDA) A Supervised Dimensionality Reduction Approach Dr. Guangliang Chen February 18, 2016 Outline Motivation: PCA is unsupervised which does not use training labels

More information

COMS 4771 Introduction to Machine Learning. Nakul Verma

COMS 4771 Introduction to Machine Learning. Nakul Verma COMS 4771 Introduction to Machine Learning Nakul Verma Announcements HW1 due next lecture Project details are available decide on the group and topic by Thursday Last time Generative vs. Discriminative

More information

Graph-Based Semi-Supervised Learning

Graph-Based Semi-Supervised Learning Graph-Based Semi-Supervised Learning Olivier Delalleau, Yoshua Bengio and Nicolas Le Roux Université de Montréal CIAR Workshop - April 26th, 2005 Graph-Based Semi-Supervised Learning Yoshua Bengio, Olivier

More information

Semi-Supervised Learning on Riemannian Manifolds

Semi-Supervised Learning on Riemannian Manifolds Semi-Supervised Learning on Riemannian Manifolds Mikhail Belkin, Partha Niyogi University of Chicago, Department of Computer Science Abstract. We consider the general problem of utilizing both labeled

More information

Chemometrics: Classification of spectra

Chemometrics: Classification of spectra Chemometrics: Classification of spectra Vladimir Bochko Jarmo Alander University of Vaasa November 1, 2010 Vladimir Bochko Chemometrics: Classification 1/36 Contents Terminology Introduction Big picture

More information

Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota

Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Dimension reduction methods: Algorithms and Applications Yousef Saad Department of Computer Science and Engineering University of Minnesota Université du Littoral- Calais July 11, 16 First..... to the

More information

Advanced Introduction to Machine Learning

Advanced Introduction to Machine Learning 10-715 Advanced Introduction to Machine Learning Homework Due Oct 15, 10.30 am Rules Please follow these guidelines. Failure to do so, will result in loss of credit. 1. Homework is due on the due date

More information

Models, Data, Learning Problems

Models, Data, Learning Problems Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Models, Data, Learning Problems Tobias Scheffer Overview Types of learning problems: Supervised Learning (Classification, Regression,

More information

Supervised locally linear embedding

Supervised locally linear embedding Supervised locally linear embedding Dick de Ridder 1, Olga Kouropteva 2, Oleg Okun 2, Matti Pietikäinen 2 and Robert P.W. Duin 1 1 Pattern Recognition Group, Department of Imaging Science and Technology,

More information

Random Matrices in Machine Learning

Random Matrices in Machine Learning Random Matrices in Machine Learning Romain COUILLET CentraleSupélec, University of ParisSaclay, France GSTATS IDEX DataScience Chair, GIPSA-lab, University Grenoble Alpes, France. June 21, 2018 1 / 113

More information

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function.

Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Bayesian learning: Machine learning comes from Bayesian decision theory in statistics. There we want to minimize the expected value of the loss function. Let y be the true label and y be the predicted

More information

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction

ECE 521. Lecture 11 (not on midterm material) 13 February K-means clustering, Dimensionality reduction ECE 521 Lecture 11 (not on midterm material) 13 February 2017 K-means clustering, Dimensionality reduction With thanks to Ruslan Salakhutdinov for an earlier version of the slides Overview K-means clustering

More information

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction

Linear vs Non-linear classifier. CS789: Machine Learning and Neural Network. Introduction Linear vs Non-linear classifier CS789: Machine Learning and Neural Network Support Vector Machine Jakramate Bootkrajang Department of Computer Science Chiang Mai University Linear classifier is in the

More information

Support Vector Machines: Kernels

Support Vector Machines: Kernels Support Vector Machines: Kernels CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 14.1, 14.2, 14.4 Schoelkopf/Smola Chapter 7.4, 7.6, 7.8 Non-Linear Problems

More information

Learning on Graphs and Manifolds. CMPSCI 689 Sridhar Mahadevan U.Mass Amherst

Learning on Graphs and Manifolds. CMPSCI 689 Sridhar Mahadevan U.Mass Amherst Learning on Graphs and Manifolds CMPSCI 689 Sridhar Mahadevan U.Mass Amherst Outline Manifold learning is a relatively new area of machine learning (2000-now). Main idea Model the underlying geometry of

More information

Graphs, Geometry and Semi-supervised Learning

Graphs, Geometry and Semi-supervised Learning Graphs, Geometry and Semi-supervised Learning Mikhail Belkin The Ohio State University, Dept of Computer Science and Engineering and Dept of Statistics Collaborators: Partha Niyogi, Vikas Sindhwani In

More information

Support Vector Machines for Classification: A Statistical Portrait

Support Vector Machines for Classification: A Statistical Portrait Support Vector Machines for Classification: A Statistical Portrait Yoonkyung Lee Department of Statistics The Ohio State University May 27, 2011 The Spring Conference of Korean Statistical Society KAIST,

More information

A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS. Akshay Gadde and Antonio Ortega

A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS. Akshay Gadde and Antonio Ortega A PROBABILISTIC INTERPRETATION OF SAMPLING THEORY OF GRAPH SIGNALS Akshay Gadde and Antonio Ortega Department of Electrical Engineering University of Southern California, Los Angeles Email: agadde@usc.edu,

More information

Support Vector Machine (continued)

Support Vector Machine (continued) Support Vector Machine continued) Overlapping class distribution: In practice the class-conditional distributions may overlap, so that the training data points are no longer linearly separable. We need

More information

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26

Clustering. Professor Ameet Talwalkar. Professor Ameet Talwalkar CS260 Machine Learning Algorithms March 8, / 26 Clustering Professor Ameet Talwalkar Professor Ameet Talwalkar CS26 Machine Learning Algorithms March 8, 217 1 / 26 Outline 1 Administration 2 Review of last lecture 3 Clustering Professor Ameet Talwalkar

More information

Unlabeled Data: Now It Helps, Now It Doesn t

Unlabeled Data: Now It Helps, Now It Doesn t institution-logo-filena A. Singh, R. D. Nowak, and X. Zhu. In NIPS, 2008. 1 Courant Institute, NYU April 21, 2015 Outline institution-logo-filena 1 Conflicting Views in Semi-supervised Learning The Cluster

More information

Graphs in Machine Learning

Graphs in Machine Learning Graphs in Machine Learning Michal Valko INRIA Lille - Nord Europe, France Partially based on material by: Mikhail Belkin, Jerry Zhu, Olivier Chapelle, Branislav Kveton February 10, 2015 MVA 2014/2015 Previous

More information

Examples are not Enough, Learn to Criticize! Criticism for Interpretability

Examples are not Enough, Learn to Criticize! Criticism for Interpretability Examples are not Enough, Learn to Criticize! Criticism for Interpretability Been Kim, Rajiv Khanna, Oluwasanmi Koyejo Wittawat Jitkrittum Gatsby Machine Learning Journal Club 16 Jan 2017 1/20 Summary Examples

More information

Convex Methods for Transduction

Convex Methods for Transduction Convex Methods for Transduction Tijl De Bie ESAT-SCD/SISTA, K.U.Leuven Kasteelpark Arenberg 10 3001 Leuven, Belgium tijl.debie@esat.kuleuven.ac.be Nello Cristianini Department of Statistics, U.C.Davis

More information

An RKHS for Multi-View Learning and Manifold Co-Regularization

An RKHS for Multi-View Learning and Manifold Co-Regularization Vikas Sindhwani vsindhw@us.ibm.com Mathematical Sciences, IBM T.J. Watson Research Center, Yorktown Heights, NY 10598 USA David S. Rosenberg drosen@stat.berkeley.edu Department of Statistics, University

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Linear Classifiers. Blaine Nelson, Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Linear Classifiers Blaine Nelson, Tobias Scheffer Contents Classification Problem Bayesian Classifier Decision Linear Classifiers, MAP Models Logistic

More information

Machine learning for pervasive systems Classification in high-dimensional spaces

Machine learning for pervasive systems Classification in high-dimensional spaces Machine learning for pervasive systems Classification in high-dimensional spaces Department of Communications and Networking Aalto University, School of Electrical Engineering stephan.sigg@aalto.fi Version

More information

Scale-Invariance of Support Vector Machines based on the Triangular Kernel. Abstract

Scale-Invariance of Support Vector Machines based on the Triangular Kernel. Abstract Scale-Invariance of Support Vector Machines based on the Triangular Kernel François Fleuret Hichem Sahbi IMEDIA Research Group INRIA Domaine de Voluceau 78150 Le Chesnay, France Abstract This paper focuses

More information