To a large extent abandoned once gradient-based methods. One applicable class of methods is Generating set search

Size: px
Start display at page:

Download "To a large extent abandoned once gradient-based methods. One applicable class of methods is Generating set search"

Transcription

1 Derivative Free Optimization and Average Curvature Information Trond Steihaug Lennart Frimannslund Eighth US-Mexico Workshop on Optimization and its Applications, January th, 007 Compass search in R. Current point is black Outline Part Generating set search Reusing old values Part : Work in progress Exploiting Separability Numerical results Summary Search east, compute function value and check decrease. New point accepted (grey) GSS and Unconstrained optimization Consider the unconstrained optimization problem: min f (x), x R n where only function values are available. One applicable class of methods is Generating set search (GSS). Widely studied in the 90s To a large extent abandoned once gradient-based methods became tractable Interest revived in the 990s with development of convergence theory We illustrate the work with the method called compass search Search north, compute function value and check decrease. New point not accepted (white).

2 Search south, compute function value and check decrease. New point accepted Search north, don t step Search west, compute function value and check decrease. New point not accepted Search south, step to new point Start new sweep through the directions in the same order: Search east, step to new point If no reduction can be found, decrease step sizes

3 Points in a rectangle spanned by ei and ej, like these: Canbeusedinthefinitedifferenceformula: f (x + δiei + δjej) f (x + δiei) f (x + δjej)+f (x) δiδj. And thus provide an approximate Hessian element, or average curvature information. Suppose we are searching in R along an orthogonal basis f (x+δ q ) f (x+δ q )+f (x) δ e C Q : [ ] e Suppose we are searching in R along an orthogonal basis e e Suppose we are searching in R along an orthogonal basis f (x+δ q ) f (x+δ q )+f (x) δ e [ ] C Q : e Suppose we are searching in R along an orthogonal basis f (x+δ q +δ q ) f (x+δ q ) f (x+δ q )+f (x) δ δ e [ ] C Q : e Suppose we are searching in R along an orthogonal basis C Q : [ ] e e C Q now contains average curvature information with respect to the search directions Q =[qq]. We call C Q a curvature information matrix.

4 Recall that (C Q )ij = f (x + δ iqi + δjqj) f (x + δiqi) f (x + δjqj)+f (x) δiδj. If the function is sufficiently smooth then (C Q )ij = q T i f (x k )qj, where the vector x k R n, x k = x + τiqi + τjqj τi δi,τj δj. If the function f is quadratic with Hessian matrix C, then (C Q )ij = q T i Cqj, i, j or C Q = Q T CQ In the general case we can always construct the matrix C = QC Q Q T, where Q is the matrix with the search direction vectors as its columns. Using the Hessian approximation The eigenvectors of the matrix C turn out to be useful search directions. 00 Compass Search in narrow valley 00 Our method in a narrow valley Theorem If f is in C, and f (x) f (y) L x y, then we have f ( x) C nlδ, where x is in the neighborhood of the points x k, k =,,...,r, and δ is O(maxi,j x i x j ). If f is quadratic, then L = 0 and we recover the exact Hessian. r = n(n+) (!) Skip proof Proof of theorem Let δ be the diameter of N, the smallest ball containing x k, k =,...,r. Consider the matrix C Q Q T f (x)q, where x N. Element (i, j) can be written q T i ( f (x k ) f (x))qj, so that q T i ( f (x k ) f (x))qj Lδ. Since A n maxi,j aij, and multiplication by orthogonal matrices does not alter norms, the result follows. x y y Extensions The method is able to rotate its orthogonal search directions based on average curvature information. It can rotate once every O(n) while loop iterations, since it has to compute O(n ) average curvature elements Now to work in progress. So far we have not made use of any knowledge of the representation of the function like using partial separability. Separability for differentiable functions If a function can be written as a sum of element functions, f = m i= fi, fi : R n i R where each element function depends on relatively few (ni) of the n components of x, then f is partially separable. For instance f (x, x, x) =f(x, x)+f(x, x), is partially separable, and has a tridiagonal Hessian (if it exists). x

5 Noisy separable functions Suppose the element functions fi(x) are expensive to compute accurately, but can be computed inexactly at a much lower cost, say fi = fi + ɛi, ɛi : R n i R If the function f is partially separable, the computed function f is partially separable but may not be differentiable. Returning to the tridiagonal case: f (x, x, x) =f(x, x)+ɛ(x, x)+f(x, x)+ɛ(x, x). Alternative Approach: Covariation Graph Define a covariation graph G(V, E) with n nodes and no edge between i and j if and only if for δi,δj > 0 and for all x f (x + δiei + δjej) f (x + δiei) f (x + δjej)+f (x) δiδj = 0, Observation If the covariation graph is not complete, then the function f is partially separable. For (i, j) E choose δi = xi,δj = xj and observe that f (x) can be written as a sum of three element functions (with n = n, n = n = n. Covariation Graph () We define a covariation graph G(V, E) with n nodes and an edge between i and j if and only if xi and xj appear in the same element function, and an edge (a loop) from each i to itself. Let Ei be the set of element functions for which variable xi appears in the domain. The intersection graph of Ei, i =,...,n is the covariation graph, i.e. there is an edge (i, j) E iff Ei Ej. This graph has an adjacency matrix, A G. If F T =(f,...,fm) then f = F T e (vector of all ones) and if F C then A G and F T F has the same structure. The example: A G has the structure A G :. Application to the method Thus, in the context of our optimization method we can impose the sparsity structure of the adjacency matrix of the covariation graph onto C. Convert the matrix C = QC Q Q T, into the equivalent formulation (Q T Q T )vec(c) =vec(c Q ). Here denotes the Kronecker product and vec( ) stacks the columns of a matrix in a vector. Covariation Graph () Observation If (i, j) E: For all x,δi,δj > 0 f (x + δiei + δjej) f (x + δiei) f (x + δjej)+f (x) δiδj = 0, In other words: If f is in C then the adjacency graph of the Hessian matrix is isomorphic to covariation graph G(V, E) )(ora subgraph). A G and the Hessian have the same sparsity structure. The elements in C Q are defined for for both differentiable and non-differentiable functions. Many of these differences will be identical to zero from the (partial) separability of the function regardless of differentiability. Application to the method () Since we know that many of the elements of C are required to be zero, and by in addition requiring C to be symmetric, we get a reduced equation system (Q T Q T )Pcvec(C) =vec(c Q ), () where vec(c) contains the r nonzero elements of, say, the lower triangle of C. The coefficient matrix is n(n + )/ r (Q T Q T )Pc. In order to avoid computing all n(n + )/ elements of vec(c Q ), this equation system should be reduced to an r r system Avec(C) =cγ, by selecting rows from ().

6 At this point we encounter the following subproblem. Given the overdetermined equation system: (Q T Q T )Pcvec(C) =vec(c Q ), how to pick r rows from the n(n + )/ r matrix (Q T Q T )Pc such that the resulting (square) matrix A is Invertible Well-conditioned Easy to compute An initial ordering of the pairs (i, j) in which the rows are chosen based on the magnitude of the components of the search directions qr, qs R n. This heuristic ordering almost every time produces an invertible and in many cases well-conditioned matrix. Skip subproblem A T unfinished = Q R = Candidate column accepted. A T unfinished = Q R = We have a heuristic ordering of the pairs (i, j) in which candidate columns are chosen based on the magnitude of the components of the search directions qr, qs R n A T unfinished = Q R = Choose candidate column, update QR-factorization, reject column and down-date QR-factorization if column is linearly dependent. A T unfinished = Q R = Choose candidate column, update QR-factorization, keep column if linearly independent. A T unfinished = Q R = Candidate column rejected. The cost of such a rejection is a down-dating of Q as well as some housekeeping.

7 A T final = QrRr = This procedure always gives an invertible matrix. Pseudocode Algorithm: : Given f, x, search directions, step lengths and structure : While not converged : Choose the order of the C Q elements to be computed in cγ : For each search direction qi : If f (x + δiqi) ρ(δi) < f (x) : x x + δiqi 7: End if 8: Compute cγ element if applicable 9: End for 0: If r elements in cγ have been computed : Solve for C and update search directions : End if : Update step lengths δi : End while We construct A by building up the QR-factorization of A T one column at a time: A T = QR = The initial ordering (based on the heuristic by looking at (q r T q s T ) which mimic the coordinate vectors), seldom needs to reject a candidate column to A T. Return to subproblem Numerical results Name n Sparse Regular Compass DECONVU 7 Disc. bound. val Ext. Rosenbrock Ext. Powell sing TRIDIA Function evaluations to reduce function value to less than e-, from recommended starting point. The sparse approach rarely performs worse than compass search. What do we loose when r < n(n + )/ Theorem If f C, and f (x) f (y) L x y, then for all x in the neighborhood of the points x k, k =,,...,r: f ( x) C nlδ A, where δ is O(maxi,j x i x j ). If f is quadratic, then L = 0 and we recover the exact Hessian also in the case when r < n(n+). Conclusions and observations Conclusions: Periodically rotating the search directions can significantly reduce the number of function evaluations to reach the optimal solution Eigenvectors of matrices with curvature information make good search directions Separability can be exploited also for noisy functions While the full method can rotate once every O(n) while loop iterations the new method can, for curvature matrices with O(n) elements rotate every O() iterations. This is useful for functions with a topography that warrants frequent basis rotation. However, numerical testing indicates that rotations should not be done too often (i.e. not every iteration).

8 Future work Improvements Develop adaptive rules for rotating search directions Develop schemes for the situation when noise can be controlled Integrate existing work for reducing the number of unsuccessful function evaluations Reducing the number of function evaluations due to computing the elements in the curvature information matrix Try to solve the matrix row selection subproblem Hybrid method based on trust-region and GSS More details [] Lennart Frimannslund and Trond Steihaug. A generating set search method using curvature information. To appear in Computational Optimization and Applications, 007. [] Lennart Frimannslund and Trond Steihaug. Anew Generating Set Search Algorithm for Separable Functions. Submitted to the SIAM Journal on Optimization.

REPORTS IN INFORMATICS

REPORTS IN INFORMATICS REPORTS IN INFORMATICS ISSN 0333-3590 Using Partial Separability of Functions in Generating Set Search Methods for Unconstrained Optimisation Lennart Frimannslund Trond Steihaug REPORT NO 318 March 006

More information

Higher-Order Methods

Higher-Order Methods Higher-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. PCMI, July 2016 Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 1 / 25 Smooth

More information

Computational Methods. Least Squares Approximation/Optimization

Computational Methods. Least Squares Approximation/Optimization Computational Methods Least Squares Approximation/Optimization Manfred Huber 2011 1 Least Squares Least squares methods are aimed at finding approximate solutions when no precise solution exists Find the

More information

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES

4.8 Arnoldi Iteration, Krylov Subspaces and GMRES 48 Arnoldi Iteration, Krylov Subspaces and GMRES We start with the problem of using a similarity transformation to convert an n n matrix A to upper Hessenberg form H, ie, A = QHQ, (30) with an appropriate

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

On Lagrange multipliers of trust-region subproblems

On Lagrange multipliers of trust-region subproblems On Lagrange multipliers of trust-region subproblems Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Institute of Computer Science AS CR, Prague Programy a algoritmy numerické matematiky 14 1.- 6. června 2008

More information

On fast trust region methods for quadratic models with linear constraints. M.J.D. Powell

On fast trust region methods for quadratic models with linear constraints. M.J.D. Powell DAMTP 2014/NA02 On fast trust region methods for quadratic models with linear constraints M.J.D. Powell Abstract: Quadratic models Q k (x), x R n, of the objective function F (x), x R n, are used by many

More information

REPORTS IN INFORMATICS

REPORTS IN INFORMATICS REPORTS IN INFORMATICS ISSN 0333-3590 A class of Methods Combining L-BFGS and Truncated Newton Lennart Frimannslund Trond Steihaug REPORT NO 319 April 2006 Department of Informatics UNIVERSITY OF BERGEN

More information

On Lagrange multipliers of trust region subproblems

On Lagrange multipliers of trust region subproblems On Lagrange multipliers of trust region subproblems Ladislav Lukšan, Ctirad Matonoha, Jan Vlček Institute of Computer Science AS CR, Prague Applied Linear Algebra April 28-30, 2008 Novi Sad, Serbia Outline

More information

Suppose that the approximate solutions of Eq. (1) satisfy the condition (3). Then (1) if η = 0 in the algorithm Trust Region, then lim inf.

Suppose that the approximate solutions of Eq. (1) satisfy the condition (3). Then (1) if η = 0 in the algorithm Trust Region, then lim inf. Maria Cameron 1. Trust Region Methods At every iteration the trust region methods generate a model m k (p), choose a trust region, and solve the constraint optimization problem of finding the minimum of

More information

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares Robert Bridson October 29, 2008 1 Hessian Problems in Newton Last time we fixed one of plain Newton s problems by introducing line search

More information

Overview. Higher Order Methods for Nonlinear Equations. Trond Steihaug. Department of Informatics University of Bergen, Norway

Overview. Higher Order Methods for Nonlinear Equations. Trond Steihaug. Department of Informatics University of Bergen, Norway Overview Department of Informatics University of Bergen, Norway 1 Higher Order Methods Nonlinear systems of equations and the Halley Class. Newton v.s. Halley. Unconstrained Optimization The effect of

More information

Interpolation-Based Trust-Region Methods for DFO

Interpolation-Based Trust-Region Methods for DFO Interpolation-Based Trust-Region Methods for DFO Luis Nunes Vicente University of Coimbra (joint work with A. Bandeira, A. R. Conn, S. Gratton, and K. Scheinberg) July 27, 2010 ICCOPT, Santiago http//www.mat.uc.pt/~lnv

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Taylor s Theorem Can often approximate a function by a polynomial The error in the approximation

More information

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Math 520 Exam 2 Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Exam 2 will be held on Tuesday, April 8, 7-8pm in 117 MacMillan What will be covered The exam will cover material from the lectures

More information

Introduction to gradient descent

Introduction to gradient descent 6-1: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction to gradient descent Derivation and intuitions Hessian 6-2: Introduction to gradient descent Prof. J.C. Kao, UCLA Introduction Our

More information

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84

An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 An Introduction to Algebraic Multigrid (AMG) Algorithms Derrick Cerwinsky and Craig C. Douglas 1/84 Introduction Almost all numerical methods for solving PDEs will at some point be reduced to solving A

More information

A New Trust Region Algorithm Using Radial Basis Function Models

A New Trust Region Algorithm Using Radial Basis Function Models A New Trust Region Algorithm Using Radial Basis Function Models Seppo Pulkkinen University of Turku Department of Mathematics July 14, 2010 Outline 1 Introduction 2 Background Taylor series approximations

More information

LINEAR SYSTEMS (11) Intensive Computation

LINEAR SYSTEMS (11) Intensive Computation LINEAR SYSTEMS () Intensive Computation 27-8 prof. Annalisa Massini Viviana Arrigoni EXACT METHODS:. GAUSSIAN ELIMINATION. 2. CHOLESKY DECOMPOSITION. ITERATIVE METHODS:. JACOBI. 2. GAUSS-SEIDEL 2 CHOLESKY

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 2 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization 1 Outline 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization Summary 2 Outline 3.2

More information

Algorithms for Constrained Optimization

Algorithms for Constrained Optimization 1 / 42 Algorithms for Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University April 19, 2015 2 / 42 Outline 1. Convergence 2. Sequential quadratic

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.4: Krylov Subspace Methods 2 / 51 Krylov Subspace Methods In this chapter we give

More information

STAT 200C: High-dimensional Statistics

STAT 200C: High-dimensional Statistics STAT 200C: High-dimensional Statistics Arash A. Amini May 30, 2018 1 / 57 Table of Contents 1 Sparse linear models Basis Pursuit and restricted null space property Sufficient conditions for RNS 2 / 57

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit VII Sparse Matrix Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit VII Sparse Matrix Computations Part 1: Direct Methods Dianne P. O Leary c 2008

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

Trust Regions. Charles J. Geyer. March 27, 2013

Trust Regions. Charles J. Geyer. March 27, 2013 Trust Regions Charles J. Geyer March 27, 2013 1 Trust Region Theory We follow Nocedal and Wright (1999, Chapter 4), using their notation. Fletcher (1987, Section 5.1) discusses the same algorithm, but

More information

MATH 167: APPLIED LINEAR ALGEBRA Least-Squares

MATH 167: APPLIED LINEAR ALGEBRA Least-Squares MATH 167: APPLIED LINEAR ALGEBRA Least-Squares October 30, 2014 Least Squares We do a series of experiments, collecting data. We wish to see patterns!! We expect the output b to be a linear function of

More information

Optimization methods

Optimization methods Lecture notes 3 February 8, 016 1 Introduction Optimization methods In these notes we provide an overview of a selection of optimization methods. We focus on methods which rely on first-order information,

More information

On the use of quadratic models in unconstrained minimization without derivatives 1. M.J.D. Powell

On the use of quadratic models in unconstrained minimization without derivatives 1. M.J.D. Powell On the use of quadratic models in unconstrained minimization without derivatives 1 M.J.D. Powell Abstract: Quadratic approximations to the objective function provide a way of estimating first and second

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 7: More on Householder Reflectors; Least Squares Problems Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 15 Outline

More information

Introduction to Alternating Direction Method of Multipliers

Introduction to Alternating Direction Method of Multipliers Introduction to Alternating Direction Method of Multipliers Yale Chang Machine Learning Group Meeting September 29, 2016 Yale Chang (Machine Learning Group Meeting) Introduction to Alternating Direction

More information

To find the least-squares solution to Ax = b, we project b onto Col A to obtain the vector ) b = proj ColA b,

To find the least-squares solution to Ax = b, we project b onto Col A to obtain the vector ) b = proj ColA b, Least-Squares A famous application of linear algebra is the case study provided by the 1974 update of the North American Datum (pp. 373-374, a geodetic survey that keeps accurate measurements of distances

More information

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis,

orthogonal relations between vectors and subspaces Then we study some applications in vector spaces and linear systems, including Orthonormal Basis, 5 Orthogonality Goals: We use scalar products to find the length of a vector, the angle between 2 vectors, projections, orthogonal relations between vectors and subspaces Then we study some applications

More information

COMP 558 lecture 18 Nov. 15, 2010

COMP 558 lecture 18 Nov. 15, 2010 Least squares We have seen several least squares problems thus far, and we will see more in the upcoming lectures. For this reason it is good to have a more general picture of these problems and how to

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Multidimensional Unconstrained Optimization Suppose we have a function f() of more than one

More information

April 26, Applied mathematics PhD candidate, physics MA UC Berkeley. Lecture 4/26/2013. Jed Duersch. Spd matrices. Cholesky decomposition

April 26, Applied mathematics PhD candidate, physics MA UC Berkeley. Lecture 4/26/2013. Jed Duersch. Spd matrices. Cholesky decomposition Applied mathematics PhD candidate, physics MA UC Berkeley April 26, 2013 UCB 1/19 Symmetric positive-definite I Definition A symmetric matrix A R n n is positive definite iff x T Ax > 0 holds x 0 R n.

More information

ORIE 6334 Spectral Graph Theory October 13, Lecture 15

ORIE 6334 Spectral Graph Theory October 13, Lecture 15 ORIE 6334 Spectral Graph heory October 3, 206 Lecture 5 Lecturer: David P. Williamson Scribe: Shijin Rajakrishnan Iterative Methods We have seen in the previous lectures that given an electrical network,

More information

B553 Lecture 5: Matrix Algebra Review

B553 Lecture 5: Matrix Algebra Review B553 Lecture 5: Matrix Algebra Review Kris Hauser January 19, 2012 We have seen in prior lectures how vectors represent points in R n and gradients of functions. Matrices represent linear transformations

More information

6.4 Krylov Subspaces and Conjugate Gradients

6.4 Krylov Subspaces and Conjugate Gradients 6.4 Krylov Subspaces and Conjugate Gradients Our original equation is Ax = b. The preconditioned equation is P Ax = P b. When we write P, we never intend that an inverse will be explicitly computed. P

More information

There are two things that are particularly nice about the first basis

There are two things that are particularly nice about the first basis Orthogonality and the Gram-Schmidt Process In Chapter 4, we spent a great deal of time studying the problem of finding a basis for a vector space We know that a basis for a vector space can potentially

More information

Designing Information Devices and Systems I Discussion 13B

Designing Information Devices and Systems I Discussion 13B EECS 6A Fall 7 Designing Information Devices and Systems I Discussion 3B. Orthogonal Matching Pursuit Lecture Orthogonal Matching Pursuit (OMP) algorithm: Inputs: A set of m songs, each of length n: S

More information

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 25

Designing Information Devices and Systems I Spring 2018 Lecture Notes Note 25 EECS 6 Designing Information Devices and Systems I Spring 8 Lecture Notes Note 5 5. Speeding up OMP In the last lecture note, we introduced orthogonal matching pursuit OMP, an algorithm that can extract

More information

Simple sparse matrices we have seen so far include diagonal matrices and tridiagonal matrices, but these are not the only ones.

Simple sparse matrices we have seen so far include diagonal matrices and tridiagonal matrices, but these are not the only ones. A matrix is sparse if most of its entries are zero. Simple sparse matrices we have seen so far include diagonal matrices and tridiagonal matrices, but these are not the only ones. In fact sparse matrices

More information

Relations Between Adjacency And Modularity Graph Partitioning: Principal Component Analysis vs. Modularity Component Analysis

Relations Between Adjacency And Modularity Graph Partitioning: Principal Component Analysis vs. Modularity Component Analysis Relations Between Adjacency And Modularity Graph Partitioning: Principal Component Analysis vs. Modularity Component Analysis Hansi Jiang Carl Meyer North Carolina State University October 27, 2015 1 /

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

Introduction. New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems

Introduction. New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems New Nonsmooth Trust Region Method for Unconstraint Locally Lipschitz Optimization Problems Z. Akbari 1, R. Yousefpour 2, M. R. Peyghami 3 1 Department of Mathematics, K.N. Toosi University of Technology,

More information

Chapter 6 - Orthogonality

Chapter 6 - Orthogonality Chapter 6 - Orthogonality Maggie Myers Robert A. van de Geijn The University of Texas at Austin Orthogonality Fall 2009 http://z.cs.utexas.edu/wiki/pla.wiki/ 1 Orthogonal Vectors and Subspaces http://z.cs.utexas.edu/wiki/pla.wiki/

More information

Lecture 13: Spectral Graph Theory

Lecture 13: Spectral Graph Theory CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 13: Spectral Graph Theory Lecturer: Shayan Oveis Gharan 11/14/18 Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Math 471 (Numerical methods) Chapter 3 (second half). System of equations

Math 471 (Numerical methods) Chapter 3 (second half). System of equations Math 47 (Numerical methods) Chapter 3 (second half). System of equations Overlap 3.5 3.8 of Bradie 3.5 LU factorization w/o pivoting. Motivation: ( ) A I Gaussian Elimination (U L ) where U is upper triangular

More information

12. Cholesky factorization

12. Cholesky factorization L. Vandenberghe ECE133A (Winter 2018) 12. Cholesky factorization positive definite matrices examples Cholesky factorization complex positive definite matrices kernel methods 12-1 Definitions a symmetric

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 12: Gauss for Linear Systems Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

Optimization methods

Optimization methods Optimization methods Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda /8/016 Introduction Aim: Overview of optimization methods that Tend to

More information

Arc Search Algorithms

Arc Search Algorithms Arc Search Algorithms Nick Henderson and Walter Murray Stanford University Institute for Computational and Mathematical Engineering November 10, 2011 Unconstrained Optimization minimize x D F (x) where

More information

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying

The quadratic eigenvalue problem (QEP) is to find scalars λ and nonzero vectors u satisfying I.2 Quadratic Eigenvalue Problems 1 Introduction The quadratic eigenvalue problem QEP is to find scalars λ and nonzero vectors u satisfying where Qλx = 0, 1.1 Qλ = λ 2 M + λd + K, M, D and K are given

More information

Network Newton. Aryan Mokhtari, Qing Ling and Alejandro Ribeiro. University of Pennsylvania, University of Science and Technology (China)

Network Newton. Aryan Mokhtari, Qing Ling and Alejandro Ribeiro. University of Pennsylvania, University of Science and Technology (China) Network Newton Aryan Mokhtari, Qing Ling and Alejandro Ribeiro University of Pennsylvania, University of Science and Technology (China) aryanm@seas.upenn.edu, qingling@mail.ustc.edu.cn, aribeiro@seas.upenn.edu

More information

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm

Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm Recovery of Sparse Signals from Noisy Measurements Using an l p -Regularized Least-Squares Algorithm J. K. Pant, W.-S. Lu, and A. Antoniou University of Victoria August 25, 2011 Compressive Sensing 1 University

More information

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016

Contents. 1 Introduction. 1.1 History of Optimization ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 ALG-ML SEMINAR LISSA: LINEAR TIME SECOND-ORDER STOCHASTIC ALGORITHM FEBRUARY 23, 2016 LECTURERS: NAMAN AGARWAL AND BRIAN BULLINS SCRIBE: KIRAN VODRAHALLI Contents 1 Introduction 1 1.1 History of Optimization.....................................

More information

LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b

LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b AM 205: lecture 7 Last time: LU factorization Today s lecture: Cholesky factorization, timing, QR factorization Reminder: assignment 1 due at 5 PM on Friday September 22 LU Factorization LU factorization

More information

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Coralia Cartis, University of Oxford INFOMM CDT: Modelling, Analysis and Computation of Continuous Real-World Problems Methods

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu

Dimension Reduction Techniques. Presented by Jie (Jerry) Yu Dimension Reduction Techniques Presented by Jie (Jerry) Yu Outline Problem Modeling Review of PCA and MDS Isomap Local Linear Embedding (LLE) Charting Background Advances in data collection and storage

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

MATH 22A: LINEAR ALGEBRA Chapter 4

MATH 22A: LINEAR ALGEBRA Chapter 4 MATH 22A: LINEAR ALGEBRA Chapter 4 Jesús De Loera, UC Davis November 30, 2012 Orthogonality and Least Squares Approximation QUESTION: Suppose Ax = b has no solution!! Then what to do? Can we find an Approximate

More information

LECTURE NOTE #11 PROF. ALAN YUILLE

LECTURE NOTE #11 PROF. ALAN YUILLE LECTURE NOTE #11 PROF. ALAN YUILLE 1. NonLinear Dimension Reduction Spectral Methods. The basic idea is to assume that the data lies on a manifold/surface in D-dimensional space, see figure (1) Perform

More information

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian

2. Linear algebra. matrices and vectors. linear equations. range and nullspace of matrices. function of vectors, gradient and Hessian FE661 - Statistical Methods for Financial Engineering 2. Linear algebra Jitkomut Songsiri matrices and vectors linear equations range and nullspace of matrices function of vectors, gradient and Hessian

More information

Convex Optimization. Problem set 2. Due Monday April 26th

Convex Optimization. Problem set 2. Due Monday April 26th Convex Optimization Problem set 2 Due Monday April 26th 1 Gradient Decent without Line-search In this problem we will consider gradient descent with predetermined step sizes. That is, instead of determining

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Fitting Linear Statistical Models to Data by Least Squares I: Introduction

Fitting Linear Statistical Models to Data by Least Squares I: Introduction Fitting Linear Statistical Models to Data by Least Squares I: Introduction Brian R. Hunt and C. David Levermore University of Maryland, College Park Math 420: Mathematical Modeling January 25, 2012 version

More information

Tangent spaces, normals and extrema

Tangent spaces, normals and extrema Chapter 3 Tangent spaces, normals and extrema If S is a surface in 3-space, with a point a S where S looks smooth, i.e., without any fold or cusp or self-crossing, we can intuitively define the tangent

More information

1 Matrix notation and preliminaries from spectral graph theory

1 Matrix notation and preliminaries from spectral graph theory Graph clustering (or community detection or graph partitioning) is one of the most studied problems in network analysis. One reason for this is that there are a variety of ways to define a cluster or community.

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

MS&E 318 (CME 338) Large-Scale Numerical Optimization

MS&E 318 (CME 338) Large-Scale Numerical Optimization Stanford University, Management Science & Engineering (and ICME) MS&E 318 (CME 338) Large-Scale Numerical Optimization 1 Origins Instructor: Michael Saunders Spring 2015 Notes 9: Augmented Lagrangian Methods

More information

Derivative-Free Trust-Region methods

Derivative-Free Trust-Region methods Derivative-Free Trust-Region methods MTH6418 S. Le Digabel, École Polytechnique de Montréal Fall 2015 (v4) MTH6418: DFTR 1/32 Plan Quadratic models Model Quality Derivative-Free Trust-Region Framework

More information

Graph Partitioning Using Random Walks

Graph Partitioning Using Random Walks Graph Partitioning Using Random Walks A Convex Optimization Perspective Lorenzo Orecchia Computer Science Why Spectral Algorithms for Graph Problems in practice? Simple to implement Can exploit very efficient

More information

Lecture 7. Econ August 18

Lecture 7. Econ August 18 Lecture 7 Econ 2001 2015 August 18 Lecture 7 Outline First, the theorem of the maximum, an amazing result about continuity in optimization problems. Then, we start linear algebra, mostly looking at familiar

More information

Linear algebra & Numerical Analysis

Linear algebra & Numerical Analysis Linear algebra & Numerical Analysis Eigenvalues and Eigenvectors Marta Jarošová http://homel.vsb.cz/~dom033/ Outline Methods computing all eigenvalues Characteristic polynomial Jacobi method for symmetric

More information

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil

GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis. Massimiliano Pontil GI07/COMPM012: Mathematical Programming and Research Methods (Part 2) 2. Least Squares and Principal Components Analysis Massimiliano Pontil 1 Today s plan SVD and principal component analysis (PCA) Connection

More information

CLASS NOTES Computational Methods for Engineering Applications I Spring 2015

CLASS NOTES Computational Methods for Engineering Applications I Spring 2015 CLASS NOTES Computational Methods for Engineering Applications I Spring 2015 Petros Koumoutsakos Gerardo Tauriello (Last update: July 27, 2015) IMPORTANT DISCLAIMERS 1. REFERENCES: Much of the material

More information

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Laurenz Wiskott Institute for Theoretical Biology Humboldt-University Berlin Invalidenstraße 43 D-10115 Berlin, Germany 11 March 2004 1 Intuition Problem Statement Experimental

More information

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix René Vidal Stefano Soatto Shankar Sastry Department of EECS, UC Berkeley Department of Computer Sciences, UCLA 30 Cory Hall,

More information

Worst-Case Complexity Guarantees and Nonconvex Smooth Optimization

Worst-Case Complexity Guarantees and Nonconvex Smooth Optimization Worst-Case Complexity Guarantees and Nonconvex Smooth Optimization Frank E. Curtis, Lehigh University Beyond Convexity Workshop, Oaxaca, Mexico 26 October 2017 Worst-Case Complexity Guarantees and Nonconvex

More information

Research Reports on Mathematical and Computing Sciences

Research Reports on Mathematical and Computing Sciences ISSN 1342-284 Research Reports on Mathematical and Computing Sciences Exploiting Sparsity in Linear and Nonlinear Matrix Inequalities via Positive Semidefinite Matrix Completion Sunyoung Kim, Masakazu

More information

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers.

5.) For each of the given sets of vectors, determine whether or not the set spans R 3. Give reasons for your answers. Linear Algebra - Test File - Spring Test # For problems - consider the following system of equations. x + y - z = x + y + 4z = x + y + 6z =.) Solve the system without using your calculator..) Find the

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix

MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix MODULE 8 Topics: Null space, range, column space, row space and rank of a matrix Definition: Let L : V 1 V 2 be a linear operator. The null space N (L) of L is the subspace of V 1 defined by N (L) = {x

More information

AM205: Assignment 2. i=1

AM205: Assignment 2. i=1 AM05: Assignment Question 1 [10 points] (a) [4 points] For p 1, the p-norm for a vector x R n is defined as: ( n ) 1/p x p x i p ( ) i=1 This definition is in fact meaningful for p < 1 as well, although

More information

Applying Bayesian Estimation to Noisy Simulation Optimization

Applying Bayesian Estimation to Noisy Simulation Optimization Applying Bayesian Estimation to Noisy Simulation Optimization Geng Deng Michael C. Ferris University of Wisconsin-Madison INFORMS Annual Meeting Pittsburgh 2006 Simulation-based optimization problem Computer

More information

Orthogonality. 6.1 Orthogonal Vectors and Subspaces. Chapter 6

Orthogonality. 6.1 Orthogonal Vectors and Subspaces. Chapter 6 Chapter 6 Orthogonality 6.1 Orthogonal Vectors and Subspaces Recall that if nonzero vectors x, y R n are linearly independent then the subspace of all vectors αx + βy, α, β R (the space spanned by x and

More information

Course Summary Math 211

Course Summary Math 211 Course Summary Math 211 table of contents I. Functions of several variables. II. R n. III. Derivatives. IV. Taylor s Theorem. V. Differential Geometry. VI. Applications. 1. Best affine approximations.

More information

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA

SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS. Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 1 SOLVING SPARSE LINEAR SYSTEMS OF EQUATIONS Chao Yang Computational Research Division Lawrence Berkeley National Laboratory Berkeley, CA, USA 2 OUTLINE Sparse matrix storage format Basic factorization

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Matrix Notation Mark Schmidt University of British Columbia Winter 2017 Admin Auditting/registration forms: Submit them at end of class, pick them up end of next class. I need

More information

Communities, Spectral Clustering, and Random Walks

Communities, Spectral Clustering, and Random Walks Communities, Spectral Clustering, and Random Walks David Bindel Department of Computer Science Cornell University 26 Sep 2011 20 21 19 16 22 28 17 18 29 26 27 30 23 1 25 5 8 24 2 4 14 3 9 13 15 11 10 12

More information

Handling Nonpositive Curvature in a Limited Memory Steepest Descent Method

Handling Nonpositive Curvature in a Limited Memory Steepest Descent Method Handling Nonpositive Curvature in a Limited Memory Steepest Descent Method Fran E. Curtis and Wei Guo Department of Industrial and Systems Engineering, Lehigh University, USA COR@L Technical Report 14T-011-R1

More information

Matrix Rank Minimization with Applications

Matrix Rank Minimization with Applications Matrix Rank Minimization with Applications Maryam Fazel Haitham Hindi Stephen Boyd Information Systems Lab Electrical Engineering Department Stanford University 8/2001 ACC 01 Outline Rank Minimization

More information

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017

COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 COMS 4721: Machine Learning for Data Science Lecture 6, 2/2/2017 Prof. John Paisley Department of Electrical Engineering & Data Science Institute Columbia University UNDERDETERMINED LINEAR EQUATIONS We

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725 Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: proximal gradient descent Consider the problem min g(x) + h(x) with g, h convex, g differentiable, and h simple

More information

Introduction to Compressed Sensing

Introduction to Compressed Sensing Introduction to Compressed Sensing Alejandro Parada, Gonzalo Arce University of Delaware August 25, 2016 Motivation: Classical Sampling 1 Motivation: Classical Sampling Issues Some applications Radar Spectral

More information

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B =

Def. A topological space X is disconnected if it admits a non-trivial splitting: (We ll abbreviate disjoint union of two subsets A and B meaning A B = CONNECTEDNESS-Notes Def. A topological space X is disconnected if it admits a non-trivial splitting: X = A B, A B =, A, B open in X, and non-empty. (We ll abbreviate disjoint union of two subsets A and

More information

Large-scale eigenvalue problems

Large-scale eigenvalue problems ELE 538B: Mathematics of High-Dimensional Data Large-scale eigenvalue problems Yuxin Chen Princeton University, Fall 208 Outline Power method Lanczos algorithm Eigenvalue problems 4-2 Eigendecomposition

More information