A New Trust Region Algorithm Using Radial Basis Function Models

Size: px
Start display at page:

Download "A New Trust Region Algorithm Using Radial Basis Function Models"

Transcription

1 A New Trust Region Algorithm Using Radial Basis Function Models Seppo Pulkkinen University of Turku Department of Mathematics July 14, 2010

2 Outline 1 Introduction 2 Background Taylor series approximations 3 Radial basis function models Radial basis functions: overview Limiting interpolants 4 The trust region framework The trust region framework: overview Updating the model function Solving the subproblem via d.c. decompositions 5 Numerical results

3 Introduction Problem definition We are considering a constrained nonlinear optimization problem: min x R n f : Rn R, l i x i u i, i = 1,..., n, Ax b. We also assume that the objective function is nonconvex and not necessarily differentiable. is expensive to evaluate. Such problems frequently appear in image registration. data clustering.

4 Taylor Series Approximations Most gradient-based methods are based on the quadratic Taylor series approximation m(x) = f (x 0 ) + f (x 0 ) T (x x 0 ) (x x 0) T H(x 0 )(x x 0 ). This can expressed in a more generic form, that is m(x) = c + b T (x x 0 ) (x x 0) T A(x x 0 ), where c R, b R n and A R n n. Problem Can the model parameters c, b and A be determined without evaluating objective function derivatives?

5 Determining the Model Parameters Interpolation-based approach Determine the quadratic model parameters c, b and A from interpolation equations m(x i ) = f (x i ), i = 1,..., X, where X = {x 1,..., x m } is the set of interpolation points. A model defined by the above equations can be uniquely determined, if X = (n+1)(n+2) 2. requires no derivatives of the objective function. is not restricted to a small neighbourhood. However... The number of interpolation points is O(n 2 ). A quadratic model can only produce local approximations.

6 A Novel Approach: Radial Basis Function Models Definition A typical radial basis function model is of the form X m(x) = λ i φ( x x i ) + p(x), i=1 where λ i are weighting coefficients and p is a low-order polynomial. Such a model function is more flexible than a quadratic model: The minimum number of interpolation points is n + 2. Can use an arbitrary number of interpolation points. Ideal for approximating functions with multiple minima. A fundamental property (assuming uniformly distributed points) lim m n(x) = f (x), n X = n

7 Radial Basis Functions: Overview The choice of the radial basis function φ is crucial for the accuracy and numerical stability of the approximation. Commonly used radial basis functions: φ(r) = r linear φ(r) = r 3 cubic φ(r) = r 2 log r thin plate φ(r) = (γr 2 + 1) 3 2 multiquadric φ(r) = e γr 2 Gaussian r 0. Important applications of radial basis functions include: solving partial differential equations. neural networks. interpolation of spatial data.

8 An Illustrative Example (1) Cubic RBF Interpolation with 30 randomly chosen interpolation points, Rastrigin function: 1.0 Function RBF model

9 An Illustrative Example (2) Function Objective function RBF model Model

10 Limiting Functions of Flat RBF Models (1) Examples of RBF models with adjustable shape parameter: φ(r, γ) = (γr 2 + 1) 3 2 φ(r, γ) = e γr 2 The limit γ 0 (Fornberg et al. 2004) multiquadric Gaussian When X = (n+1)(n+2) 2 and the set X is poised for quadratic interpolation, the limit γ 0 yields a quadratic polynomial, i.e. there exist A R n n, b R n and c R such that X lim γ 0 i=1 Implication λ i φ( x x i, γ) + p(x) = 1 2 xt Ax + b T x + c. RBF models yield accurate local approximations by letting γ 0 near a minimum.

11 Limiting Functions of Flat RBF Models (2) Function Multiquadric RBF model (γ=5) Multiquadric RBF model (γ=5) 180 Quadratic model

12 Determining the RBF Model Parameters (1) We are particularly interested in multiquadric RBF models X m(x) = λ i (γ x x i 2 + 1) p(x x0 ), i=1 where the linear polynomial tail p(x) = b T x + c guarantees a unique interpolant (Powell 1992). provides an estimate for the function gradient. The interpolation equations uniquely determining the model parameters λ are m(x i ) = f (x i ), i = 1,..., X X λ i p j (x i x 0 ) = 0, j = 1,..., n + 1, i=1 where the set {p 1,..., p n+1 } spans a linear polynomial space.

13 Determining the RBF Model Parameters (2) The interpolation equations in matrix form are [ ] [ ] [ ] Φ Π λ F Π T =, 0 c 0 where and λ = λ 1. λ X, c = c 1. c n+1, F = f (x 1 ). f (x X ) Φ ij = φ( x i x j ), Π ij = p j (x i x 0 ),. A sufficient condition for a unique solution is that a subset Y Y, Y = n + 1, where Y = {x 1 x 0,..., x X x 0 }, is linearly independent. The solution to these equations can be updated in O(n 2 ) operations with Cholesky and QR factorizations (Powell 1996).

14 The Trust Region Framework Mathematical formulation At each iteration k, solve the trust region subproblem x = arg min s {m k (x) x B k }, B k = {x F x x k < k }, where F is the feasible set and x k = arg min{f (x) x X}. At each iteration step, obtain the index of the replaced point from i = arg max x i x k, i=1,..., X and set x i = x. Also adjust the trust region radius k : If the step x yields a sufficiently smaller objective function value, set k+1 > k. Otherwise, set k+1 < k.

15 Updating the Model Under Geometric Constraints Notation: y i = x i x k infeasible region The Wedge Condition (Marazzi, Nodedal 2002) S = span({y 1,..., y n+1 } \ {y }). Compute vector ˆn that is orthogonal to S. The feasible region containing sufficiently linearly independent points is defined by F = {x B k (x x k ) T ˆn > γ x }. These constraints ensure that the set {y 1,..., y n+1 } remains poised for linear interpolation. The Gram-Schmidt construction of {y 1,..., y n+1 } can be updated in O(n 2 ) operations.

16 The Special Structure of RBF Models m(x) = λ i φ( x x i ) + λ i φ( x x i ) λ i >0 λ i <0 convex concave + p(x x 0 ), convex Motivation RBF models are linear combinations of convex and concave functions. Hence, it is natural to express the model function in the form where g and h are convex. Implications m(x) = g(x) h(x), It is possible to develop efficient d.c. (diff-convex) algorithms for minimizing the RBF model function.

17 Diff-convex Decomposition of an RBF Model Regularization (Hoai An, Vaz and Vicente 2009) g(x) = ρ 2 x x p(x), X h(x) = ρ 2 x x 0 2 λ i φ( x x i ) i=1 With this decomposition, solving the d.c. subproblem x k+1 = arg min x F {g(x) (h(x k) + h(x k ) T (x x k ))}, is equivalent to solving x k+1 = arg min x (x 0 + x k m(x k) ). x F ρ

18 How to Determine the ρ-parameter? The adaptive d.c. algorithm At each iteration, set { ρ = γ1 ρ, f (x k+1 ) f (x k ), reject x k+1 ρ = γ 2 ρ, f (x k+1 ) < f (x k ), where γ 1 > 1 and 0 < γ 2 < 1. The convergence rate is inversely proportional to ρ. The convexity of h within the trust region B is guaranteed, if ρ ρ = max{max x B {eig( 2 m(x))}, 0}. Problem Derive an upper bound for the minimal ρ that ensures convexity.

19 Estimating the Eigenvalues of the Model Hessian The Hessian matrix of an RBF model is of the form X 2 m(x) = λ i [α( r i )I n + β( r i ) r iri T r i 2 ], where r i = x x i. i=1 An estimate for the greatest positive eigenvalue From the above expression, we have X e max (x) λ i α(ri max ) + i=1 X i=1,λ i >0 λ i β(r max i ), where e max (x) = max{eig( 2 m(x)) x B(x 0, )}

20 Interval Analysis of RBF Models Example: estimating an upper bound of the RBF model in a sphere xi Case 2b Case 2a Case 1 Given the index j of the origin point, we define λ i > 0, λ i < 0, r max i r min i = = x i x j + { xi x j, x i / B(x j, ) 0, x i B(x j, ) Case 1 Case 2a Case 2b

21 The Effect of Shape Parameter on Convergence Rates Convergence rates of algorithms with quadratic, multiquadric rbf and cubic rbf model functions were compared QUAD RBF MQ RBF C xk x number of iterations Adaptive multiquadric RBF exhibits a rapid convergence rate. Cubic RBF without shape parameter exhibits a very slow local convergence rate.

22 Thank you! Questions?

Interpolation-Based Trust-Region Methods for DFO

Interpolation-Based Trust-Region Methods for DFO Interpolation-Based Trust-Region Methods for DFO Luis Nunes Vicente University of Coimbra (joint work with A. Bandeira, A. R. Conn, S. Gratton, and K. Scheinberg) July 27, 2010 ICCOPT, Santiago http//www.mat.uc.pt/~lnv

More information

Nonlinear Optimization: What s important?

Nonlinear Optimization: What s important? Nonlinear Optimization: What s important? Julian Hall 10th May 2012 Convexity: convex problems A local minimizer is a global minimizer A solution of f (x) = 0 (stationary point) is a minimizer A global

More information

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30

Optimization. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Optimization Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Numerical Computation Optimization 1 / 30 Unconstrained optimization Outline 1 Unconstrained optimization 2 Constrained

More information

Programming, numerics and optimization

Programming, numerics and optimization Programming, numerics and optimization Lecture C-3: Unconstrained optimization II Łukasz Jankowski ljank@ippt.pan.pl Institute of Fundamental Technological Research Room 4.32, Phone +22.8261281 ext. 428

More information

5 Handling Constraints

5 Handling Constraints 5 Handling Constraints Engineering design optimization problems are very rarely unconstrained. Moreover, the constraints that appear in these problems are typically nonlinear. This motivates our interest

More information

8 Numerical methods for unconstrained problems

8 Numerical methods for unconstrained problems 8 Numerical methods for unconstrained problems Optimization is one of the important fields in numerical computation, beside solving differential equations and linear systems. We can see that these fields

More information

Neural Networks Lecture 4: Radial Bases Function Networks

Neural Networks Lecture 4: Radial Bases Function Networks Neural Networks Lecture 4: Radial Bases Function Networks H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011. A. Talebi, Farzaneh Abdollahi

More information

Global Convergence of Radial Basis Function Trust Region Derivative-Free Algorithms

Global Convergence of Radial Basis Function Trust Region Derivative-Free Algorithms ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 Global Convergence of Radial Basis Function Trust Region Derivative-Free Algorithms Stefan M. Wild and Christine Shoemaker Mathematics

More information

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space.

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space. Chapter 1 Preliminaries The purpose of this chapter is to provide some basic background information. Linear Space Hilbert Space Basic Principles 1 2 Preliminaries Linear Space The notion of linear space

More information

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen

Numerisches Rechnen. (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang. Institut für Geometrie und Praktische Mathematik RWTH Aachen Numerisches Rechnen (für Informatiker) M. Grepl P. Esser & G. Welper & L. Zhang Institut für Geometrie und Praktische Mathematik RWTH Aachen Wintersemester 2011/12 IGPM, RWTH Aachen Numerisches Rechnen

More information

May 9, 2014 MATH 408 MIDTERM EXAM OUTLINE. Sample Questions

May 9, 2014 MATH 408 MIDTERM EXAM OUTLINE. Sample Questions May 9, 24 MATH 48 MIDTERM EXAM OUTLINE This exam will consist of two parts and each part will have multipart questions. Each of the 6 questions is worth 5 points for a total of points. The two part of

More information

Algorithms for constrained local optimization

Algorithms for constrained local optimization Algorithms for constrained local optimization Fabio Schoen 2008 http://gol.dsi.unifi.it/users/schoen Algorithms for constrained local optimization p. Feasible direction methods Algorithms for constrained

More information

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings

Structural and Multidisciplinary Optimization. P. Duysinx and P. Tossings Structural and Multidisciplinary Optimization P. Duysinx and P. Tossings 2018-2019 CONTACTS Pierre Duysinx Institut de Mécanique et du Génie Civil (B52/3) Phone number: 04/366.91.94 Email: P.Duysinx@uliege.be

More information

Optimization Methods. Lecture 18: Optimality Conditions and. Gradient Methods. for Unconstrained Optimization

Optimization Methods. Lecture 18: Optimality Conditions and. Gradient Methods. for Unconstrained Optimization 5.93 Optimization Methods Lecture 8: Optimality Conditions and Gradient Methods for Unconstrained Optimization Outline. Necessary and sucient optimality conditions Slide. Gradient m e t h o d s 3. The

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Lecture 5, Continuous Optimisation Oxford University Computing Laboratory, HT 2006 Notes by Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The notion of complexity (per iteration)

More information

A recursive model-based trust-region method for derivative-free bound-constrained optimization.

A recursive model-based trust-region method for derivative-free bound-constrained optimization. A recursive model-based trust-region method for derivative-free bound-constrained optimization. ANKE TRÖLTZSCH [CERFACS, TOULOUSE, FRANCE] JOINT WORK WITH: SERGE GRATTON [ENSEEIHT, TOULOUSE, FRANCE] PHILIPPE

More information

Roots and Coefficients Polynomials Preliminary Maths Extension 1

Roots and Coefficients Polynomials Preliminary Maths Extension 1 Preliminary Maths Extension Question If, and are the roots of x 5x x 0, find the following. (d) (e) Question If p, q and r are the roots of x x x 4 0, evaluate the following. pq r pq qr rp p q q r r p

More information

Plan of Class 4. Radial Basis Functions with moving centers. Projection Pursuit Regression and ridge. Principal Component Analysis: basic ideas

Plan of Class 4. Radial Basis Functions with moving centers. Projection Pursuit Regression and ridge. Principal Component Analysis: basic ideas Plan of Class 4 Radial Basis Functions with moving centers Multilayer Perceptrons Projection Pursuit Regression and ridge functions approximation Principal Component Analysis: basic ideas Radial Basis

More information

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method.

Constrained optimization. Unconstrained optimization. One-dimensional. Multi-dimensional. Newton with equality constraints. Active-set method. Optimization Unconstrained optimization One-dimensional Multi-dimensional Newton s method Basic Newton Gauss- Newton Quasi- Newton Descent methods Gradient descent Conjugate gradient Constrained optimization

More information

Least Squares Approximation

Least Squares Approximation Chapter 6 Least Squares Approximation As we saw in Chapter 5 we can interpret radial basis function interpolation as a constrained optimization problem. We now take this point of view again, but start

More information

14. Nonlinear equations

14. Nonlinear equations L. Vandenberghe ECE133A (Winter 2018) 14. Nonlinear equations Newton method for nonlinear equations damped Newton method for unconstrained minimization Newton method for nonlinear least squares 14-1 Set

More information

Interpolation. 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter

Interpolation. 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter Key References: Interpolation 1. Judd, K. Numerical Methods in Economics, Cambridge: MIT Press. Chapter 6. 2. Press, W. et. al. Numerical Recipes in C, Cambridge: Cambridge University Press. Chapter 3

More information

CHAPTER 2: QUADRATIC PROGRAMMING

CHAPTER 2: QUADRATIC PROGRAMMING CHAPTER 2: QUADRATIC PROGRAMMING Overview Quadratic programming (QP) problems are characterized by objective functions that are quadratic in the design variables, and linear constraints. In this sense,

More information

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit V: Eigenvalue Problems. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit V: Eigenvalue Problems Lecturer: Dr. David Knezevic Unit V: Eigenvalue Problems Chapter V.4: Krylov Subspace Methods 2 / 51 Krylov Subspace Methods In this chapter we give

More information

GEOMETRY OF INTERPOLATION SETS IN DERIVATIVE FREE OPTIMIZATION

GEOMETRY OF INTERPOLATION SETS IN DERIVATIVE FREE OPTIMIZATION GEOMETRY OF INTERPOLATION SETS IN DERIVATIVE FREE OPTIMIZATION ANDREW R. CONN, KATYA SCHEINBERG, AND LUíS N. VICENTE Abstract. We consider derivative free methods based on sampling approaches for nonlinear

More information

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares

CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares CS 542G: Robustifying Newton, Constraints, Nonlinear Least Squares Robert Bridson October 29, 2008 1 Hessian Problems in Newton Last time we fixed one of plain Newton s problems by introducing line search

More information

Numerical Optimization. Review: Unconstrained Optimization

Numerical Optimization. Review: Unconstrained Optimization Numerical Optimization Finding the best feasible solution Edward P. Gatzke Department of Chemical Engineering University of South Carolina Ed Gatzke (USC CHE ) Numerical Optimization ECHE 589, Spring 2011

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 2 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization 1 Outline 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization Summary 2 Outline 3.2

More information

Algorithms for Nonsmooth Optimization

Algorithms for Nonsmooth Optimization Algorithms for Nonsmooth Optimization Frank E. Curtis, Lehigh University presented at Center for Optimization and Statistical Learning, Northwestern University 2 March 2018 Algorithms for Nonsmooth Optimization

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 5. Nonlinear Equations Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T Heath Chapter 5 Nonlinear Equations Copyright c 2001 Reproduction permitted only for noncommercial, educational

More information

Math 273a: Optimization Netwon s methods

Math 273a: Optimization Netwon s methods Math 273a: Optimization Netwon s methods Instructor: Wotao Yin Department of Mathematics, UCLA Fall 2015 some material taken from Chong-Zak, 4th Ed. Main features of Newton s method Uses both first derivatives

More information

Quadratic Programming

Quadratic Programming Quadratic Programming Outline Linearly constrained minimization Linear equality constraints Linear inequality constraints Quadratic objective function 2 SideBar: Matrix Spaces Four fundamental subspaces

More information

NONLINEAR. (Hillier & Lieberman Introduction to Operations Research, 8 th edition)

NONLINEAR. (Hillier & Lieberman Introduction to Operations Research, 8 th edition) NONLINEAR PROGRAMMING (Hillier & Lieberman Introduction to Operations Research, 8 th edition) Nonlinear Programming g Linear programming has a fundamental role in OR. In linear programming all its functions

More information

Higher-Order Methods

Higher-Order Methods Higher-Order Methods Stephen J. Wright 1 2 Computer Sciences Department, University of Wisconsin-Madison. PCMI, July 2016 Stephen Wright (UW-Madison) Higher-Order Methods PCMI, July 2016 1 / 25 Smooth

More information

13. Nonlinear least squares

13. Nonlinear least squares L. Vandenberghe ECE133A (Fall 2018) 13. Nonlinear least squares definition and examples derivatives and optimality condition Gauss Newton method Levenberg Marquardt method 13.1 Nonlinear least squares

More information

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL)

Part 3: Trust-region methods for unconstrained optimization. Nick Gould (RAL) Part 3: Trust-region methods for unconstrained optimization Nick Gould (RAL) minimize x IR n f(x) MSc course on nonlinear optimization UNCONSTRAINED MINIMIZATION minimize x IR n f(x) where the objective

More information

Outline. Scientific Computing: An Introductory Survey. Nonlinear Equations. Nonlinear Equations. Examples: Nonlinear Equations

Outline. Scientific Computing: An Introductory Survey. Nonlinear Equations. Nonlinear Equations. Examples: Nonlinear Equations Methods for Systems of Methods for Systems of Outline Scientific Computing: An Introductory Survey Chapter 5 1 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

4TE3/6TE3. Algorithms for. Continuous Optimization

4TE3/6TE3. Algorithms for. Continuous Optimization 4TE3/6TE3 Algorithms for Continuous Optimization (Algorithms for Constrained Nonlinear Optimization Problems) Tamás TERLAKY Computing and Software McMaster University Hamilton, November 2005 terlaky@mcmaster.ca

More information

MATH 590: Meshfree Methods

MATH 590: Meshfree Methods MATH 590: Meshfree Methods Chapter 34: Improving the Condition Number of the Interpolation Matrix Greg Fasshauer Department of Applied Mathematics Illinois Institute of Technology Fall 2010 fasshauer@iit.edu

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2

Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Methods for Unconstrained Optimization Numerical Optimization Lectures 1-2 Coralia Cartis, University of Oxford INFOMM CDT: Modelling, Analysis and Computation of Continuous Real-World Problems Methods

More information

Slide05 Haykin Chapter 5: Radial-Basis Function Networks

Slide05 Haykin Chapter 5: Radial-Basis Function Networks Slide5 Haykin Chapter 5: Radial-Basis Function Networks CPSC 636-6 Instructor: Yoonsuck Choe Spring Learning in MLP Supervised learning in multilayer perceptrons: Recursive technique of stochastic approximation,

More information

Line Search Methods for Unconstrained Optimisation

Line Search Methods for Unconstrained Optimisation Line Search Methods for Unconstrained Optimisation Lecture 8, Numerical Linear Algebra and Optimisation Oxford University Computing Laboratory, MT 2007 Dr Raphael Hauser (hauser@comlab.ox.ac.uk) The Generic

More information

CS 450 Numerical Analysis. Chapter 5: Nonlinear Equations

CS 450 Numerical Analysis. Chapter 5: Nonlinear Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

Neural Network Training

Neural Network Training Neural Network Training Sargur Srihari Topics in Network Training 0. Neural network parameters Probabilistic problem formulation Specifying the activation and error functions for Regression Binary classification

More information

Numerical Optimization

Numerical Optimization Numerical Optimization Unit 2: Multivariable optimization problems Che-Rung Lee Scribe: February 28, 2011 (UNIT 2) Numerical Optimization February 28, 2011 1 / 17 Partial derivative of a two variable function

More information

Math 273a: Optimization Basic concepts

Math 273a: Optimization Basic concepts Math 273a: Optimization Basic concepts Instructor: Wotao Yin Department of Mathematics, UCLA Spring 2015 slides based on Chong-Zak, 4th Ed. Goals of this lecture The general form of optimization: minimize

More information

MATH 4211/6211 Optimization Basics of Optimization Problems

MATH 4211/6211 Optimization Basics of Optimization Problems MATH 4211/6211 Optimization Basics of Optimization Problems Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 A standard minimization

More information

The Conjugate Gradient Method

The Conjugate Gradient Method The Conjugate Gradient Method Jason E. Hicken Aerospace Design Lab Department of Aeronautics & Astronautics Stanford University 14 July 2011 Lecture Objectives describe when CG can be used to solve Ax

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 6 Optimization Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality Today: Newton s method for optimization, survey of optimization methods Optimality Conditions: Equality Constrained Case As another example of equality

More information

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods

AM 205: lecture 19. Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods AM 205: lecture 19 Last time: Conditions for optimality, Newton s method for optimization Today: survey of optimization methods Quasi-Newton Methods General form of quasi-newton methods: x k+1 = x k α

More information

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality

AM 205: lecture 18. Last time: optimization methods Today: conditions for optimality AM 205: lecture 18 Last time: optimization methods Today: conditions for optimality Existence of Global Minimum For example: f (x, y) = x 2 + y 2 is coercive on R 2 (global min. at (0, 0)) f (x) = x 3

More information

Journal of Computational and Applied Mathematics

Journal of Computational and Applied Mathematics Journal of Computational and Applied Mathematics 234 (2) 538 544 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27

Chapter 11. Taylor Series. Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 Chapter 11 Taylor Series Josef Leydold Mathematical Methods WS 2018/19 11 Taylor Series 1 / 27 First-Order Approximation We want to approximate function f by some simple function. Best possible approximation

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3

Contents. Preface. 1 Introduction Optimization view on mathematical models NLP models, black-box versus explicit expression 3 Contents Preface ix 1 Introduction 1 1.1 Optimization view on mathematical models 1 1.2 NLP models, black-box versus explicit expression 3 2 Mathematical modeling, cases 7 2.1 Introduction 7 2.2 Enclosing

More information

Lecture 4 Eigenvalue problems

Lecture 4 Eigenvalue problems Lecture 4 Eigenvalue problems Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information

Constrained optimization: direct methods (cont.)

Constrained optimization: direct methods (cont.) Constrained optimization: direct methods (cont.) Jussi Hakanen Post-doctoral researcher jussi.hakanen@jyu.fi Direct methods Also known as methods of feasible directions Idea in a point x h, generate a

More information

1. Introduction. In this paper we address unconstrained local minimization

1. Introduction. In this paper we address unconstrained local minimization ORBIT: OPTIMIZATION BY RADIAL BASIS FUNCTION INTERPOLATION IN TRUST-REGIONS STEFAN M. WILD, ROMMEL G. REGIS, AND CHRISTINE A. SHOEMAKER Abstract. We present a new derivative-free algorithm, ORBIT, for

More information

Math (P)refresher Lecture 8: Unconstrained Optimization

Math (P)refresher Lecture 8: Unconstrained Optimization Math (P)refresher Lecture 8: Unconstrained Optimization September 2006 Today s Topics : Quadratic Forms Definiteness of Quadratic Forms Maxima and Minima in R n First Order Conditions Second Order Conditions

More information

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science

EAD 115. Numerical Solution of Engineering and Scientific Problems. David M. Rocke Department of Applied Science EAD 115 Numerical Solution of Engineering and Scientific Problems David M. Rocke Department of Applied Science Taylor s Theorem Can often approximate a function by a polynomial The error in the approximation

More information

17 Solution of Nonlinear Systems

17 Solution of Nonlinear Systems 17 Solution of Nonlinear Systems We now discuss the solution of systems of nonlinear equations. An important ingredient will be the multivariate Taylor theorem. Theorem 17.1 Let D = {x 1, x 2,..., x m

More information

Computational Methods. Least Squares Approximation/Optimization

Computational Methods. Least Squares Approximation/Optimization Computational Methods Least Squares Approximation/Optimization Manfred Huber 2011 1 Least Squares Least squares methods are aimed at finding approximate solutions when no precise solution exists Find the

More information

Unconstrained minimization: assumptions

Unconstrained minimization: assumptions Unconstrained minimization I terminology and assumptions I gradient descent method I steepest descent method I Newton s method I self-concordant functions I implementation IOE 611: Nonlinear Programming,

More information

Insights into the Geometry of the Gaussian Kernel and an Application in Geometric Modeling

Insights into the Geometry of the Gaussian Kernel and an Application in Geometric Modeling Insights into the Geometry of the Gaussian Kernel and an Application in Geometric Modeling Master Thesis Michael Eigensatz Advisor: Joachim Giesen Professor: Mark Pauly Swiss Federal Institute of Technology

More information

Sequential Convex Programming

Sequential Convex Programming Sequential Convex Programming sequential convex programming alternating convex optimization convex-concave procedure Prof. S. Boyd, EE364b, Stanford University Methods for nonconvex optimization problems

More information

Arc Search Algorithms

Arc Search Algorithms Arc Search Algorithms Nick Henderson and Walter Murray Stanford University Institute for Computational and Mathematical Engineering November 10, 2011 Unconstrained Optimization minimize x D F (x) where

More information

Chapter 4: Interpolation and Approximation. October 28, 2005

Chapter 4: Interpolation and Approximation. October 28, 2005 Chapter 4: Interpolation and Approximation October 28, 2005 Outline 1 2.4 Linear Interpolation 2 4.1 Lagrange Interpolation 3 4.2 Newton Interpolation and Divided Differences 4 4.3 Interpolation Error

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Applying Bayesian Estimation to Noisy Simulation Optimization

Applying Bayesian Estimation to Noisy Simulation Optimization Applying Bayesian Estimation to Noisy Simulation Optimization Geng Deng Michael C. Ferris University of Wisconsin-Madison INFORMS Annual Meeting Pittsburgh 2006 Simulation-based optimization problem Computer

More information

A DERIVATIVE-FREE ALGORITHM FOR THE LEAST-SQUARE MINIMIZATION

A DERIVATIVE-FREE ALGORITHM FOR THE LEAST-SQUARE MINIMIZATION A DERIVATIVE-FREE ALGORITHM FOR THE LEAST-SQUARE MINIMIZATION HONGCHAO ZHANG, ANDREW R. CONN, AND KATYA SCHEINBERG Abstract. We develop a framework for a class of derivative-free algorithms for the least-squares

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 5 Nonlinear Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization

E5295/5B5749 Convex optimization with engineering applications. Lecture 8. Smooth convex unconstrained and equality-constrained minimization E5295/5B5749 Convex optimization with engineering applications Lecture 8 Smooth convex unconstrained and equality-constrained minimization A. Forsgren, KTH 1 Lecture 8 Convex optimization 2006/2007 Unconstrained

More information

Mathematical optimization

Mathematical optimization Optimization Mathematical optimization Determine the best solutions to certain mathematically defined problems that are under constrained determine optimality criteria determine the convergence of the

More information

Continuous methods for numerical linear algebra problems

Continuous methods for numerical linear algebra problems Continuous methods for numerical linear algebra problems Li-Zhi Liao (http://www.math.hkbu.edu.hk/ liliao) Department of Mathematics Hong Kong Baptist University The First International Summer School on

More information

Complexity Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization

Complexity Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization Mathematical Programming manuscript No. (will be inserted by the editor) Complexity Analysis of Interior Point Algorithms for Non-Lipschitz and Nonconvex Minimization Wei Bian Xiaojun Chen Yinyu Ye July

More information

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection

6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE. Three Alternatives/Remedies for Gradient Projection 6.252 NONLINEAR PROGRAMMING LECTURE 10 ALTERNATIVES TO GRADIENT PROJECTION LECTURE OUTLINE Three Alternatives/Remedies for Gradient Projection Two-Metric Projection Methods Manifold Suboptimization Methods

More information

Constrained Optimization

Constrained Optimization 1 / 22 Constrained Optimization ME598/494 Lecture Max Yi Ren Department of Mechanical Engineering, Arizona State University March 30, 2015 2 / 22 1. Equality constraints only 1.1 Reduced gradient 1.2 Lagrange

More information

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017

Inverses. Stephen Boyd. EE103 Stanford University. October 28, 2017 Inverses Stephen Boyd EE103 Stanford University October 28, 2017 Outline Left and right inverses Inverse Solving linear equations Examples Pseudo-inverse Left and right inverses 2 Left inverses a number

More information

Preconditioned conjugate gradient algorithms with column scaling

Preconditioned conjugate gradient algorithms with column scaling Proceedings of the 47th IEEE Conference on Decision and Control Cancun, Mexico, Dec. 9-11, 28 Preconditioned conjugate gradient algorithms with column scaling R. Pytla Institute of Automatic Control and

More information

7. Symmetric Matrices and Quadratic Forms

7. Symmetric Matrices and Quadratic Forms Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

10 Numerical methods for constrained problems

10 Numerical methods for constrained problems 10 Numerical methods for constrained problems min s.t. f(x) h(x) = 0 (l), g(x) 0 (m), x X The algorithms can be roughly divided the following way: ˆ primal methods: find descent direction keeping inside

More information

R-Linear Convergence of Limited Memory Steepest Descent

R-Linear Convergence of Limited Memory Steepest Descent R-Linear Convergence of Limited Memory Steepest Descent Frank E. Curtis, Lehigh University joint work with Wei Guo, Lehigh University OP17 Vancouver, British Columbia, Canada 24 May 2017 R-Linear Convergence

More information

A scaling perspective on accuracy and convergence in RBF approximations

A scaling perspective on accuracy and convergence in RBF approximations A scaling perspective on accuracy and convergence in RBF approximations Elisabeth Larsson With: Bengt Fornberg, Erik Lehto, and Natasha Flyer Division of Scientific Computing Department of Information

More information

Derivative-Free Trust-Region methods

Derivative-Free Trust-Region methods Derivative-Free Trust-Region methods MTH6418 S. Le Digabel, École Polytechnique de Montréal Fall 2015 (v4) MTH6418: DFTR 1/32 Plan Quadratic models Model Quality Derivative-Free Trust-Region Framework

More information

Nonlinear Programming

Nonlinear Programming Nonlinear Programming Kees Roos e-mail: C.Roos@ewi.tudelft.nl URL: http://www.isa.ewi.tudelft.nl/ roos LNMB Course De Uithof, Utrecht February 6 - May 8, A.D. 2006 Optimization Group 1 Outline for week

More information

complex dot product x, y =

complex dot product x, y = MODULE 11 Topics: Hermitian and symmetric matrices Setting: A is an n n real or complex matrix defined on C n with the complex dot product x, y = Notation: A = A T, i.e., a ij = a ji. We know from Module

More information

Bilevel Derivative-Free Optimization and its Application to Robust Optimization

Bilevel Derivative-Free Optimization and its Application to Robust Optimization Bilevel Derivative-Free Optimization and its Application to Robust Optimization A. R. Conn L. N. Vicente September 15, 2010 Abstract We address bilevel programming problems when the derivatives of both

More information

Chapter 2. Optimization. Gradients, convexity, and ALS

Chapter 2. Optimization. Gradients, convexity, and ALS Chapter 2 Optimization Gradients, convexity, and ALS Contents Background Gradient descent Stochastic gradient descent Newton s method Alternating least squares KKT conditions 2 Motivation We can solve

More information

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form

you expect to encounter difficulties when trying to solve A x = b? 4. A composite quadrature rule has error associated with it in the following form Qualifying exam for numerical analysis (Spring 2017) Show your work for full credit. If you are unable to solve some part, attempt the subsequent parts. 1. Consider the following finite difference: f (0)

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 2: Direct Methods PD Dr.

More information

OPER 627: Nonlinear Optimization Lecture 9: Trust-region methods

OPER 627: Nonlinear Optimization Lecture 9: Trust-region methods OPER 627: Nonlinear Optimization Lecture 9: Trust-region methods Department of Statistical Sciences and Operations Research Virginia Commonwealth University Sept 25, 2013 (Lecture 9) Nonlinear Optimization

More information

Chapter 2: Preliminaries and elements of convex analysis

Chapter 2: Preliminaries and elements of convex analysis Chapter 2: Preliminaries and elements of convex analysis Edoardo Amaldi DEIB Politecnico di Milano edoardo.amaldi@polimi.it Website: http://home.deib.polimi.it/amaldi/opt-14-15.shtml Academic year 2014-15

More information

Radial Basis Functions I

Radial Basis Functions I Radial Basis Functions I Tom Lyche Centre of Mathematics for Applications, Department of Informatics, University of Oslo November 14, 2008 Today Reformulation of natural cubic spline interpolation Scattered

More information

Mesh adaptive direct search with second directional derivative-based Hessian update

Mesh adaptive direct search with second directional derivative-based Hessian update Comput Optim Appl DOI 10.1007/s10589-015-9753-5 Mesh adaptive direct search with second directional derivative-based Hessian update Árpád Bűrmen 1 Jernej Olenšek 1 Tadej Tuma 1 Received: 28 February 2014

More information

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL)

Part 4: Active-set methods for linearly constrained optimization. Nick Gould (RAL) Part 4: Active-set methods for linearly constrained optimization Nick Gould RAL fx subject to Ax b Part C course on continuoue optimization LINEARLY CONSTRAINED MINIMIZATION fx subject to Ax { } b where

More information

Penalty and Barrier Methods General classical constrained minimization problem minimize f(x) subject to g(x) 0 h(x) =0 Penalty methods are motivated by the desire to use unconstrained optimization techniques

More information