LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b

Size: px
Start display at page:

Download "LU Factorization. LU factorization is the most common way of solving linear systems! Ax = b LUx = b"

Transcription

1 AM 205: lecture 7 Last time: LU factorization Today s lecture: Cholesky factorization, timing, QR factorization Reminder: assignment 1 due at 5 PM on Friday September 22

2 LU Factorization LU factorization is the most common way of solving linear systems! Ax = b LUx = b Let y Ux, then Ly = b: solve for y via forward substitution 1 Then solve for Ux = y via back substitution 1 y = L 1 b is the transformed right-hand side vector (ie Mb from earlier) that we are familiar with from Gaussian elimination

3 LU Factorization Next question: How should we determine M 1, M 2,, M n 1? We need to be able to annihilate selected entries of A, below the diagonal in order to obtain an upper-triangular matrix To do this, we use elementary elimination matrices Let L j denote j th elimination matrix (we use L j rather than M j from now on as elimination matrices are lower triangular)

4 LU Factorization Let X ( L j 1 L j 2 L 1 A) denote matrix at the start of step j, and let x (:,j) R n denote column j of X Then we define L j such that L j x (:,j) x j+1,j /x jj x nj /x jj 0 1 x 1j x jj x j+1,j x nj = x 1j x jj 0 0

5 LU Factorization To simplify notation, we let l ij x ij x jj in order to obtain L j l j+1,j l nj 0 1

6 LU Factorization Using elementary elimination matrices we can reduce A to upper triangular form, one column at a time Schematically, for a 4 4 matrix, we have L L A L 1A L 2L 1A Key point: L k does not affect columns 1, 2,, k 1 of L k 1 L k 2 L 1 A

7 LU Factorization After n 1 steps, we obtain the upper triangular matrix U = L n 1 L 2 L 1 A U =

8 LU Factorization Finally, we wish to form the factorization A = LU, hence we need L = (L n 1 L 2 L 1 ) 1 = L 1 1 L 1 2 L 1 n 1 This turns out to be surprisingly simple due to two strokes of luck! First stroke of luck: L 1 j is obtained simply by negating the subdiagonal entries of L j L j l j+1,j l nj 0 1, L 1 j l j+1,j l nj 0 1

9 LU Factorization Explanation: Let l j [0,, 0, l j+1,j,, l nj ] T so that L j = I l j e T j Now consider L j (I + l j e T j ): L j (I+l j e T j ) = (I l j e T j )(I+l j e T j ) = I l j e T j l j e T j = I l j (e T j l j )e T j Also, (e T j l j ) = 0 (why?) so that L j (I + l j e T j ) = I By the same argument (I + l j e T j )L j = I, and hence L 1 j = (I + l j e T j )

10 LU Factorization Next we want to form the matrix L L 1 1 L 1 2 L 1 n 1 Note that we have L 1 j L 1 j+1 = (I + l j ej T )(I + l j+1 ej+1) T = I + l j e T j + l j+1 e T j+1 + l j (e T j l j+1 )e T j+1 = I + l j e T j + l j+1 e T j+1 Interestingly, this convenient result doesn t hold for L 1 j+1 L 1 j, why?

11 LU Factorization Similarly, L 1 j L 1 j+1 L 1 j+2 = (I + l j ej T + l j+1 ej+1)(i T + l j+2 ej+2) T = I + l j e T j + l j+1 e T j+1 + l j+2 e T j+2 That is, to compute the product L 1 1 L 1 2 L 1 the subdiagonals for j = 1, 2,, n 1 n 1 we simply collect

12 LU Factorization Hence, second stroke of luck: L L 1 1 L 1 2 L 1 n 1 = 1 l 21 1 l 31 l 32 1 l n1 l n2 l n,n 1 1

13 LU Factorization Therefore, basic LU factorization algorithm is 1: U = A, L = I 2: for j = 1 : n 1 do 3: for i = j + 1 : n do 4: l ij = u ij /u jj 5: for k = j : n do 6: u ik = u ik l ij u jk 7: end for 8: end for 9: end for Note that the entries of U are updated each iteration so at the start of step j, U = L j 1 L j 2 L 1 A Here line 4 comes straight from the definition l ij u ij u jj

14 LU Factorization Line 6 accounts for the effect of L j on columns k = j, j + 1,, n of U For k = j : n we have L j u (:,k) l j+1,j l nj 0 1 u 1k u jk u j+1,k u nk = u 1k u jk u j+1,k l j+1,j u jk u nk l nj u jk The vector on the right is the updated k th column of U, which is computed in line 6

15 LU Factorization LU Factorization involves a triply-nested for-loop, hence O(n 3 ) calculations Careful operation counting shows LU factorization requires 1 3 n3 additions and 1 3 n3 multiplications, 2 3 n3 operations in total

16 Solving a linear system using LU Hence to solve Ax = b, we perform the following three steps: Step 1: Factorize A into L and U: 2 3 n3 Step 2: Solve Ly = b by forward substitution: n 2 Step 3: Solve Ux = y by back substitution: n 2 Total work is dominated by Step 1, 2 3 n3

17 Solving a linear system using LU An alternative approach would be to compute A 1 explicitly and evaluate x = A 1 b, but this is a bad idea! Question: How would we compute A 1?

18 Solving a linear system using LU Answer: Let a(:,k) inv denote the kth column of A 1, then a inv satisfy Aa(:,k) inv = e k (:,k) must Therefore to compute A 1, we first LU factorize A, then back/forward substitute for rhs vector e k, k = 1, 2,, n The n back/forward substitutions alone require 2n 3 operations, inefficient! A rule of thumb in Numerical Linear Algebra: It is almost always a bad idea to compute A 1 explicitly

19 Solving a linear system using LU Another case where LU factorization is very helpful is if we want to solve Ax = b i for several different right-hand sides b i, i = 1,, k We incur the 2 3 n3 cost only once, and then each subequent forward/back subsitution costs only 2n 2 Makes a huge difference if n is large!

20 Stability of Gaussian Elimination There is a problem with the LU algorithm presented above Consider the matrix A = [ ] A is nonsingular, well-conditioned (κ(a) 262) but LU factorization fails at first step (division by zero)

21 Stability of Gaussian Elimination LU factorization doesn t fail for [ ] A = 1 1 but we get [ L = ] [ , U = ]

22 Stability of Gaussian Elimination Let s suppose that F (a floating point number) and that round( ) = Then in finite precision arithmetic we get [ ] [ ] L = 10 20, Ũ =

23 Stability of Gaussian Elimination Hence due to rounding error we obtain LŨ = [ ] which is not close to A = [ ] Then, for example, let b = [3, 3] T Using LŨ, we get x = [3, 3]T True answer is x = [0, 3] T Hence large relative error (rel err = 1) even though the problem is well-conditioned

24 Stability of Gaussian Elimination In this example, standard Gaussian elimination yields a large residual Or equivalently, it yields the exact solution to a problem corresponding to a large input perturbation: b = [0, 3] T Hence unstable algorithm! In this case the cause of the large error in x is numerical instability, not ill-conditioning To stabilize Gaussian elimination, we need to permute rows, ie perform pivoting

25 Pivoting Recall the Gaussian elimination process x jj But we could just as easily do x ij x jj x ij 0

26 Partial Pivoting The entry x ij is called the pivot, and flexibility in choosing the pivot is essential otherwise we can t deal with: [ ] 0 1 A = 1 1 From a numerical stability point of view, it is crucial to choose the pivot to be the largest entry in column j: partial pivoting 2 This ensures that each l ij entry which acts as a multiplier in the LU factorization process satisfies l ij 1 2 Full pivoting refers to searching through columns j : n for the largest entry; this is more expensive and only marginal benefit to stability in practice

27 Partial Pivoting To maintain the triangular LU structure, we permute rows by premultiplying by permutation matrices x ij P 1 x ij L 1 x ij 0 0 Pivot selection Row interchange In this case P 1 = and each P j is obtained by swapping two rows of I

28 Partial Pivoting Therefore, with partial pivoting we obtain L n 1 P n 1 L 2 P 2 L 1 P 1 A = U It can be shown (we omit the details here, see Trefethen & Bau) that this can be rewritten as where 3 P P n 1 P 2 P 1 PA = LU Theorem: Gaussian elimination with partial pivoting produces nonsingular factors L and U if and only if A is nonsingular 3 The L matrix here is lower triangular, but not the same as L in the non-pivoting case: we have to account for the row swaps

29 Partial Pivoting Pseudocode for LU factorization with partial pivoting (blue text is new): 1: U = A, L = I, P = I 2: for j = 1 : n 1 do 3: Select i( j) that maximizes u ij 4: Interchange rows of U: u (j,j:n) u (i,j:n) 5: Interchange rows of L: l (j,1:j 1) l (i,1:j 1) 6: Interchange rows of P: p (j,:) p (i,:) 7: for i = j + 1 : n do 8: l ij = u ij /u jj 9: for k = j : n do 10: u ik = u ik l ij u jk 11: end for 12: end for 13: end for Again this requires 2 3 n3 floating point operations

30 Partial Pivoting: Solve Ax = b To solve Ax = b using the factorization PA = LU: Multiply through by P to obtain PAx = LUx = Pb Solve Ly = Pb using forward substitution Then solve Ux = y using back substitution

31 Partial Pivoting in Python Python s scipylinalglu function can do LU factorization with pivoting Python 275 (default, Mar , 22:15:05) [GCC 421 Compatible Apple LLVM 50 (clang )] on darwin Type "help", "copyright", "credits" or "license" for more information >>> import numpy as np >>> import scipylinalg >>> a=nprandomrandom((4,4)) >>> a array([[ , , , ], [ , , , ], [ , , , ], [ , , , ]]) >>> (p,l,u)=scipylinalglu(a) >>> p array([[ 0, 0, 1, 0], [ 0, 1, 0, 0], [ 1, 0, 0, 0], [ 0, 0, 0, 1]]) >>> l array([[ 1, 0, 0, 0 ], [ , 1, 0, 0 ], [ , , 1, 0 ], [ , , , 1 ]]) >>> u array([[ , , , ], [ 0, , , ], [ 0, 0, , ], [ 0, 0, 0, ]])

32 Stability of Gaussian Elimination Numerical stability of Gaussian Elimination has been an important research topic since the 1940s Major figure in this field: James H Wilkinson (English numerical analyst, ) Showed that for Ax = b with A R n n : Gaussian elimination without partial pivoting is numerically unstable (as we ve already seen) Gaussian elimination with partial pivoting satisfies r A x 2n 1 n 2 ɛ mach

33 Stability of Gaussian Elimination That is, pathological cases exist where the relative residual, r / A x, grows exponentially with n due to rounding error Worst case behavior of Gaussian Elimination with partial pivoting is explosive instability but such pathological cases are extremely rare! In over 50 years of Scientific Computation, instability has only been encountered due to deliberate construction of pathological cases In practice, Gaussian elimination is stable in the sense that it produces a small relative residual

34 Stability of Gaussian Elimination In practice, we typically obtain r A x nɛ mach, ie grows only linearly with n, and is scaled by ɛ mach Combining this result with our inequality: x x κ(a) r A x implies that in practice Gaussian elimination gives small error for well-conditioned problems!

35 Cholesky Factorization

36 Cholesky factorization Suppose that A R n n is an SPD matrix, ie: Symmetric: A T = A Positive Definite: for any v 0, v T Av > 0 Then the LU factorization of A can be arranged so that U = L T, ie A = LL T (but in this case L may not have 1s on the diagonal) Consider the 2 2 case: [ ] [ a11 a 21 l11 0 = a 21 a 22 l 21 l 22 ] [ l11 l 21 0 l 22 ] Equating entries gives l 11 = a 11, l 21 = a 21 /l 11, l 22 = a 22 l 2 21

37 Cholesky factorization This approach of equating entries can be used to derive the Cholesky factorization for the general n n case 1: L = A 2: for j = 1 : n do 3: l jj = l jj 4: for i = j + 1 : n do 5: l ij = l ij /l jj 6: end for 7: for k = j + 1 : n do 8: for i = k : n do 9: l ik = l ik l ij l kj 10: end for 11: end for 12: end for

38 Cholesky factorization Notes on Cholesky factorization: For an SPD matrix A, Cholesky factorization is numerically stable and does not require any pivoting Operation count: 1 3 n3 operations in total, ie about half as many as Gaussian elimination Only need to store L, hence uses less memory than LU

39 Sparse Matrices

40 Sparse Matrices In applications, we often encounter sparse matrices A prime example is in discretization of partial differential equations (covered in the next section) Sparse matrix is not precisely defined, roughly speaking it is a matrix that is mostly zeros From a computational point of view it is advantageous to store only the non-zero entries The set of non-zero entries of a sparse matrix is referred to as its sparsity pattern

41 Sparse Matrices A = A sparse = (1,1) 2 (1,2) 2 (2,2) 1 (1,3) 2 (3,3) 1 (1,4) 2 (4,4) 1 (1,5) (5,5) 1

42 Sparse Matrices From a mathematical point of view, sparse matrices are no different from dense matrices But from Sci Comp perspective, sparse matrices require different data structures and algorithms for computational efficiency eg, can apply LU or Cholesky to sparse A, but new non-zeros (ie outside sparsity pattern of A) are introduced in the factors These new non-zero entries are called fill-in many methods exist for reducing fill-in by permuting rows and columns of A

43 QR Factorization

44 QR Factorization A square matrix Q R n n is called orthogonal if its columns and rows are orthonormal vectors Equivalently, Q T Q = QQ T = I Orthogonal matrices preserve the Euclidean norm of a vector, ie Qv 2 2 = v T Q T Qv = v T v = v 2 2 Hence, geometrically, we picture orthogonal matrices as reflection or rotation operators Orthogonal matrices are very important in scientific computing, norm-preservation implies no amplification of numerical error!

45 QR Factorization A matrix A R m n, m n, can be factorized into where A = QR Q R m m is orthogonal [ ] ˆR R R m n 0 ˆR R n n is upper-triangular QR is very good for solving overdetermined linear least-squares problems, Ax b 4 4 QR can also be used to solve a square system Ax = b, but requires 2 as many operations as Gaussian elimination hence not the standard choice

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit II: Numerical Linear Algebra Lecturer: Dr. David Knezevic Unit II: Numerical Linear Algebra Chapter II.2: LU and Cholesky Factorizations 2 / 82 Preliminaries 3 / 82 Preliminaries

More information

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization AM 205: lecture 6 Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization Unit II: Numerical Linear Algebra Motivation Almost everything in Scientific Computing

More information

AM 205: lecture 8. Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition

AM 205: lecture 8. Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition AM 205: lecture 8 Last time: Cholesky factorization, QR factorization Today: how to compute the QR factorization, the Singular Value Decomposition QR Factorization A matrix A R m n, m n, can be factorized

More information

Gaussian Elimination and Back Substitution

Gaussian Elimination and Back Substitution Jim Lambers MAT 610 Summer Session 2009-10 Lecture 4 Notes These notes correspond to Sections 31 and 32 in the text Gaussian Elimination and Back Substitution The basic idea behind methods for solving

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Decompositions, numerical aspects Gerard Sleijpen and Martin van Gijzen September 27, 2017 1 Delft University of Technology Program Lecture 2 LU-decomposition Basic algorithm Cost

More information

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects

Program Lecture 2. Numerical Linear Algebra. Gaussian elimination (2) Gaussian elimination. Decompositions, numerical aspects Numerical Linear Algebra Decompositions, numerical aspects Program Lecture 2 LU-decomposition Basic algorithm Cost Stability Pivoting Cholesky decomposition Sparse matrices and reorderings Gerard Sleijpen

More information

Scientific Computing

Scientific Computing Scientific Computing Direct solution methods Martin van Gijzen Delft University of Technology October 3, 2018 1 Program October 3 Matrix norms LU decomposition Basic algorithm Cost Stability Pivoting Pivoting

More information

AMS 209, Fall 2015 Final Project Type A Numerical Linear Algebra: Gaussian Elimination with Pivoting for Solving Linear Systems

AMS 209, Fall 2015 Final Project Type A Numerical Linear Algebra: Gaussian Elimination with Pivoting for Solving Linear Systems AMS 209, Fall 205 Final Project Type A Numerical Linear Algebra: Gaussian Elimination with Pivoting for Solving Linear Systems. Overview We are interested in solving a well-defined linear system given

More information

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic

Applied Mathematics 205. Unit II: Numerical Linear Algebra. Lecturer: Dr. David Knezevic Applied Mathematics 205 Unit II: Numerical Linear Algebra Lecturer: Dr. David Knezevic Unit II: Numerical Linear Algebra Chapter II.3: QR Factorization, SVD 2 / 66 QR Factorization 3 / 66 QR Factorization

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 12: Gaussian Elimination and LU Factorization Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 10 Gaussian Elimination

More information

2.1 Gaussian Elimination

2.1 Gaussian Elimination 2. Gaussian Elimination A common problem encountered in numerical models is the one in which there are n equations and n unknowns. The following is a description of the Gaussian elimination method for

More information

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization

AM 205: lecture 6. Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization AM 205: lecture 6 Last time: finished the data fitting topic Today s lecture: numerical linear algebra, LU factorization Unit II: Numerical Linear Algebra Motivation Almost everything in Scientific Computing

More information

Direct Methods for Solving Linear Systems. Matrix Factorization

Direct Methods for Solving Linear Systems. Matrix Factorization Direct Methods for Solving Linear Systems Matrix Factorization Numerical Analysis (9th Edition) R L Burden & J D Faires Beamer Presentation Slides prepared by John Carroll Dublin City University c 2011

More information

Matrix decompositions

Matrix decompositions Matrix decompositions How can we solve Ax = b? 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x = The variables x 1, x, and x only appear as linear terms (no powers

More information

Roundoff Analysis of Gaussian Elimination

Roundoff Analysis of Gaussian Elimination Jim Lambers MAT 60 Summer Session 2009-0 Lecture 5 Notes These notes correspond to Sections 33 and 34 in the text Roundoff Analysis of Gaussian Elimination In this section, we will perform a detailed error

More information

Matrix decompositions

Matrix decompositions Matrix decompositions How can we solve Ax = b? 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x = The variables x 1, x, and x only appear as linear terms (no powers

More information

Computational Methods. Systems of Linear Equations

Computational Methods. Systems of Linear Equations Computational Methods Systems of Linear Equations Manfred Huber 2010 1 Systems of Equations Often a system model contains multiple variables (parameters) and contains multiple equations Multiple equations

More information

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4

Linear Algebra Section 2.6 : LU Decomposition Section 2.7 : Permutations and transposes Wednesday, February 13th Math 301 Week #4 Linear Algebra Section. : LU Decomposition Section. : Permutations and transposes Wednesday, February 1th Math 01 Week # 1 The LU Decomposition We learned last time that we can factor a invertible matrix

More information

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark

LU Factorization. Marco Chiarandini. DM559 Linear and Integer Programming. Department of Mathematics & Computer Science University of Southern Denmark DM559 Linear and Integer Programming LU Factorization Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark [Based on slides by Lieven Vandenberghe, UCLA] Outline

More information

Direct Methods for Solving Linear Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le

Direct Methods for Solving Linear Systems. Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le Direct Methods for Solving Linear Systems Simon Fraser University Surrey Campus MACM 316 Spring 2005 Instructor: Ha Le 1 Overview General Linear Systems Gaussian Elimination Triangular Systems The LU Factorization

More information

CSE 160 Lecture 13. Numerical Linear Algebra

CSE 160 Lecture 13. Numerical Linear Algebra CSE 16 Lecture 13 Numerical Linear Algebra Announcements Section will be held on Friday as announced on Moodle Midterm Return 213 Scott B Baden / CSE 16 / Fall 213 2 Today s lecture Gaussian Elimination

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 2 Systems of Linear Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction

More information

Computational Linear Algebra

Computational Linear Algebra Computational Linear Algebra PD Dr. rer. nat. habil. Ralf Peter Mundani Computation in Engineering / BGU Scientific Computing in Computer Science / INF Winter Term 2017/18 Part 2: Direct Methods PD Dr.

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 2. Systems of Linear Equations

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 2. Systems of Linear Equations Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 2 Systems of Linear Equations Copyright c 2001. Reproduction permitted only for noncommercial,

More information

The Solution of Linear Systems AX = B

The Solution of Linear Systems AX = B Chapter 2 The Solution of Linear Systems AX = B 21 Upper-triangular Linear Systems We will now develop the back-substitution algorithm, which is useful for solving a linear system of equations that has

More information

5 Solving Systems of Linear Equations

5 Solving Systems of Linear Equations 106 Systems of LE 5.1 Systems of Linear Equations 5 Solving Systems of Linear Equations 5.1 Systems of Linear Equations System of linear equations: a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 +

More information

Ax = b. Systems of Linear Equations. Lecture Notes to Accompany. Given m n matrix A and m-vector b, find unknown n-vector x satisfying

Ax = b. Systems of Linear Equations. Lecture Notes to Accompany. Given m n matrix A and m-vector b, find unknown n-vector x satisfying Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T Heath Chapter Systems of Linear Equations Systems of Linear Equations Given m n matrix A and m-vector

More information

lecture 2 and 3: algorithms for linear algebra

lecture 2 and 3: algorithms for linear algebra lecture 2 and 3: algorithms for linear algebra STAT 545: Introduction to computational statistics Vinayak Rao Department of Statistics, Purdue University August 27, 2018 Solving a system of linear equations

More information

Numerical Methods I Solving Square Linear Systems: GEM and LU factorization

Numerical Methods I Solving Square Linear Systems: GEM and LU factorization Numerical Methods I Solving Square Linear Systems: GEM and LU factorization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 MATH-GA 2011.003 / CSCI-GA 2945.003, Fall 2014 September 18th,

More information

CHAPTER 6. Direct Methods for Solving Linear Systems

CHAPTER 6. Direct Methods for Solving Linear Systems CHAPTER 6 Direct Methods for Solving Linear Systems. Introduction A direct method for approximating the solution of a system of n linear equations in n unknowns is one that gives the exact solution to

More information

Numerical Methods. Elena loli Piccolomini. Civil Engeneering. piccolom. Metodi Numerici M p. 1/??

Numerical Methods. Elena loli Piccolomini. Civil Engeneering.  piccolom. Metodi Numerici M p. 1/?? Metodi Numerici M p. 1/?? Numerical Methods Elena loli Piccolomini Civil Engeneering http://www.dm.unibo.it/ piccolom elena.loli@unibo.it Metodi Numerici M p. 2/?? Least Squares Data Fitting Measurement

More information

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information

14.2 QR Factorization with Column Pivoting

14.2 QR Factorization with Column Pivoting page 531 Chapter 14 Special Topics Background Material Needed Vector and Matrix Norms (Section 25) Rounding Errors in Basic Floating Point Operations (Section 33 37) Forward Elimination and Back Substitution

More information

LU Factorization. LU Decomposition. LU Decomposition. LU Decomposition: Motivation A = LU

LU Factorization. LU Decomposition. LU Decomposition. LU Decomposition: Motivation A = LU LU Factorization To further improve the efficiency of solving linear systems Factorizations of matrix A : LU and QR LU Factorization Methods: Using basic Gaussian Elimination (GE) Factorization of Tridiagonal

More information

Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math 365 Week #4

Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math 365 Week #4 Linear Algebra Linear Algebra : Matrix decompositions Monday, February 11th Math Week # 1 Saturday, February 1, 1 Linear algebra Typical linear system of equations : x 1 x +x = x 1 +x +9x = 0 x 1 +x x

More information

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015

CS412: Lecture #17. Mridul Aanjaneya. March 19, 2015 CS: Lecture #7 Mridul Aanjaneya March 9, 5 Solving linear systems of equations Consider a lower triangular matrix L: l l l L = l 3 l 3 l 33 l n l nn A procedure similar to that for upper triangular systems

More information

1 GSW Sets of Systems

1 GSW Sets of Systems 1 Often, we have to solve a whole series of sets of simultaneous equations of the form y Ax, all of which have the same matrix A, but each of which has a different known vector y, and a different unknown

More information

Numerical Methods - Numerical Linear Algebra

Numerical Methods - Numerical Linear Algebra Numerical Methods - Numerical Linear Algebra Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Numerical Linear Algebra I 2013 1 / 62 Outline 1 Motivation 2 Solving Linear

More information

Linear Systems of n equations for n unknowns

Linear Systems of n equations for n unknowns Linear Systems of n equations for n unknowns In many application problems we want to find n unknowns, and we have n linear equations Example: Find x,x,x such that the following three equations hold: x

More information

Review Questions REVIEW QUESTIONS 71

Review Questions REVIEW QUESTIONS 71 REVIEW QUESTIONS 71 MATLAB, is [42]. For a comprehensive treatment of error analysis and perturbation theory for linear systems and many other problems in linear algebra, see [126, 241]. An overview of

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 13

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2018 LECTURE 13 STAT 309: MATHEMATICAL COMPUTATIONS I FALL 208 LECTURE 3 need for pivoting we saw that under proper circumstances, we can write A LU where 0 0 0 u u 2 u n l 2 0 0 0 u 22 u 2n L l 3 l 32, U 0 0 0 l n l

More information

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6

CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 CME 302: NUMERICAL LINEAR ALGEBRA FALL 2005/06 LECTURE 6 GENE H GOLUB Issues with Floating-point Arithmetic We conclude our discussion of floating-point arithmetic by highlighting two issues that frequently

More information

Pivoting. Reading: GV96 Section 3.4, Stew98 Chapter 3: 1.3

Pivoting. Reading: GV96 Section 3.4, Stew98 Chapter 3: 1.3 Pivoting Reading: GV96 Section 3.4, Stew98 Chapter 3: 1.3 In the previous discussions we have assumed that the LU factorization of A existed and the various versions could compute it in a stable manner.

More information

lecture 3 and 4: algorithms for linear algebra

lecture 3 and 4: algorithms for linear algebra lecture 3 and 4: algorithms for linear algebra STAT 545: Introduction to computational statistics Vinayak Rao Department of Statistics, Purdue University August 30, 2016 Solving a system of linear equations

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 2 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University February 6, 2018 Linear Algebra (MTH

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Direct Methods Philippe B. Laval KSU Fall 2017 Philippe B. Laval (KSU) Linear Systems: Direct Solution Methods Fall 2017 1 / 14 Introduction The solution of linear systems is one

More information

CS227-Scientific Computing. Lecture 4: A Crash Course in Linear Algebra

CS227-Scientific Computing. Lecture 4: A Crash Course in Linear Algebra CS227-Scientific Computing Lecture 4: A Crash Course in Linear Algebra Linear Transformation of Variables A common phenomenon: Two sets of quantities linearly related: y = 3x + x 2 4x 3 y 2 = 2.7x 2 x

More information

Solving Dense Linear Systems I

Solving Dense Linear Systems I Solving Dense Linear Systems I Solving Ax = b is an important numerical method Triangular system: [ l11 l 21 if l 11, l 22 0, ] [ ] [ ] x1 b1 = l 22 x 2 b 2 x 1 = b 1 /l 11 x 2 = (b 2 l 21 x 1 )/l 22 Chih-Jen

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra R. J. Renka Department of Computer Science & Engineering University of North Texas 02/03/2015 Notation and Terminology R n is the Euclidean n-dimensional linear space over the

More information

Matrix Factorization and Analysis

Matrix Factorization and Analysis Chapter 7 Matrix Factorization and Analysis Matrix factorizations are an important part of the practice and analysis of signal processing. They are at the heart of many signal-processing algorithms. Their

More information

Sherman-Morrison-Woodbury

Sherman-Morrison-Woodbury Week 5: Wednesday, Sep 23 Sherman-Mrison-Woodbury The Sherman-Mrison fmula describes the solution of A+uv T when there is already a factization f A. An easy way to derive the fmula is through block Gaussian

More information

Practical Linear Algebra: A Geometry Toolbox

Practical Linear Algebra: A Geometry Toolbox Practical Linear Algebra: A Geometry Toolbox Third edition Chapter 12: Gauss for Linear Systems Gerald Farin & Dianne Hansford CRC Press, Taylor & Francis Group, An A K Peters Book www.farinhansford.com/books/pla

More information

5.6. PSEUDOINVERSES 101. A H w.

5.6. PSEUDOINVERSES 101. A H w. 5.6. PSEUDOINVERSES 0 Corollary 5.6.4. If A is a matrix such that A H A is invertible, then the least-squares solution to Av = w is v = A H A ) A H w. The matrix A H A ) A H is the left inverse of A and

More information

Course Notes: Week 1

Course Notes: Week 1 Course Notes: Week 1 Math 270C: Applied Numerical Linear Algebra 1 Lecture 1: Introduction (3/28/11) We will focus on iterative methods for solving linear systems of equations (and some discussion of eigenvalues

More information

Solving Linear Systems of Equations

Solving Linear Systems of Equations Solving Linear Systems of Equations Gerald Recktenwald Portland State University Mechanical Engineering Department gerry@me.pdx.edu These slides are a supplement to the book Numerical Methods with Matlab:

More information

Introduction to Mathematical Programming

Introduction to Mathematical Programming Introduction to Mathematical Programming Ming Zhong Lecture 6 September 12, 2018 Ming Zhong (JHU) AMS Fall 2018 1 / 20 Table of Contents 1 Ming Zhong (JHU) AMS Fall 2018 2 / 20 Solving Linear Systems A

More information

Applied Linear Algebra

Applied Linear Algebra Applied Linear Algebra Gábor P. Nagy and Viktor Vígh University of Szeged Bolyai Institute Winter 2014 1 / 262 Table of contents I 1 Introduction, review Complex numbers Vectors and matrices Determinants

More information

1.5 Gaussian Elimination With Partial Pivoting.

1.5 Gaussian Elimination With Partial Pivoting. Gaussian Elimination With Partial Pivoting In the previous section we discussed Gaussian elimination In that discussion we used equation to eliminate x from equations through n Then we used equation to

More information

Orthogonal Transformations

Orthogonal Transformations Orthogonal Transformations Tom Lyche University of Oslo Norway Orthogonal Transformations p. 1/3 Applications of Qx with Q T Q = I 1. solving least squares problems (today) 2. solving linear equations

More information

Linear Least squares

Linear Least squares Linear Least squares Method of least squares Measurement errors are inevitable in observational and experimental sciences Errors can be smoothed out by averaging over more measurements than necessary to

More information

Dense LU factorization and its error analysis

Dense LU factorization and its error analysis Dense LU factorization and its error analysis Laura Grigori INRIA and LJLL, UPMC February 2016 Plan Basis of floating point arithmetic and stability analysis Notation, results, proofs taken from [N.J.Higham,

More information

Lecture 12 (Tue, Mar 5) Gaussian elimination and LU factorization (II)

Lecture 12 (Tue, Mar 5) Gaussian elimination and LU factorization (II) Math 59 Lecture 2 (Tue Mar 5) Gaussian elimination and LU factorization (II) 2 Gaussian elimination - LU factorization For a general n n matrix A the Gaussian elimination produces an LU factorization if

More information

5.1 Banded Storage. u = temperature. The five-point difference operator. uh (x, y + h) 2u h (x, y)+u h (x, y h) uh (x + h, y) 2u h (x, y)+u h (x h, y)

5.1 Banded Storage. u = temperature. The five-point difference operator. uh (x, y + h) 2u h (x, y)+u h (x, y h) uh (x + h, y) 2u h (x, y)+u h (x h, y) 5.1 Banded Storage u = temperature u= u h temperature at gridpoints u h = 1 u= Laplace s equation u= h u = u h = grid size u=1 The five-point difference operator 1 u h =1 uh (x + h, y) 2u h (x, y)+u h

More information

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn

Today s class. Linear Algebraic Equations LU Decomposition. Numerical Methods, Fall 2011 Lecture 8. Prof. Jinbo Bi CSE, UConn Today s class Linear Algebraic Equations LU Decomposition 1 Linear Algebraic Equations Gaussian Elimination works well for solving linear systems of the form: AX = B What if you have to solve the linear

More information

AMS526: Numerical Analysis I (Numerical Linear Algebra)

AMS526: Numerical Analysis I (Numerical Linear Algebra) AMS526: Numerical Analysis I (Numerical Linear Algebra) Lecture 7: More on Householder Reflectors; Least Squares Problems Xiangmin Jiao SUNY Stony Brook Xiangmin Jiao Numerical Analysis I 1 / 15 Outline

More information

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725

Numerical Linear Algebra Primer. Ryan Tibshirani Convex Optimization /36-725 Numerical Linear Algebra Primer Ryan Tibshirani Convex Optimization 10-725/36-725 Last time: proximal gradient descent Consider the problem min g(x) + h(x) with g, h convex, g differentiable, and h simple

More information

I-v k e k. (I-e k h kt ) = Stability of Gauss-Huard Elimination for Solving Linear Systems. 1 x 1 x x x x

I-v k e k. (I-e k h kt ) = Stability of Gauss-Huard Elimination for Solving Linear Systems. 1 x 1 x x x x Technical Report CS-93-08 Department of Computer Systems Faculty of Mathematics and Computer Science University of Amsterdam Stability of Gauss-Huard Elimination for Solving Linear Systems T. J. Dekker

More information

Outline. Math Numerical Analysis. Errors. Lecture Notes Linear Algebra: Part B. Joseph M. Mahaffy,

Outline. Math Numerical Analysis. Errors. Lecture Notes Linear Algebra: Part B. Joseph M. Mahaffy, Math 54 - Numerical Analysis Lecture Notes Linear Algebra: Part B Outline Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences

More information

NUMERICAL MATHEMATICS & COMPUTING 7th Edition

NUMERICAL MATHEMATICS & COMPUTING 7th Edition NUMERICAL MATHEMATICS & COMPUTING 7th Edition Ward Cheney/David Kincaid c UT Austin Engage Learning: Thomson-Brooks/Cole wwwengagecom wwwmautexasedu/cna/nmc6 October 16, 2011 Ward Cheney/David Kincaid

More information

LINEAR SYSTEMS (11) Intensive Computation

LINEAR SYSTEMS (11) Intensive Computation LINEAR SYSTEMS () Intensive Computation 27-8 prof. Annalisa Massini Viviana Arrigoni EXACT METHODS:. GAUSSIAN ELIMINATION. 2. CHOLESKY DECOMPOSITION. ITERATIVE METHODS:. JACOBI. 2. GAUSS-SEIDEL 2 CHOLESKY

More information

Gaussian Elimination for Linear Systems

Gaussian Elimination for Linear Systems Gaussian Elimination for Linear Systems Tsung-Ming Huang Department of Mathematics National Taiwan Normal University October 3, 2011 1/56 Outline 1 Elementary matrices 2 LR-factorization 3 Gaussian elimination

More information

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in

. =. a i1 x 1 + a i2 x 2 + a in x n = b i. a 11 a 12 a 1n a 21 a 22 a 1n. i1 a i2 a in Vectors and Matrices Continued Remember that our goal is to write a system of algebraic equations as a matrix equation. Suppose we have the n linear algebraic equations a x + a 2 x 2 + a n x n = b a 2

More information

Math 405: Numerical Methods for Differential Equations 2016 W1 Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm

Math 405: Numerical Methods for Differential Equations 2016 W1 Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm Math 405: Numerical Methods for Differential Equations 2016 W1 Topics 10: Matrix Eigenvalues and the Symmetric QR Algorithm References: Trefethen & Bau textbook Eigenvalue problem: given a matrix A, find

More information

V C V L T I 0 C V B 1 V T 0 I. l nk

V C V L T I 0 C V B 1 V T 0 I. l nk Multifrontal Method Kailai Xu September 16, 2017 Main observation. Consider the LDL T decomposition of a SPD matrix [ ] [ ] [ ] [ ] B V T L 0 I 0 L T L A = = 1 V T V C V L T I 0 C V B 1 V T, 0 I where

More information

AMS 147 Computational Methods and Applications Lecture 17 Copyright by Hongyun Wang, UCSC

AMS 147 Computational Methods and Applications Lecture 17 Copyright by Hongyun Wang, UCSC Lecture 17 Copyright by Hongyun Wang, UCSC Recap: Solving linear system A x = b Suppose we are given the decomposition, A = L U. We solve (LU) x = b in 2 steps: *) Solve L y = b using the forward substitution

More information

Next topics: Solving systems of linear equations

Next topics: Solving systems of linear equations Next topics: Solving systems of linear equations 1 Gaussian elimination (today) 2 Gaussian elimination with partial pivoting (Week 9) 3 The method of LU-decomposition (Week 10) 4 Iterative techniques:

More information

Solution of Linear Equations

Solution of Linear Equations Solution of Linear Equations (Com S 477/577 Notes) Yan-Bin Jia Sep 7, 07 We have discussed general methods for solving arbitrary equations, and looked at the special class of polynomial equations A subclass

More information

MODULE 7. where A is an m n real (or complex) matrix. 2) Let K(t, s) be a function of two variables which is continuous on the square [0, 1] [0, 1].

MODULE 7. where A is an m n real (or complex) matrix. 2) Let K(t, s) be a function of two variables which is continuous on the square [0, 1] [0, 1]. Topics: Linear operators MODULE 7 We are going to discuss functions = mappings = transformations = operators from one vector space V 1 into another vector space V 2. However, we shall restrict our sights

More information

5. Direct Methods for Solving Systems of Linear Equations. They are all over the place...

5. Direct Methods for Solving Systems of Linear Equations. They are all over the place... 5 Direct Methods for Solving Systems of Linear Equations They are all over the place Miriam Mehl: 5 Direct Methods for Solving Systems of Linear Equations They are all over the place, December 13, 2012

More information

Lecture 9. Errors in solving Linear Systems. J. Chaudhry (Zeb) Department of Mathematics and Statistics University of New Mexico

Lecture 9. Errors in solving Linear Systems. J. Chaudhry (Zeb) Department of Mathematics and Statistics University of New Mexico Lecture 9 Errors in solving Linear Systems J. Chaudhry (Zeb) Department of Mathematics and Statistics University of New Mexico J. Chaudhry (Zeb) (UNM) Math/CS 375 1 / 23 What we ll do: Norms and condition

More information

Solving linear systems (6 lectures)

Solving linear systems (6 lectures) Chapter 2 Solving linear systems (6 lectures) 2.1 Solving linear systems: LU factorization (1 lectures) Reference: [Trefethen, Bau III] Lecture 20, 21 How do you solve Ax = b? (2.1.1) In numerical linear

More information

Chapter 2 - Linear Equations

Chapter 2 - Linear Equations Chapter 2 - Linear Equations 2. Solving Linear Equations One of the most common problems in scientific computing is the solution of linear equations. It is a problem in its own right, but it also occurs

More information

Chapter 2. Solving Systems of Equations. 2.1 Gaussian elimination

Chapter 2. Solving Systems of Equations. 2.1 Gaussian elimination Chapter 2 Solving Systems of Equations A large number of real life applications which are resolved through mathematical modeling will end up taking the form of the following very simple looking matrix

More information

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix

7. LU factorization. factor-solve method. LU factorization. solving Ax = b with A nonsingular. the inverse of a nonsingular matrix EE507 - Computational Techniques for EE 7. LU factorization Jitkomut Songsiri factor-solve method LU factorization solving Ax = b with A nonsingular the inverse of a nonsingular matrix LU factorization

More information

Linear Algebraic Equations

Linear Algebraic Equations Linear Algebraic Equations 1 Fundamentals Consider the set of linear algebraic equations n a ij x i b i represented by Ax b j with [A b ] [A b] and (1a) r(a) rank of A (1b) Then Axb has a solution iff

More information

MATH 3511 Lecture 1. Solving Linear Systems 1

MATH 3511 Lecture 1. Solving Linear Systems 1 MATH 3511 Lecture 1 Solving Linear Systems 1 Dmitriy Leykekhman Spring 2012 Goals Review of basic linear algebra Solution of simple linear systems Gaussian elimination D Leykekhman - MATH 3511 Introduction

More information

Lecture 7. Gaussian Elimination with Pivoting. David Semeraro. University of Illinois at Urbana-Champaign. February 11, 2014

Lecture 7. Gaussian Elimination with Pivoting. David Semeraro. University of Illinois at Urbana-Champaign. February 11, 2014 Lecture 7 Gaussian Elimination with Pivoting David Semeraro University of Illinois at Urbana-Champaign February 11, 2014 David Semeraro (NCSA) CS 357 February 11, 2014 1 / 41 Naive Gaussian Elimination

More information

COURSE Numerical methods for solving linear systems. Practical solving of many problems eventually leads to solving linear systems.

COURSE Numerical methods for solving linear systems. Practical solving of many problems eventually leads to solving linear systems. COURSE 9 4 Numerical methods for solving linear systems Practical solving of many problems eventually leads to solving linear systems Classification of the methods: - direct methods - with low number of

More information

Review of Basic Concepts in Linear Algebra

Review of Basic Concepts in Linear Algebra Review of Basic Concepts in Linear Algebra Grady B Wright Department of Mathematics Boise State University September 7, 2017 Math 565 Linear Algebra Review September 7, 2017 1 / 40 Numerical Linear Algebra

More information

Numerical Linear Algebra

Numerical Linear Algebra Numerical Linear Algebra Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Sep 19th, 2017 C. Hurtado (UIUC - Economics) Numerical Methods On the Agenda

More information

Lecture 4: Linear Algebra 1

Lecture 4: Linear Algebra 1 Lecture 4: Linear Algebra 1 Sourendu Gupta TIFR Graduate School Computational Physics 1 February 12, 2010 c : Sourendu Gupta (TIFR) Lecture 4: Linear Algebra 1 CP 1 1 / 26 Outline 1 Linear problems Motivation

More information

This can be accomplished by left matrix multiplication as follows: I

This can be accomplished by left matrix multiplication as follows: I 1 Numerical Linear Algebra 11 The LU Factorization Recall from linear algebra that Gaussian elimination is a method for solving linear systems of the form Ax = b, where A R m n and bran(a) In this method

More information

Numerical Methods I: Numerical linear algebra

Numerical Methods I: Numerical linear algebra 1/3 Numerical Methods I: Numerical linear algebra Georg Stadler Courant Institute, NYU stadler@cimsnyuedu September 1, 017 /3 We study the solution of linear systems of the form Ax = b with A R n n, x,

More information

Linear Analysis Lecture 16

Linear Analysis Lecture 16 Linear Analysis Lecture 16 The QR Factorization Recall the Gram-Schmidt orthogonalization process. Let V be an inner product space, and suppose a 1,..., a n V are linearly independent. Define q 1,...,

More information

Review of matrices. Let m, n IN. A rectangle of numbers written like A =

Review of matrices. Let m, n IN. A rectangle of numbers written like A = Review of matrices Let m, n IN. A rectangle of numbers written like a 11 a 12... a 1n a 21 a 22... a 2n A =...... a m1 a m2... a mn where each a ij IR is called a matrix with m rows and n columns or an

More information

SOLVING LINEAR SYSTEMS

SOLVING LINEAR SYSTEMS SOLVING LINEAR SYSTEMS We want to solve the linear system a, x + + a,n x n = b a n, x + + a n,n x n = b n This will be done by the method used in beginning algebra, by successively eliminating unknowns

More information

A Review of Matrix Analysis

A Review of Matrix Analysis Matrix Notation Part Matrix Operations Matrices are simply rectangular arrays of quantities Each quantity in the array is called an element of the matrix and an element can be either a numerical value

More information

Math 471 (Numerical methods) Chapter 3 (second half). System of equations

Math 471 (Numerical methods) Chapter 3 (second half). System of equations Math 47 (Numerical methods) Chapter 3 (second half). System of equations Overlap 3.5 3.8 of Bradie 3.5 LU factorization w/o pivoting. Motivation: ( ) A I Gaussian Elimination (U L ) where U is upper triangular

More information

POLI270 - Linear Algebra

POLI270 - Linear Algebra POLI7 - Linear Algebra Septemer 8th Basics a x + a x +... + a n x n b () is the linear form where a, b are parameters and x n are variables. For a given equation such as x +x you only need a variable and

More information

4.2 Floating-Point Numbers

4.2 Floating-Point Numbers 101 Approximation 4.2 Floating-Point Numbers 4.2 Floating-Point Numbers The number 3.1416 in scientific notation is 0.31416 10 1 or (as computer output) -0.31416E01..31416 10 1 exponent sign mantissa base

More information